1 引 言
炸药是武器装备的核心部件,是实现毁伤的动力能源。熔铸炸药以其爆炸威力高、易于成型、成本低廉等优点被广泛应用在各种战斗部的装药上,约占军用混合炸药的90%以
上[1] 。20世纪初,以TNT为载体的熔铸炸药取代苦味酸成为应用最广泛的一类熔铸炸药。然而由于TNT感度高、毒性大、易渗油等缺陷[2,3] ,所以以其为基的熔铸炸药不能满足现代武器装药的高能钝感要求。21世纪初,北京理工大学[4,5,6] 、西安近代化学研究所[7] 等单位对以DNAN为载体的熔铸炸药开展了大量的研究工作,逐步形成了DNAN基熔铸炸药技术。国内外学者对DNAN和TNT基熔铸炸药性能展开了广泛的研究。罗一
鸣[8] 等研究了TNT和DNAN在相同工况下由熔融态冷却凝固成固态的体积收缩率;Davies[9,10] 等对DNAN作为熔铸炸药载体替代TNT进行了初步研究,并对ARX⁃4027(DNAN/MNA/RDX 39.75/0.25/60)炸药从悬浮液粘度、药柱力学、感度和爆轰等方面进行了性能表征;王浩[11] 通过X射线和扫描电镜探讨了载体炸药TNT和DNAN在高低温冲击(-54~71 ℃)条件下不可逆膨胀的特性及其机理;王红星[12,13] 等通过烤燃实验研究了DNAN和TNT自发火温度、热爆炸延滞期和临界温度热等安全性参数,结果表明DNAN在热安全性方面具有一定优势;Trzciński[14] 计算并测试了DNAN/RDX/NTO(40/20/40)和TNT/RDX/NTO(40/20/40)铸炸药格尼能和爆轰性能,测量了冲击波感度,结果表明DNAN基炸药能量及冲击波感度均较低。然而,上述工作都只是从某个方面对DNAN和TNT基熔铸炸药性能进行研究,未能系统地对两类炸药的装药性能进行比较,无法确定某类炸药是否具有综合性能优势(若仅对比能量性能和安全性能,综合性能优势是指在能量性能基本持平的情况下,安全性能占优;或者在安全性能基本持平的情况下,能量性能占优)。因此,本研究采用流变仪测量DNAN/HMX和TNT/HMX熔铸炸药悬浮液的流变性能、采用电测法测试二者的爆速和爆压、采用慢速烤燃和一维拉格朗日分析试验研究二者在热和冲击波作用下的安全性、采用准静态实验和分离式霍普金森压杆研究炸药的准静态和动态力学性能,综合比较了DNAN/HMX和TNT/HMX熔铸炸药的流变、能量、安全和力学等性能,为战斗部装药的选择提供技术支撑。
2 实验部分
2.1 样品准备
2.1.1 原材料来源与规格
DNAN,湖北东方化工有限公司,熔点为94~96 ℃,晶体密度为1.54 g·c
m-3 ,纯度为99.6%±0.3%;TNT,湖北东方化工有限公司,熔点为81~82 ℃,晶体密度为1.651 g·cm-3 ,纯度为98.6%;奥克托今(HMX),甘肃银光化学工业集团有限公司,三种HMX的粒度分布如图1所示,中位径分别为50.6(S1 )、100.7(S2 )、785.3(S3 )μm。2.1.2 样品制备
分别按照配方DNAN/HMX(20/80)和TNT/HMX(25/75)称取DNAN或TNT置于双层不锈钢反应釜中,通过循环油浴进行控温加热熔化,温度为(105±0.5) ℃,待载体炸药熔化后按照相应配方中的质量比例称取HMX,并在搅拌的情况下缓慢加入,HMX完全加入后继续搅拌20~30 min,然后浇注到相应的模具中冷却成型,成型后的药柱如图2所示。其中,一维拉格朗日分析试验、准静态力学试验、以及分离式霍普金森压杆(SHPB)试验中各药柱样品具体尺寸参见2.2节。
2.2 测试法方与装置
熔铸炸药熔融状态下的流变特性采用表观粘度进行表征。表观粘度使用Haake Mars III型旋转流变仪进行测量,流变仪配有控温循环油浴以便对炸药悬浮液进行加热与保温。表观粘度测试时,按照炸药成分比例称量后置于测量筒中,熔化混合并搅拌均匀,温度控制在(100±0.1)℃,使用同心圆筒测量系统进行测试。
炸药的能量采用爆速和爆压进行表征。爆速和爆压的测量参照GJB772A-1997炸药试验方
法[15] 。待测载体炸药TNT和DNAN药柱尺寸为Φ80 mm×40 mm,待测TNT基和DNAN基熔铸炸药尺寸为Φ60 mm×40 mm。炸药热感度采用慢速烤燃进行表征,通过美军标MIL⁃STD⁃2105
D[16] 判断慢速烤燃条件下的炸药响应的等级。烤燃装置实物图如图3所示,其壳体材料采用45# 钢,壁厚为3 mm,炸药的浇注尺寸为Φ40 mm×80 mm。控制升温速率为1 K·min-1 。图3 慢速烤燃装置实物图
Fig.3 Device of slow cook⁃off bomb
注:1—壳体, 2—控温加热装置
NOTE: 1—shell, 2—temperature control heating device
从冲击波起爆到发展为爆轰所经过的距离即为到爆轰的距离,是炸药在冲击波作用下安全性评估的重要参数。炸药的冲击波感度采用到爆轰的距离进行表征。炸药到爆轰的距离采用一维拉格朗日分析试
验[17] 进行测试,测试示意图如图4所示,测试装置主要由平面冲击波加载系统(炸药透镜和组合衰减板)、压力测试系统(触发探针、锰铜压阻传感器、脉冲恒流源和示波器)以及待测炸药组成,其中待测载体炸药薄片尺寸为Φ80 mm×4 mm,厚片尺寸为Φ80 mm×20 mm,待测混合炸药薄片尺寸为Φ50 mm×4 mm,厚片尺寸为Φ50 mm×20 mm,透镜的尺寸与待测炸药匹配。测试时入射波的压力通过控制空气环和衰减板的高度进行调整。炸药的力学性能采用抗压强度和抗拉强度进行表征,在常温(20±0.5) ℃下通过准静态力学实验和SHPB试验进行测试,而后分别在低温(0±0.5) ℃、高温(40±0.5) ℃、高低温循环条件下对炸药进行准静态测试,高低温循环试验温度范围参照《军用设备环境试验方法》GJB150.5A-2009确定,高低温循环温度范围为+70~-40 ℃,升降温速率为20 ℃·
h-1 ,并在-40 ℃和70 ℃恒温2 h使样品温度均匀稳定,试验周期数分别为3个周期。准静态抗压强度测试时测量头的加载速度为0.5 mm·min-1 ,待测炸药的尺寸为Φ10 mm×10 mm;准静态抗拉强度通过巴西试验法[6] 进行测试,测试时测量头的加载速度为0.5 mm·min-1 ,待测炸药的尺寸为Φ40 mm×10 mm;SHPB测试时应变率控制在150s-1 左右,待测炸药尺寸为Φ10 mm×10 mm。3 结果与讨论
3.1 流变性能
100 ℃时载体炸药TNT和DNAN在0~500
s-1 剪切速率范围内的粘度曲线如图5所示。由图5可以看出,在测试的剪切速率范围内TNT和DNAN的粘度没有随剪切速率的变化而发生变化,均呈现出牛顿流体的特性;比较发现,TNT的粘度(9.05±0.27) mPa·s比DNAN(6.87±0.25) mPa·s高31.73%。图6为HMX(
S1 )粒度(d50=50.6 μm)条件下DNAN/HMX和TNT/HMX炸药悬浮液的表观粘度,其中图6 a为60%固相含量下两种炸药的粘度曲线,图6 b为不同固相含量下 DNAN/HMX和TNT/HMX的粘度曲线。由图6 a可以发现, DNAN/HMX和TNT/HMX炸药的表观粘度均随着剪切速率的增加而不断减小,呈现出剪切变稀的特性,分析原因可能是实际HMX颗粒多为非球形,在剪切流动的过程颗粒会沿着流动方向取向排列[18] ,剪切速率越大,取向排列程度越高,粘度越小;由图6b可以发现,在相同的固相条件下,TNT/HMX炸药的表观粘度均比DNAN/HMX高。对
S3 (d50=785.3 μm)和S2 (d50=100.7 μm)两种粒度的HMX进行颗粒级配,级配后测试得到悬浮液的粘度如图7所示,测试时温度保持在(100±0.1) ℃,剪切速率为100s-1 。图7 HMX颗粒级配对TNT/HMX和DNAN/HMX粘度影响
Fig.7 Effect of HMX particle gradation on the viscosity of TNT/HMX and DNAN/HMX
由图7a可以发现,在相同固相含量下,颗粒级配后的悬浮液粘度比单一粒度分布的剪切粘度小,最合适的粒度级配为2∶1。分析原因可能是颗粒级配拓宽了颗粒的尺寸分布,使得更多的小颗粒能够填充到大颗粒之间,从而有助提高固相含量和降低粘度;此外,悬浮液粘度受颗粒尺寸和大小颗粒质量比影
响[19] 。由图7b可见,在最佳级配
S3 ∶S2 =2∶1条件下,当相同固相含量时,DNAN/HMX炸药的悬浮液粘度均小于TNT/HMX炸药。在适宜的装药质量条件下,TNT/HMX的最大固相含量约为75%,DNAN/HMX的最大固相含量约为80%。3.2 能量性能
选择TNT/HMX(25/75)和DNAN/HMX(20/80)为研究对象,测试二者的爆速、爆压,测试结果如表1所示。由表1可以发现,载体炸药DNAN的爆速和爆压均比TNT低,这是因为硝基(—N
O2 )是炸药的致爆基团,TNT和DNAN分子结构式相似,TNT含有三个硝基,而DNAN仅含有两个硝基; DNAN/HMX(20/80)熔铸炸药的爆速和爆压则与TNT/HMX(25/75)熔铸炸药相当(爆速、爆压仅相差1%左右),这是因为DNAN/HMX基熔铸炸药较高的固相含量弥补了DNAN能量的不足。3.3 安全性能
3.3.1 慢速烤燃
对载体炸药TNT和DNAN、混合熔铸炸药TNT/HMX(25/75)和DNAN/HMX(20/80)进行慢速烤燃试验,控制升温速率为1 K·mi
n-1 ,试验后烤燃弹的状态如图8所示。试验中,TNT和DNAN发生响应的时间分别为242.5,270.9 min,TNT/HMX(25/75)和DNAN/HMX(20/80)发生响应的时间分别为222.7,226.3 min。对比图8a和图8b可以发现,装有TNT的烤燃弹试验后壳体完全破碎,碎片较大,按照美军标MIL⁃STD⁃2105D可以判定其响应等级为爆炸反应(类型Ⅲ);装有DNAN的烤燃弹试验后没有产生碎片,壳体仍然较为完整,没有显著的变形,炸药有灼烧的现象,但弹体内有大量的残药,可以判定其响应等级为燃烧反应(类型Ⅴ)。
对比图8c和图8d可以发现,装有TNT/HMX (25/75)炸药的烤燃弹试验后壳体完全破碎,碎片较大,壳体底部有少量残药,可以判定其响应等级为爆炸反应(类型Ⅲ);装有DNAN/HMX(20/80)的烤燃弹试验后壳体仍然较为完整,有一侧端盖被撕裂开,弹体内和试验台周围有部分残药,可以判定其响应等级为爆燃反应(类型Ⅳ)。
通过慢速烤燃试验可以得出结论,与载体炸药TNT相比,DNAN具有更高的烤燃安全性;与TNT/HMX (25/75)能量相当的DNAN/HMX (20/80)具有更高的烤燃安全性。
3.3.2 一维拉格朗日分析试验
对载体炸药TNT和DNAN进行一维拉格朗日分析试验时,调整空气环和衰减板得到入射波压力为5.72 GPa;对TNT/HMX(25/75)和DNAN/HMX(20/80)进行一维拉格朗日分析试验时,调整得到入射波压力为4.51 GPa。测试得到炸药不同拉格朗日位置处的压力时程曲线如图9所示。
图9 DNAN/HMX(20/80)和TNT/HMX(25/75)炸药各拉格朗日位置的压力历史
Fig.9 Measured pressure histories of explosive at various Lagrangian positions of DNAN/HMX(20/80) and TNT/HMX(25/75)
对比图9a和图9b可以看出,在5.72 GPa的加载压力作用下,载体炸药TNT炸药在4,8,12 mm位置处前导冲击波阵面压力均升高明显,而且冲击波阵面后由于快速的化学反应导致压力上升很快,压缩波峰值的到达时间与前导冲击波阵面到达时间很近,炸药在8,12 mm位置处压缩峰值的到达时间和前导冲击波到达时间基本相同,在12 mm处炸药达到了完全爆轰,波阵面压力达到19.41 GPa;而DNAN炸药在5.72 GPa的加载压力作用下各位置处前导冲击波到达后压缩峰值均有较小幅度的增加,但各位置处前导冲击波波阵面压力没有明显升高,在12 mm位置处未能达到完全爆轰。因此,在5.72 GPa的加载压力作用下,TNT到爆轰的距离为8~12 mm,DNAN到爆轰的距离大于12 mm,即载体炸药DNAN冲击波感度低于TNT。
对比图9c和图9d,可以看出,TNT/HMX(25/75)炸药前导冲击波波阵面压力随着拉格朗日位置增加而快速增加,在12 mm位置处达到完全爆轰,波阵面压力达到26.07 GPa,而DNAN/HMX(20/80)炸药中各拉格朗日位置前导冲击波波阵面压力增长较为缓慢,在12 mm位置处未能达到完全爆轰,波阵面压力仅为16.16 GPa。因此,在4.51 GPa的加载压力作用下,TNT/HMX(25/75)到爆轰的距离为8~12 mm,DNAN/HMX(20/80)到爆轰的距离大于12 mm,即DNAN/HMX(20/80)的冲击波感度低于TNT/HMX(25/75)。
3.4 力学性能
在常温下(20±0.5) ℃下,通过准静态单轴压缩压缩、巴西试验和动态SHPB试验测试TNT和DNAN基熔铸炸药的力学性能,测试结果见表2。
表2 TNT和DNAN及其熔铸炸药的力学性能
Table 2 Mechanical properties of TNT, DNAN, and the melt⁃cast explosives based on them
item explosives density
ρ/g·c
m-3 quasi⁃static compression quasi⁃static tension SHPB strength
σc/MPa
modulus
E/GPa
strength
σt/MPa
modulus
E/GPa
strength
σ/MPa
modulus
E/GPa
carrier explosives TNT 1.612 19.732 1.737 0.567 1.506 20.734 2.692 DNAN 1.485 10.888 1.195 0.731 1.151 13.085 1.456 mixed explosive TNT/HMX(25/75) 1.803 12.823 6.719 1.441 6.659 18.562 7.571 DNAN/HMX(20/80) 1.796 15.642 7.612 1.748 7.405 19.830 8.486 比较表2的数据,可以发现,载体炸药TNT的静态和动态抗压强度和压缩模量均显著大于DNAN,而DNAN的静态抗拉强度比TNT高28.9%。混合炸药DNAN/HMX(20/80)炸药的相对密度与TNT/HMX(25/75)几乎一致,其静态和动态抗压强度和模量均比TNT/HMX(25/75)高,特别是DNAN/HMX(20/80)炸药的静态抗拉强度比TNT/HMX(25/75)高21.3%。这可能是因为DNAN/HMX的分子间结合能大于TNT/HM
X[20] 所致。熔铸炸药属于脆性材料,一般其抗拉强度远小于抗压强度,在复杂的受力环境中往往是受拉破坏而非受压破坏。因此可以得出结论:常温下,DNAN基熔铸炸药的力学性能优于TNT基熔铸炸药。在低温(0±0.5) ℃、高温(40±0.5) ℃、高低温循环条件下测试得到TNT、DNAN及其基熔铸炸药的静态抗压强度、抗拉强度见表3。
表3 不同温度条件下TNT和DNAN及其熔铸炸药的强度
Table 3 Strength of TNT, DNAN, and the melt⁃cast explosives under various temperatureMPa
item T / ℃ carrier explosives mixed explosives TNT/ DNAN TNT/HMX(25/75) DNAN/HMX(20/80) compression 0±0.5 21.779 10.719 15.116 17.652 40±0.5 15.436 9.226 10.615 13.019 circulation 16.128 10.058 9.510 14.633 tension 0±0.5 0.681 0.362 1.618 1.891 40±0.5 0.366 0.318 1.192 1.544 circulation 0.411 0.330 1.232 1.433 由表2及表3的数据可知,除DNAN外,TNT、TNT/HMX(25/75)、以及DNAN/HMX(20/80)的抗拉和抗压强度都是在0 ℃下最高,20 ℃下次之,40 ℃下最低,呈现出低温硬化高温软化的现象;0 ℃下DNAN的抗拉及抗压强度均低于20 ℃下的相应值,可能是低温条件下DNAN药柱产生了裂纹所致;与常温条件下相比,经过高低温循环后所有药柱的抗拉和抗压强度均减小,也可能是高低温循环使得药柱内部产生了裂纹。此外,除20 ℃下DNAN的抗拉强度大于TNT(表2)外,其余情况下DNAN的力学性能都不如TNT。但是,对于以它们为基的熔铸炸药来说,情况大不相同。在所有温度条件下,DNAN/HMX(20/80)的抗拉及抗压强度都优于TNT/HMX(25/75)。
4 结 论
(1)载体炸药DNAN的粘度比TNT约低24%,使得DNAN基熔铸体系的极限固含量比TNT基熔铸体系高5%左右。DNAN/HMX与TNT/HMX熔铸体系的极限固含量大致分别为80%和75%。
(2)熔铸炸药DNAN/HMX(20/80)与TNT/HMX(25/75)的爆速分别为8336 m·
s-1 和8452 m·s-1 ,爆压分别为31.03GPa和31.44GPa,两者的能量性能基本相当。(3)在慢烤实验中,DNAN/HMX(20/80)的响应等级为爆燃反应,TNT/HMX(25/75)则为爆炸反应;在一维拉格朗日分析试验中,DNAN/HMX(20/80)在12 mm内未达到完全爆轰,TNT/HMX(25/75)在8~12 mm内达到完全爆轰,前者的到爆轰距离远大于后者。熔铸炸药DNAN/HMX(20/80)的安全性能优于TNT/HMX(25/75)。
(4)DNAN/HMX(20/80)熔铸炸药在0,20,40 ℃条件下的抗拉和抗压强度均大于TNT/HMX(25/75),熔铸炸药DNAN/HMX(20/80)的力学性能优于TNT/HMX(25/75)。
上述结果表明,在能量性能基本持平的情况下,DNAN/HMX熔铸炸药的安全及力学性能优于TNT/HMX熔铸炸药,即DNAN/HMX熔铸炸药具有相对于TNT/HMX熔铸炸药的综合性能优势。
(责编: 王艳秀)
参考文献
- 1
孙业斌, 惠君明 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995:119.
SUN Ye⁃bin, HUI Jun⁃ming, CAO Xin⁃mao. Military composite explosivs[M]. Beijing: Weapons Industry Publishing House, 1995:119.
- 2
曹端林, 李雅津, 杜耀, 等. 熔铸炸药载体的研究评述[J]. 含能材料. 2013, 21(2): 157-165.
CAO Duan⁃lin, LI Ya⁃jin, DU Yao, et al. Review on carriers for melt⁃cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailao), 2013, 21(2): 157-165.
- 3
王亲会. 熔铸混合炸药用载体炸药评述[J]. 火炸药学报. 2011, 34(5): 25-28.
WANG Qin⁃hui. Overview of carrier explosive for melt⁃cast composite explosive[J]. Chinese Journal of Explosives & Propellants. 2011, 34(5): 25-28.
- 4
蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2,4⁃二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报. 2016, 37(3): 424-430.
MENG Jun⁃jiong, JIANG Zhen⁃ming, ZHANG Xiang⁃rong, et al. Effect of functional agents on the performance of 2,4⁃dinitroanisole⁃based melt⁃cast explosives[J]. Acta Armamentarii, 2016, 37(3): 424-430.
- 5
CAO Tong⁃tang. Zhou Lin, Zhang Xiang⁃rong,et al. Shock initiation characteristics of aluminized DNAN/RDX melt⁃cast explosives[J]. Journal of Energetic Materials, 2017, 35(4):430-442.
- 6
ZHU Dao⁃li, Zhou Lin, Zhang Xiang⁃rong, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt⁃cast explosive by Brazilian disc test combined with digital image correlation method[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8):864-872.
- 7
高杰, 焦建设, 王浩, 等. DNAN基熔铸复合炸药的爆轰性能[J]. 火炸药学报, 2014, 37(3):26-32
GAO Jie, JIAO Jian⁃she, WANG Hao, et al. Detonation properties of DNAN⁃based melt⁃cast composition explosive[J]. Chinese Journal of Explosives & Propellants, 2014, 37(3):26-32
- 8
罗一鸣,蒋秋黎,赵凯,等. 2,4⁃二硝基苯甲醚与TNT凝固行为的差异性分析[J]. 火炸药学报. 2015, 38(5): 37-40.
LUO Yi⁃ming, JIANG Qiu⁃li, ZHAO Kai, et al. Analysis on differences of solidification behavior of DNAN and TNT[J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 37-40.
- 9
Provatas A, Davies P J. Australian melt⁃cast explosives R&D DNAN ⁃ a replacement for TNT in melt⁃cast formulations[R]. Weapons Systems Division, 2005.
- 10
Davies P J, Provatas A. Characterization of 2,4⁃dinitroanisole an ingredient for use in low sensitivity melt cast formulations, Edinburgh south Australia[R]. Weapons Systems Division of Defense Science and Technology Organization, 2006.
- 11
王浩, 高杰, 罗一鸣, 等. TNT、DNAN、TNAZ、DNTF不可逆膨胀特性[J]. 科学技术与工程, 2016, 16(32): 229-232.
WANG Hao, Gao Jie, LUO Yi⁃ming, et al. Irreversible growth characteristics of TNT, DNAN, TNAZ and DNTF[J]. Science Technology and Engineering, 2016, 16(32): 229-232.
- 12
王红星, 罗一鸣, 王晓峰. DNAN作为熔铸炸药载体的可行性分析[C]. 北京: 2008年火炸新技术研讨会论文集, 2008.
WANG Hong⁃xing, Luo Yi⁃ming, WANG Xiao⁃feng. Feasibility analysis of DNAN as carrier of melt⁃cast explosives[C]. Beijing: 2008 Symposium on New Technology of Propellants and Explosives, 2008.
- 13
王红星,王晓峰, 罗一鸣, 等. DNAN炸药的烤燃实验[J]. 含能材料. 2009, 17(2): 183⁃186.
WANG Hong⁃xing, WANG Xiao⁃feng, LUO Yi⁃ming, et al. Cook⁃off Test of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(2): 183-186.
- 14
Trzciński W A, Cudziło S, Dyjak S, et al. A comparison of the sensitivity and performance characteristics of melt⁃pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.
- 15
GJB772A⁃97, 炸药试验方法[S]. 北京: 国防科学技术工业委员会, 1997.
GJB772A⁃97, Explosive Test Method[S]. Beijing: National Defense Science, Technology and Industry Commission, 1997.
- 16
MIL⁃STD⁃2105D, Hazard assessment tests for non⁃unclear munitions[S]. US: Department of Defense, 2011.
- 17
张宝钅平,张庆明,黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001:259-260.
ZHANG Bao⁃ping, ZHANG Qing⁃ming, HUANG Feng⁃lei. Detonation Physics[M]. Beijing: Weapons Industry Publishing House, 2001:259-260.
- 18
Chinesta F, Ausias G. Rheology of non⁃spherical particle suspensions[M]. UK: ISTE Press, 2015:20.
- 19
Chong J S, Christiansen E B, Baer A D. Rheology of concentrated suspensions[J]. Journal of Applied Polymer Science, 1971,15: 2007-2021.
- 20
蒙君煚. DNAN基熔铸炸药成型过程若干问题研究[D]. 北京:北京理工大学,2017.
MENG Jun⁃jiong. Research on forming process of DNAN based melt⁃cast explosives[D]. Beijing:Beijing Institute of Technology,2017.
- 1
摘要
为了对比载体炸药2,4,6⁃三硝基甲苯(TNT)和2,4⁃二硝基苯甲醚(DNAN)、以及以它们为基的熔铸炸药的综合性能,系统研究了DNAN和TNT、以及DNAN/HMX(20/80)和TNT/HMX(25/75)熔铸炸药的流变、能量、安全、以及力学等性能。结果表明:载体炸药DNAN(6.87 mPa·s)的粘度低于TNT(9.05 mPa·s),DNAN/HMX熔铸体系的极限固含量(约80%)高于TNT/HMX熔铸体系(约75%);DNAN/HMX(20/80)和TNT/HMX(25/75)熔铸炸药的爆速分别为8336 m·
Abstract
In order to compare the comprehensive properties of 2,4⁃dinitroanisole(DNAN)⁃based and 2,4,6⁃trinitrotoluene(TNT) ⁃based melt⁃cast explosives, the suspension rheology, performance, safety and mechanical properties of typical TNT⁃based and DNAN⁃based explosives were systematically investigated by experiment tests. The viscosity of DNAN(6.87 mPa·s) was lower than that of TNT(9.05 mPa·s), which made the limit solid content of the DNAN/HMX melt⁃cast system (about 80%) higher than that of the TNT/HMX melt⁃cast system (about 75%). The detonation velocity and detonation pressure was 8336 m·