CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
Al⁃ShehabN, PfauD, BakerE L,et al. Anti⁃Armor Warhead Venting[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 2
ParkD, LuP , ScalesD, et al. Venting technology for large caliber gun propulsion systems⁃metal cartridge case and packaging container venting [C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 3
Ian MacDonald Watson, BazleyGregg. The Use of Hydrocode Modelling in Optimisation of Physical Mitigation Design Solutions for Multiple Weapon Types[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.
参考文献 4
SchultzEmmanuel. MTM: Mitigation Techniques for Munitions Easy access online! [C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.
参考文献 5
WeyTony, PfauDavid, and MoyLeon. Impact mitigation approach for 105 mm artillery propulsion system [C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.
参考文献 6
Al⁃ShehabNausheen, MadsenT, DeFisherS, et al. Cook⁃Off Mitigation Scaling Effects[C]//IMEMTS Symposium, Miami, October 15-18, 2007.
参考文献 7
邓海,沈飞,梁争峰,等.不同约束条件下B炸药的慢烤响应特性[J].火炸药学报,2018,41(5):465-470.
DENGHai, SHENFei,LIANGZheng⁃feng, et al. Slow cook⁃off response characteristics of Composition B under different constraints[J].Chinese J of Explosives & Propellants, 2018,41(5):465-470.
参考文献 8
赵亮,智小琦,高峰,等.DNAN基熔铸混合炸药慢速烤燃的尺寸效应[J].火炸药学报,2018,41(2):159-163.
ZHAOLiang, ZHIXiao⁃qi, GAOFeng, et al. Study on the size effect of cook⁃off of DNAN based melting and casting mixed explosive[J].Chinese J of Explosives & Propellants, 2018,41(2):159⁃163.
参考文献 9
李文凤,余永刚,叶锐,等.不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J].爆炸与冲击,2017,37(1):46-52.
LIWen⁃feng, YUYong⁃gang, YERui, et al. Simulation of cook⁃off for AP/HTPB composition propellant in base bleed unit at heating rates[J]. Explosion and Shoock Waves, 2017,37(1):46-52.
参考文献 10
陈科全,黄亨建,路中华,等. 基于ABAQUS的PBX炸药烤燃试验数值计算[J].火炸药学报,2014,37(2):31-36.
CHENKe⁃Quan, HUANGHeng⁃jian, LUZhong⁃hua, et al. Numerical calculation of cook⁃off test for PBX explosive based ABAQUS[J].Chinese J of Explosives & Propellants, 2014,37(2):31-36.
参考文献 11
陈科全,黄亨建,路中华,等. 一种弹体排气缓释结构设计方法与试验研究[J].弹箭与制导学报,2015,35(4):15-18.
CHENKe⁃Quan, HuangHeng⁃jian, LUZhong⁃huaet al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015,35(4):15-18.
参考文献 12
陈科全,黄亨建,路中华,等. 强约束下典型熔铸和浇注炸药的烤燃特性对比[J].四川兵工学报,2015,36(1):133-136.
CHENKe⁃Quan, HUANGHeng⁃jian, LUZhong⁃hua, et al. Experimental study on cook⁃off test for melt_cast and cast_cured explosive at strong constraint[J]. Sichuan Bigongxuebao, 2015,36(1):133-136.
参考文献 13
陈红霞,蒋治海,陈科全,等. 弹体缓释排气通道形成条件研究[J]. 四川兵工学报,2015,36(9):145-148.
CHENHong⁃xia, JIANGZhi⁃hai, CHENKe⁃quan, et al. Research on formation condition of venting channel of missile[J]. Sichuan Bigongxuebao, 2015,36(9):145-148.
参考文献 14
田勇,李敬明.弹药安全的新发展――安全弹药刍议[J]含能材料,2017,25(2):91-93.
TIANYong, LIJing⁃ming. New development of ammunition safety: robust munitions[J]. Chinese J of Energetic Materials(Hanneng Cailiao), 2017,25(2):91-93.
参考文献 15
SharpMichael. Active Passive Mitigation Devices S3 Assessment[C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.
参考文献 16
FisherMike. Thermally Activated Venting System for IM [C]//IMEMTS Symposium, Miami, October 15-18, 2007.
参考文献 17
DOD Fuze Engineering Standardization Working Group. Safety design requirements for active harzard mitigation device (AHMD) employed to address fast and slow cook⁃off thermal threats [R].2014,ADA617010.
参考文献 18
KelleyStephen. Venting Techniques for Penetrator Warheads[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 19
DuchowJen, HaysBrian. General purpose bomb fast cook⁃off mitigation techniques[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 20
GrahamKenneth J. Mitigation of Fuel Fire Threat to Large Rocket Motors by Venting[C]//IMEMTS Symposium, Munich, Germany, October, 2010.
参考文献 21
GrahamKenneth J. Explosive response to fragments: venting studies[R]. ADA176599,1986.
参考文献 22
SahinHakan, NarinBekir, Funda KurtulusD. Development of a Design Methodology Against Fas Cook⁃Off Threat for Insensitive Munitions[J]. Propellants, Explosive,Pyrotechnics,2016,41:580-587.
参考文献 23
SmithPauline. Coating Technologies for Insensitive Munitions[R]. 2006, ADA456625.
参考文献 24
Chris MealyP E , Noah LiebP E. HAP⁃Free intumescent coatings for protection of munition containers[C]//IMEMTS Symposium, Munich, Germany, October, 2010.
参考文献 25
SmithPauline. Thermal Coating for Insensitive⁃Munitions Technologies [R]. ADA474504,2007.
参考文献 26
Steven S Kim. Fast cook⁃off reaction improvement of the2.75⁃inch rocket motor[C]//Insensitive Munitions &Energetic Materials Technology Symposium.San Antonio, TX,USA, Nov. 2000.
参考文献 27
SmitBen. Mitigation Techniques for reduced rocket motor vulnerability against external thermal stimuli[C]//IMEMTS Symposium, Munich, Germany, October, 2010.
参考文献 28
StricklandAndrew,NugeyreJean⁃Claude. A scientific review of the current state of IM mitigation devices for use with rocket motor systems and the future development outlook[C]//IMEMTS Symposium, Miami, October 15-18, 2007.
参考文献 29
DelrieuLaurent.New French IM 500lb bombs[C]//MEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 30
NATO standardization agency. Guidance on the assessment and development of insensitive munitions.2010, AOP⁃39(edition 3).
参考文献 31
GarethR T,BullegasGianmaria, VideiraJose. Stopping km/s Blunt fragments and limiting shock lensing with a new advanced energy absorbing composite[C]// IMEMTS, Portland, OR, USA, April2018.
参考文献 32
StephenH, ChrisS, CheesePhil, et al. Small scale fragment attack testing on the LMM missile boost motor and the influence of the conduit form on XDT threshold[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee, Sept, 2016.
参考文献 33
MattT, NickP, Jonk. Composite material modeling for fragment impact[C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.
参考文献 34
MiersKevin T, Al⁃ShehabNausheen M, PrillamanDaniel L. Fragment impact modeling and experimental results for Insensitive Munitions compliance of a 120 mm warhead[J]. Procedia Engineering, 2017(204):223-230.
参考文献 35
DanielsArthur, PhamJames, NgKoon, et al. Development of particle impact mitigation sleeves to reduced IM response [C]//IMEMTS Symposium, Miami, October 15-18, 2007.
参考文献 36
GroverJared. Pumice layered with projectile⁃resistant materials for bullet impact mitigation[C]//IMEMTS Symposium, Miami, October 15-18, 2007.
参考文献 37
FrayA J, CookJ, HouseJ, et al. Mitigation of bullet and fragment threats using armours and other protective systems[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.
参考文献 38
SteinbergMichael, StanfieldJessica. Fragment impact mitigation through shock⁃induced threat damage[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee.
参考文献 39
Huntington⁃ThresherW, FranklP, CooklM, et al. The demonstration of a predictive modelling approach to the design of mass efficient fragment mitigation systems[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.
参考文献 40
Bob Van Schaack, BenderGreg. Use of package methodologies and innovative materials to prevent sympathetic detonation of stowed naval ordance[C]//Insensitive Munitions & Energetic Materials Technology Symposium. Bordeaux, France, 2001.
参考文献 41
O’connorEdward J, SterbaKathleen M, GamacheRaymond, et al. Evaluation of sympathetic detonation shielding concepts for ship⁃stowed munitions[C]//Insensitive Munitions&Energetic Materials Technology Symposium,Orlando,Florida,10-13March , 2003.
参考文献 42
Julian Taylor MSc, MIExpE, CpRINA. Explosive effects mitigation for4.5 inch Mk 8 HE medium range naval fire support munitions including a platform consequence analysis methodology [C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.
参考文献 43
GroverJared, BradyVicki. WDU⁃36/B warhead sympathetic detonation—transport configuration[C]//2006 Insensitive Munitions & Energetic Materials Technology Symposium.
参考文献 44
BarnabiRobert, GlickMichael A. TOW 2B sympathetic detonation container[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.
参考文献 45
DefisherS, BakerE L, WellsL, et al. XM982 excalibur sympathetic detonation modeling and experimentation[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.
目录 contents

    摘要

    控制弹药在意外刺激下反应烈度的缓解技术是钝感弹药的关键技术之一,对提高弹药安全性具有重要作用。为了给致力于提升弹药综合性能的科研工作者提供参考,本文在分析国外有关缓解技术的研究进展基础上,归纳总结了针对降低弹药在热、力及其复合刺激下反应烈度的结构缓解和防护设计的原理和方法,认为其核心是降低意外刺激能量和控制装药反应演化进程。在此基础上,提出了深入研究装药的点火及其反应演化机制、复合壳体技术、装药⁃结构⁃缓解一体化设计技术三个研究方向。

    Abstract

    The mitigation technology of controlling the reaction level of munitions under accidental stimulation is one of the key technologies of insensitive munitions, which plays an important role in improving the safety of munitions. In order to provide reference for improving the comprehensive performance of munitions, the principles and methods for structural mitigation and protection design aiming at reducing the intensity reaction level of munitions under thermal, mechanical and combined stimuli were summarized, based on the analysis of the research progress of mitigation technology abroad. The core ideas of mitigation designs were reducing stimuli energy and controlling the process of reaction evolution of charges. On this basis, three directions were recommended including research in the ignition and mechanism of reaction evolution of charges, the composite shell technology, and the combined design technology for charge⁃structure⁃mitigation.

  • 1 引 言

    现代军事技术的发展,对武器弹药的实战性能提出了越来越高的要求,提升武器弹药的安全性已引起广大科研工作者的广泛重视。为改善武器弹药的安全性,以美国为首的西方国家自20世纪80年代开始实施并大力推行钝感弹药(IM)计划,30余年来,走过了一条“从概念到政策”、“从定义到标准”和全面装备之路,钝感弹药技术日趋成熟,钝感弹药产品份额稳步提升,目前北约国家钝感弹药已占到现役弹药的50%左右,各类弹药在储存、运输、勤务、使用和意外刺激下的安全性得到大幅提升。这些成果的取得与多年来研究者们围绕不敏感含能材料、危害缓解、试验与评估等钝感弹药关键技术不懈攻关密不可分。如果说不敏感含能材料是关系到弹药是否满足钝感弹药标准的最本质因素,危害缓解技术就是重要因素,国外对此进行了广泛研[1,2,3,4,5,6],取得了丰硕的成果。近年来,提升弹药安全性的相关研究也逐渐成为国内的研究热[7,8,9,10,11,12,13,14],但在弹药危害缓解技术方面的研究公开报道较少,且主要集中在试验与数值模拟研[10,11,12,13],缺乏对其设计原理和方法的深入认识。为此,本文在分析国外关于缓解技术研究结果基础上,对钝感弹药危害缓解技术的设计原理与方法进行了归纳,期望对致力于弹药安全性尤其是安全弹[14]的研究者提供帮助。

  • 2 危害缓解技术的内涵及分类

    弹药在一定强度的热、力及其复合作用意外刺激下,可能发生意外反应而导致对弹药库或邻近弹药、作战平台、人员等的意外伤害,造成巨大的军事、经济和社会影响。根据美国军标MIL⁃STD⁃2105D和北约标准化协定STANAG4439,弹药在意外刺激下的反应烈度可分为爆轰(Ⅰ级)、部分爆轰(Ⅱ级)、爆炸(Ⅲ级)、爆燃(Ⅳ级)、燃烧(Ⅴ级)、无反应(Ⅵ级)六个等级。其中,爆燃以上反应烈度被视为高危反应,可对周围环境和人员造成较大伤害。因此,如何控制弹药意外反应烈度成为钝感弹药研究的重要内容,而控制反应烈度和(或)危害程度的措施或手段通常就称为缓解技术。换言之,弹药危害缓解技术主要是指采用各种技术手段降低弹药遭受意外刺激时的反应烈度和(或)危害程度,从而提高弹药的本质安全性水平。

    缓解技术通常分为主动缓解和被动缓解技[15,16]。主动缓解技术是指采用能够产生放热反应或爆炸效应的装置(称为主动缓解装[17])来切开弹体或形成排气通道,降低弹药在遭遇意外刺激下的反应烈度或危害程度。主动缓解技术在发动机上应用相对较多,而在战斗部上用得较少。战斗部主要应用被动缓解技术。

    被动缓解技术的分类通常有两种分类方式。第一种分类是根据作用机制不同来分,可分为泄压和刺激衰减两类。前者包括末端泄压、排气通道、壳体预刻槽[18,19],通常又称为结构缓解,典型的结构缓解技术如图1图4所示;后者包括膨胀漆涂层、力热防护层等,通常又称为防护技术。这也是缓解技术的重要手段,对于抑制外界刺激,降低弹药反应烈度起到重要作用。如,对于高速破片最典型的办法是采用多层防护罩,采用硬的和吸能复合材料,对相对较薄的防护罩提供有效的保护,同时防护罩可以减小射弹速度、削弱破片速度和抑制火焰的传播;弹头上采用膨胀发泡涂料,遇火烤时涂料发泡、阻然、隔热,以改善弹药在火灾和快烤燃试验中的性能。被动缓解技术的第二种分类是根据刺激类型不同来分,可分为热刺激缓解技术、力刺激缓解技术和混合刺激缓解技术,下文将对这几类缓解技术的原理和方法予以简单介绍。

    图1
                            尾部排气设计[18]

    图1 尾部排气设[18]

    Fig.1 Aft closure venting design

    图2
                            尾部低共融保护环技术[18]

    图2 尾部低共融保护环技[18]

    Fig.2 Aft closure with eutectic retaining ring

    图3
                            BLU⁃122战斗部前端排气设计[18]

    图3 BLU⁃122战斗部前端排气设[18]

    Fig.3 Releasing nose plug for BLU⁃122[18]

    图4
                            应力诱导设计[19]

    图4 应力诱导设[19]

    Fig.4 stress induced design[19]

  • 3 典型危害缓解设计

  • 3.1 热刺激危害缓解设计的原理和方法

    火灾是弹药最常遇见的事故场景,如何针对热刺激下弹药反应危害进行缓解设计,对于提高弹药安全性、降低事故灾害后果具有重要意义。热刺激危害缓解的设计思想考括两方面,一方面是通过隔热设计,在一定时间尺度内防止弹药装药点火,或者延缓装药点火,为事故处置提供时间,这种技术称为热防护缓解;另一方面,如果装药在热刺激下的非冲击点火不可避免,那么点火后的反应演化就决定最终的反应烈度,而反应演化进程与结果受弹体内压的严重影响,因此,热刺激下的缓解措施就是如何降低装药点火后弹体内压,称之为结构缓解技术,如排气泄压、壳体预刻槽等,最常用的方法是采用排气通道设计。

  • 3.1.1 排气通道的设计原理与方法

    排气通道设计的基本原理是:控制反应速率增长,控制弹体内压增长,从而控制装药稳定燃烧,避免燃烧向爆炸、爆轰转化。其关键是如何设计排气通道临界尺寸,归纳起来主要有以下三种方法。

    第一种方法是通过压力平衡方法获得排气通道临界面积。其基本思想是建立装药燃烧反应压力增长速率与通道排气导致的压力降低速率的动态平衡关系,Kenneth[20]据此推导出了排气通道临界截面积的计算公式:

    AV=RTBραMCDa*(A-BT0)SB
    (1)

    式中,AV为排气通道临界截面积,m2R为气体常数,0.08206bar·k-1·mol-1TB是火焰温度,K;ρ为含能材料密度,kg·m-3M是气体产物的平均摩尔质量,kg·mol-1CD是排气系数,取0.6~1.0; a*为气流速度,m·s-1T0为含能材料温度,K;SB是含能材料燃烧面积,m3α为含能材料与压力相关的燃烧速率,m·s-1·bar-1AB为含能材料燃烧速率与温度相关的参数,分别为燃烧速率的倒数与温度的线性函数的截距和斜率,通常由实验测定,对于B炸药,Kenneth[21]给出的结果为α=10-3s-1·bar-1A=12.04,B=0.0235 K-1

    因此,只要知道含能材料的物理化学参数和燃烧特性参数,并结合弹体的结构特征,可据式(1)计算得到排气通道的最小截面积。

    第二种方法是通过质量输运平衡方法获得排气通道临界面积。其基本思想是建立装药燃烧生成的气体质量与通道排出气体质量的动态输运平衡关系,实际上也是一种压力平衡关系。Hakan[22]等据此进行了系列推导,其计算排气通道临界截面积的计算公式可表达为:

    Avent=rburnρburnu*ρ*CDAburn=apchambern-1ρburnRTchamberCDMkRTventAburn
    (2)

    式中,Avent为排气通道的截面积,m2rburn为燃烧速率,m·s-1ρburn为生成气体的密度,kg·m-3Aburn为装药燃烧表面积,m2u*为排出气体的质量速率,kg·s-1ρ*为排出气体的密度,kg·m-3CD为排气因子,通常取1,对于矩形排气孔,可取0.82;an分别为指前因子和压力指数;pchamber为弹体内燃烧气体的内压,bar;Tvent为排出气体的温度,K;Tchamber弹体内燃烧气体温度,k;M为气体产物的平均摩尔质量,kg·mol-1R为气体常数,8.314 J·K-1·mol-1k为燃烧气体产物的多方指数。

    同理,只要知道含能材料的物理化学参数和燃烧特性参数,并结合弹体和排气通道的结构特征,可据式(2)计算得到排气通道的最小截面积。

    第三种方法是通过发射分析方法获得排气通道临界面积。一般适合于发动机排气通道设计。其基本思想是:把排气通道看成是燃气喷管,若排气产生的推力小于发动机质量的80%,即被认为是稳定燃烧。根据Kenneth[20]的研究结果,在已知推进剂的特性参数和发动机质量等条件下,排气通道临界截面积可按式(3)求解计算。

    Avent-n1-n=Fg11-nSBρc*a11-n
    (3)

    式中,Avent为喷管截面积,m2,这里为排气通道的横截面积;F为推力,N;SB为燃烧面积,m2ρ为推进剂的密度,kg·m-3c*为特征速度,m.s-1an分别为指前因子和压力指数;g为重力加速度,m·s-2

  • 3.1.2 热防护设计

    采用隔热涂层、隔热弹衣等防护技术,对于延缓装药点火时间,为事故场景下的灭火处置赢得时间,对于减少弹药事故灾害具有意义。其基本原理是采用低热导率的涂料、油漆、复合材料等隔热材料减缓装药在意外热刺激下的升温进程。可以对弹药壳体表面进行热防[23],也可以对弹药包装箱进行热防[24]。Pauline Smith[25]对20余种耐热涂料的隔热性能研究结果认为聚氨酯复合涂料的隔热性能较优异,在涂层厚度3~5 mm时,被防护体温度达到350℃的延迟时间最高可达10 min。

    但是,热防护技术对于降低弹药反应烈度不一定有效果,因为火灾时间足够长的情况下,装药最终还是可能点火,如前所述点火后的反应演化就决定最终的反应烈度。因而,单纯依赖热防护技术只是一种治标不治本的方法,要提高弹药安全性须从含能材料、装药技术、结构缓解和防护技术综合着手。

  • 3.1.3 热刺激危害缓解技术的典型应用

    不少研[26,27,28,29]表明,排气通道对降低快速烤燃、慢速烤燃的反应烈度有明显效果。表1列出了排气通道缓解技术对改善火箭发动机安全性的部分结果。从表1易知,对热刺激而言,采用合适的缓解技术可以使常用的推进剂满足IM要求,而不敏感推进剂结合缓解技术当是实现IM发动机的最有效途径。

    表1 部分发动机的缓解设计及其反应烈度降低效[28]

    Table 1 Mitigation designs of some rocket motors and corresponding reaction level under fast and slow cook [28]

    design statusreaction level
    propellant typesmitigation technologyfast cook⁃offslow cook⁃off
    conventionalnone
    conventionalPassive venting
    conventionalActive venting
    insensitivenone
    insensitivePassive venting

    表2列出了美国500磅航弹安全性提升历[19]。从表2可知,仅仅以PBXN⁃109取代H6装药,即可明显提高安全性,结合排气通道设计,多项试验满足IM标准,而升级前没有一项试验满足IM标准。从表2的结果注意到排气通道对快烤试验效果较显著,而对力刺激及混合刺激几乎没有效果。法国采用Ⅰ⁃RDX为基的不敏感浇铸PBX炸药B2214B、排气通道、涂层(FM26)防护等技术显著提升了500磅航弹安全性,全面满足IM标[29]。上述情况说明弹药安全性的核心是不敏感含能材料,应针对不同刺激采取相应的缓解技术,方可全面提升安全性。

    表2 美国500磅航弹安全性提升历[19]

    Table 2 Safety improvements of US 500⁃pound aircraft bomb[19]

    timecharge and technologyFCOSCOBIFI
    before 1980sH6FFFF
    after 1980sPBXN⁃109Ⅳ/Ⅴ
    2005

    PBXN⁃109

    venting

  • 3.2 力刺激危害缓解设计的原理和方法

    主要针对弹药在跌落、撞击、遭受子弹/破片打击等事故场景的危害缓解。其基本原理是利用各种缓冲材料、复合材料削弱破片、子弹等的速度和峰值压力。主要防护材料包括:Kevlar、Gel Spun Polyethylene (GSP)、Ceramics⁃SiN,BC,AlO、Tool Steel、Armor Plate、Aluminum、Nitinol、橡胶[30,31,32,33,34,35,36,37,38,39]

  • 3.2.1 衬层/保护套技术

    采用具有缓冲特性的材料制作成弹药的内衬层(壳体和装药之间)或外部保护套可有效降低子弹、破片等的撞击速度和峰值压力,有利于降低弹药在力刺激下的反应烈度,这种技术称为衬层/保护套(Particle Impact Mitigation Sleeves,PIMS[33,34,35]。Arthur Daniels[35]等利用ALE⁃3D计算表明,内衬层和保护套能降低约30%的峰值压力,当破片速度较低时(6000 ft·s-1)内衬层优于外部保护套,当破片速度较高时(8300 ft·s-1)内衬层与外部保护套无显著差异。

    表3所列的试验研究表明,对于PBXN⁃9、PAX⁃3、PAX⁃42三种炸药,衬层厚度达2 mm时即可将破片撞击反应烈度由Ⅰ或Ⅱ降低到Ⅲ或Ⅳ;而对于PAX⁃2A、PAX⁃30两种炸药,衬层厚度需达4 mm时,才有效果。这说明尽管对不同炸药的防护效果有差距,但当衬层厚度达到一定值时,降低弹药在破片撞击下的反应烈度还是显著的。

    表3 内衬层对几种典型装药在破片撞击下的防护效[35]

    Table 3 The effect of inner layer on the reaction level under fragment impact for several typical charges [35]

    explosivereaction level
    No PIMS2 mm PIMS4 mm PIMS
    PBXN⁃9ⅠⅣ
    PAX⁃2A
    PAX⁃3
    PAX⁃42
    PAX⁃30
  • 3.2.2 装甲防护技术

    装甲防护通常使用防弹材料或吸能材[36,37,38,39],如轧制均质装甲钢、纤维增强复合材料、凯夫拉、陶瓷、泡沫材料等,削减子弹速度或吸收能量。

    Fray[37]计算和试验了轧制均质装甲钢(RHA)、玻璃纤维增强材料(GFRP)、三氧化二铝陶瓷/玻璃纤维增强复合材料(Al2O3/GFRP)对12.7 mm子弹撞击速度的影响情况,结果均表明,装甲防护材料能显著降低子弹撞击速度。相对而言,RHA的防护效果更为显著,17 mm厚的RHA可降低约25%的子弹速度,而30 mm厚的Al2O3/GFRP和GFRP仅分别降低大约18%和10%。由此看来,装甲材料对子弹或破片的防护效果与防护材料的密度存在一定正相关性。

    若要更显著地降低子弹或破片撞击能量从而降低弹药的反应烈度,则通常需使用多层复合材料进行防护。Michael Steinberg[38]等采用聚醚酰亚胺(PEI)、铝合金(Al)、陶瓷(Al2O3)、钢(Steel)等材料构成的多层复合材料探索作为火箭发动机的外装甲的可能性,表4所列的结果表明复合材料能显著降低破片撞击速度。利用复合材料对火箭发动机防护的试验结果显示了其应用的可能性,在7068~8277 ft·s-1破片速度打击下,多数发动机发生燃烧反应,少数发生爆燃反应。Huntington⁃Thresher[35]等对钢、泡沫铝、橡胶等多层复合材料对PBXN⁃110炸药防护破片撞击的效果表明,多种复合设计方案均能达到燃烧反应等级的要求,只是不同设计方案防护材料所占的质量和体积有较大差异,须综合考虑质量、厚度、防护效果。

    表4 复合材料对破片速度的衰[38]

    Table 4 Decay of fragment velocity by composite materials

    configureInterlayer Materialsvi / ft·s-1vexit / ft·s-1
    design 1PEI,Al,Al2O359533069
    design 2PEI,Al,Al2O3,Steel60783263
    design 3PEI,Al2O3,Steel59043260
  • 3.3 混合刺激危害缓解设计的原理和方法

    混合刺激主要发生在弹药在邻近弹药爆炸(殉爆)、遭受射流打击等事故场景,其刺激源包括破片、高速金属粒子流、冲击波、热能等混合刺激。但是有关射流的缓解技术鲜见文献报道,混合刺激的缓解研究报道主要是殉[40,41,42,43,44,45]。其主要思想是削弱刺激强度,从而降低弹药的反应烈度和危害。以弹药库殉爆场景为例,在弹药贮存堆垛时,可以采取以下方法降低弹药殉爆危害:改变弹药之间的相对位置、采用缓冲材料隔离等。这些缓解技术由于以下原理和作用,可显著提高弹体殉爆安全性:耗散冲击波能量,包括改变其波形(如由尖锐到圆滑);通过隔离材料的相变(如水)或者通过隔离材料内部摩擦(如泡沫塑料)降低刺激能量;改变破片的形状和面积(变形或破碎)、降低冲击加载和穿透概率或者捕获破片;反射(冲击波和破片)。

    隔离材料包括钢、铝合金、各种缓冲材料、水等,计算和试验表明隔离材料可以降低破片动量30%,破片速度40%[42],有利于改善弹药尤其是小尺寸弹药的殉爆安全性。英国七发4.5英寸MK8炮弹通过七发同尺寸惰性弹和缓冲材料隔离,其殉爆试验的反应烈度为无反应,七发受主弹药完整回[42]。这说明采用合适的隔离和缓冲防护,对提高小尺寸弹药殉爆安全性有效果。值得注意的是这种技术对弹药的堆垛密度有影响,此外鲜见大尺寸弹药殉爆缓解研究报道,殉爆问题仍然有待攻克。

  • 4 结论与展望

    国外对不敏感弹药危害缓解技术进行了广泛研究,取得了丰硕的成果。有关缓解技术设计的原理和方法散见于各文献,概括起来不外乎两点:一是降低意外刺激的能量和强度,以降低装药点火的概率或反应的激烈程度;二是控制装药点火后的反应演化进程,以减少向高烈度反应转化的概率。因此,深入研究装药的点火及其反应演化机制,是弹药危害缓解设计的基础,也是弹药安全性研究的热点方向。

    力刺激和混合刺激防护缓解设计以降低刺激能量和强度为主要着眼点,其缓解效果与防护材料的厚度和密度相关,需要占据一定的尺寸空间和弹药质量,对弹药功能的发挥有不利影响,如果壳体本身就具备防护功能就能充分发挥优点克服缺点。因此,开发多层复合材料作为弹药壳体的复合壳体技术,将成为今后弹药安全性研究的新方向。

    由于不同刺激的点火机制和反应演化均可能不同,一种缓解技术往往只对某一种刺激或状态有效,如排气通道通常仅对非冲击点火机制的意外刺激如热刺激有效,对快烤效果更为显著,且效果好坏与装药特性有关。因此,综合考虑装药特性,热、力及其复合刺激缓解等方面的装药⁃结构⁃缓解一体化设计技术与方法,应是今后弹药安全性研究的重点方向。

    (责编:王艳秀)

  • 参考文献

    • 1

      Al⁃Shehab N, Pfau D, Baker E L,et al. Anti⁃Armor Warhead Venting[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 2

      Park D, Lu P , Scales D, et al. Venting technology for large caliber gun propulsion systems⁃metal cartridge case and packaging container venting [C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 3

      Ian MacDonald Watson, Gregg Bazley. The Use of Hydrocode Modelling in Optimisation of Physical Mitigation Design Solutions for Multiple Weapon Types[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 4

      Emmanuel Schultz. MTM: Mitigation Techniques for Munitions Easy access online! [C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.

    • 5

      Tony Wey, David Pfau, and Leon Moy. Impact mitigation approach for 105 mm artillery propulsion system [C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.

    • 6

      Nausheen Al⁃Shehab, T Madsen, S DeFisher, et al. Cook⁃Off Mitigation Scaling Effects[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 7

      邓海,沈飞,梁争峰,等.不同约束条件下B炸药的慢烤响应特性[J].火炸药学报,2018,41(5):465-470.

      DENG Hai, SHEN Fei,LIANG Zheng⁃feng, et al. Slow cook⁃off response characteristics of Composition B under different constraints[J].Chinese J of Explosives & Propellants, 2018,41(5):465-470.

    • 8

      赵亮,智小琦,高峰,等.DNAN基熔铸混合炸药慢速烤燃的尺寸效应[J].火炸药学报,2018,41(2):159-163.

      ZHAO Liang, ZHI Xiao⁃qi, GAO Feng, et al. Study on the size effect of cook⁃off of DNAN based melting and casting mixed explosive[J].Chinese J of Explosives & Propellants, 2018,41(2):159⁃163.

    • 9

      李文凤,余永刚,叶锐,等.不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J].爆炸与冲击,2017,37(1):46-52.

      LI Wen⁃feng, YU Yong⁃gang, YE Rui, et al. Simulation of cook⁃off for AP/HTPB composition propellant in base bleed unit at heating rates[J]. Explosion and Shoock Waves, 2017,37(1):46-52.

    • 10

      陈科全,黄亨建,路中华,等. 基于ABAQUS的PBX炸药烤燃试验数值计算[J].火炸药学报,2014,37(2):31-36.

      CHEN Ke⁃Quan, HUANG Heng⁃jian, LU Zhong⁃hua, et al. Numerical calculation of cook⁃off test for PBX explosive based ABAQUS[J].Chinese J of Explosives & Propellants, 2014,37(2):31-36.

    • 11

      陈科全,黄亨建,路中华,等. 一种弹体排气缓释结构设计方法与试验研究[J].弹箭与制导学报,2015,35(4):15-18.

      CHEN Ke⁃Quan, Huang Heng⁃jian, LU Zhong⁃huaet al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015,35(4):15-18.

    • 12

      陈科全,黄亨建,路中华,等. 强约束下典型熔铸和浇注炸药的烤燃特性对比[J].四川兵工学报,2015,36(1):133-136.

      CHEN Ke⁃Quan, HUANG Heng⁃jian, LU Zhong⁃hua, et al. Experimental study on cook⁃off test for melt_cast and cast_cured explosive at strong constraint[J]. Sichuan Bigongxuebao, 2015,36(1):133-136.

    • 13

      陈红霞,蒋治海,陈科全,等. 弹体缓释排气通道形成条件研究[J]. 四川兵工学报,2015,36(9):145-148.

      CHEN Hong⁃xia, JIANG Zhi⁃hai, CHEN Ke⁃quan, et al. Research on formation condition of venting channel of missile[J]. Sichuan Bigongxuebao, 2015,36(9):145-148.

    • 14

      田勇,李敬明.弹药安全的新发展――安全弹药刍议[J]含能材料,2017,25(2):91-93.

      TIAN Yong, LI Jing⁃ming. New development of ammunition safety: robust munitions[J]. Chinese J of Energetic Materials(Hanneng Cailiao), 2017,25(2):91-93.

    • 15

      Michael Sharp. Active Passive Mitigation Devices S3 Assessment[C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.

    • 16

      Mike Fisher. Thermally Activated Venting System for IM [C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 17

      DOD Fuze Engineering Standardization Working Group. Safety design requirements for active harzard mitigation device (AHMD) employed to address fast and slow cook⁃off thermal threats [R].2014,ADA617010.

    • 18

      Stephen Kelley. Venting Techniques for Penetrator Warheads[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 19

      Jen Duchow, Brian Hays. General purpose bomb fast cook⁃off mitigation techniques[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 20

      Kenneth J Graham. Mitigation of Fuel Fire Threat to Large Rocket Motors by Venting[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 21

      Kenneth J Graham. Explosive response to fragments: venting studies[R]. ADA176599,1986.

    • 22

      Hakan Sahin, Bekir Narin, D Funda Kurtulus. Development of a Design Methodology Against Fas Cook⁃Off Threat for Insensitive Munitions[J]. Propellants, Explosive,Pyrotechnics,2016,41:580-587.

    • 23

      Pauline Smith. Coating Technologies for Insensitive Munitions[R]. 2006, ADA456625.

    • 24

      Chris Mealy P E , Noah Lieb P E. HAP⁃Free intumescent coatings for protection of munition containers[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 25

      Pauline Smith. Thermal Coating for Insensitive⁃Munitions Technologies [R]. ADA474504,2007.

    • 26

      Steven S Kim. Fast cook⁃off reaction improvement of the2.75⁃inch rocket motor[C]//Insensitive Munitions &Energetic Materials Technology Symposium.San Antonio, TX,USA, Nov. 2000.

    • 27

      Ben Smit. Mitigation Techniques for reduced rocket motor vulnerability against external thermal stimuli[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 28

      Andrew Strickland,Jean⁃Claude Nugeyre. A scientific review of the current state of IM mitigation devices for use with rocket motor systems and the future development outlook[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 29

      Laurent Delrieu.New French IM 500lb bombs[C]//MEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 30

      NATO standardization agency. Guidance on the assessment and development of insensitive munitions.2010, AOP⁃39(edition 3).

    • 31

      Gareth R T,Gianmaria Bullegas, Jose Videira. Stopping km/s Blunt fragments and limiting shock lensing with a new advanced energy absorbing composite[C]// IMEMTS, Portland, OR, USA, April2018.

    • 32

      Stephen H, Chris S, Phil Cheese, et al. Small scale fragment attack testing on the LMM missile boost motor and the influence of the conduit form on XDT threshold[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee, Sept, 2016.

    • 33

      Matt T, Nick P, Jon k. Composite material modeling for fragment impact[C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.

    • 34

      Kevin T Miers, Nausheen M Al⁃Shehab, Daniel L Prillaman. Fragment impact modeling and experimental results for Insensitive Munitions compliance of a 120 mm warhead[J]. Procedia Engineering, 2017(204):223-230.

    • 35

      Arthur Daniels, James Pham, Koon Ng, et al. Development of particle impact mitigation sleeves to reduced IM response [C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 36

      Jared Grover. Pumice layered with projectile⁃resistant materials for bullet impact mitigation[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 37

      Fray A J, Cook J, House J, et al. Mitigation of bullet and fragment threats using armours and other protective systems[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 38

      Michael Steinberg, Jessica Stanfield. Fragment impact mitigation through shock⁃induced threat damage[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee.

    • 39

      Huntington⁃Thresher W, Frankl P, Cookl M, et al. The demonstration of a predictive modelling approach to the design of mass efficient fragment mitigation systems[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 40

      Bob Van Schaack, Greg Bender. Use of package methodologies and innovative materials to prevent sympathetic detonation of stowed naval ordance[C]//Insensitive Munitions & Energetic Materials Technology Symposium. Bordeaux, France, 2001.

    • 41

      Edward J O’connor, Kathleen M Sterba, Raymond Gamache, et al. Evaluation of sympathetic detonation shielding concepts for ship⁃stowed munitions[C]//Insensitive Munitions&Energetic Materials Technology Symposium,Orlando,Florida,10-13

      March , 2003.

    • 42

      Julian Taylor MSc, MIExpE, CpRINA. Explosive effects mitigation for4.5 inch Mk 8 HE medium range naval fire support munitions including a platform consequence analysis methodology [C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 43

      Jared Grover, Vicki Brady. WDU⁃36/B warhead sympathetic detonation—transport configuration[C]//2006 Insensitive Munitions & Energetic Materials Technology Symposium.

    • 44

      Robert Barnabi, Michael A Glick. TOW 2B sympathetic detonation container[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 45

      S Defisher, E L Baker, L Wells, et al. XM982 excalibur sympathetic detonation modeling and experimentation[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

黄亨建

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

邮 箱:huanghengjian@caep.cn

作者简介:黄亨建(1968⁃),男,研究员,从事炸药及安全弹药技术研究。电子邮箱e⁃mail:huanghengjian@caep.cn

陈科全

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

陈红霞

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:chenhx2013@caep.cn

作者简介:陈红霞(1987⁃),女,工程师,从事弹药设计与研发。e⁃mail:chenhx2013@caep.cn

陈翔

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

宋乙丹

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

路中华

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

李兴隆

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

寇剑锋

机 构:

1. 中国工程物理研究院化工材料研究所,四川绵阳 621999

2. 中国工程物理研究院安全弹药研发中心,四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials of CAEP, Sichuan Mianyang 621999, China

2. Safety Ammunition Center of CAEP, Sichuan Mianyang 621999, China

html/hncl/CJEM2019155/alternativeImage/71ee7ff2-1e4f-4d7a-bae2-9b33aec462bc-F001.png
html/hncl/CJEM2019155/alternativeImage/71ee7ff2-1e4f-4d7a-bae2-9b33aec462bc-F002.png
html/hncl/CJEM2019155/alternativeImage/71ee7ff2-1e4f-4d7a-bae2-9b33aec462bc-F003.png
html/hncl/CJEM2019155/alternativeImage/71ee7ff2-1e4f-4d7a-bae2-9b33aec462bc-F004.png
design statusreaction level
propellant typesmitigation technologyfast cook⁃offslow cook⁃off
conventionalnone
conventionalPassive venting
conventionalActive venting
insensitivenone
insensitivePassive venting
timecharge and technologyFCOSCOBIFI
before 1980sH6FFFF
after 1980sPBXN⁃109Ⅳ/Ⅴ
2005

PBXN⁃109

venting

explosivereaction level
No PIMS2 mm PIMS4 mm PIMS
PBXN⁃9ⅠⅣ
PAX⁃2A
PAX⁃3
PAX⁃42
PAX⁃30
configureInterlayer Materialsvi / ft·s-1vexit / ft·s-1
design 1PEI,Al,Al2O359533069
design 2PEI,Al,Al2O3,Steel60783263
design 3PEI,Al2O3,Steel59043260

图1 尾部排气设[18]

Fig.1 Aft closure venting design

图2 尾部低共融保护环技[18]

Fig.2 Aft closure with eutectic retaining ring

图3 BLU⁃122战斗部前端排气设[18]

Fig.3 Releasing nose plug for BLU⁃122[18]

图4 应力诱导设[19]

Fig.4 stress induced design[19]

表1 部分发动机的缓解设计及其反应烈度降低效[28]

Table 1 Mitigation designs of some rocket motors and corresponding reaction level under fast and slow cook [28]

表2 美国500磅航弹安全性提升历[19]

Table 2 Safety improvements of US 500⁃pound aircraft bomb[19]

表3 内衬层对几种典型装药在破片撞击下的防护效[35]

Table 3 The effect of inner layer on the reaction level under fragment impact for several typical charges [35]

表4 复合材料对破片速度的衰[38]

Table 4 Decay of fragment velocity by composite materials

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Al⁃Shehab N, Pfau D, Baker E L,et al. Anti⁃Armor Warhead Venting[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 2

      Park D, Lu P , Scales D, et al. Venting technology for large caliber gun propulsion systems⁃metal cartridge case and packaging container venting [C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 3

      Ian MacDonald Watson, Gregg Bazley. The Use of Hydrocode Modelling in Optimisation of Physical Mitigation Design Solutions for Multiple Weapon Types[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 4

      Emmanuel Schultz. MTM: Mitigation Techniques for Munitions Easy access online! [C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.

    • 5

      Tony Wey, David Pfau, and Leon Moy. Impact mitigation approach for 105 mm artillery propulsion system [C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.

    • 6

      Nausheen Al⁃Shehab, T Madsen, S DeFisher, et al. Cook⁃Off Mitigation Scaling Effects[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 7

      邓海,沈飞,梁争峰,等.不同约束条件下B炸药的慢烤响应特性[J].火炸药学报,2018,41(5):465-470.

      DENG Hai, SHEN Fei,LIANG Zheng⁃feng, et al. Slow cook⁃off response characteristics of Composition B under different constraints[J].Chinese J of Explosives & Propellants, 2018,41(5):465-470.

    • 8

      赵亮,智小琦,高峰,等.DNAN基熔铸混合炸药慢速烤燃的尺寸效应[J].火炸药学报,2018,41(2):159-163.

      ZHAO Liang, ZHI Xiao⁃qi, GAO Feng, et al. Study on the size effect of cook⁃off of DNAN based melting and casting mixed explosive[J].Chinese J of Explosives & Propellants, 2018,41(2):159⁃163.

    • 9

      李文凤,余永刚,叶锐,等.不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J].爆炸与冲击,2017,37(1):46-52.

      LI Wen⁃feng, YU Yong⁃gang, YE Rui, et al. Simulation of cook⁃off for AP/HTPB composition propellant in base bleed unit at heating rates[J]. Explosion and Shoock Waves, 2017,37(1):46-52.

    • 10

      陈科全,黄亨建,路中华,等. 基于ABAQUS的PBX炸药烤燃试验数值计算[J].火炸药学报,2014,37(2):31-36.

      CHEN Ke⁃Quan, HUANG Heng⁃jian, LU Zhong⁃hua, et al. Numerical calculation of cook⁃off test for PBX explosive based ABAQUS[J].Chinese J of Explosives & Propellants, 2014,37(2):31-36.

    • 11

      陈科全,黄亨建,路中华,等. 一种弹体排气缓释结构设计方法与试验研究[J].弹箭与制导学报,2015,35(4):15-18.

      CHEN Ke⁃Quan, Huang Heng⁃jian, LU Zhong⁃huaet al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015,35(4):15-18.

    • 12

      陈科全,黄亨建,路中华,等. 强约束下典型熔铸和浇注炸药的烤燃特性对比[J].四川兵工学报,2015,36(1):133-136.

      CHEN Ke⁃Quan, HUANG Heng⁃jian, LU Zhong⁃hua, et al. Experimental study on cook⁃off test for melt_cast and cast_cured explosive at strong constraint[J]. Sichuan Bigongxuebao, 2015,36(1):133-136.

    • 13

      陈红霞,蒋治海,陈科全,等. 弹体缓释排气通道形成条件研究[J]. 四川兵工学报,2015,36(9):145-148.

      CHEN Hong⁃xia, JIANG Zhi⁃hai, CHEN Ke⁃quan, et al. Research on formation condition of venting channel of missile[J]. Sichuan Bigongxuebao, 2015,36(9):145-148.

    • 14

      田勇,李敬明.弹药安全的新发展――安全弹药刍议[J]含能材料,2017,25(2):91-93.

      TIAN Yong, LI Jing⁃ming. New development of ammunition safety: robust munitions[J]. Chinese J of Energetic Materials(Hanneng Cailiao), 2017,25(2):91-93.

    • 15

      Michael Sharp. Active Passive Mitigation Devices S3 Assessment[C]//IMEMTS Symposium, Las Vegas, NV, USA, May, 2012.

    • 16

      Mike Fisher. Thermally Activated Venting System for IM [C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 17

      DOD Fuze Engineering Standardization Working Group. Safety design requirements for active harzard mitigation device (AHMD) employed to address fast and slow cook⁃off thermal threats [R].2014,ADA617010.

    • 18

      Stephen Kelley. Venting Techniques for Penetrator Warheads[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 19

      Jen Duchow, Brian Hays. General purpose bomb fast cook⁃off mitigation techniques[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 20

      Kenneth J Graham. Mitigation of Fuel Fire Threat to Large Rocket Motors by Venting[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 21

      Kenneth J Graham. Explosive response to fragments: venting studies[R]. ADA176599,1986.

    • 22

      Hakan Sahin, Bekir Narin, D Funda Kurtulus. Development of a Design Methodology Against Fas Cook⁃Off Threat for Insensitive Munitions[J]. Propellants, Explosive,Pyrotechnics,2016,41:580-587.

    • 23

      Pauline Smith. Coating Technologies for Insensitive Munitions[R]. 2006, ADA456625.

    • 24

      Chris Mealy P E , Noah Lieb P E. HAP⁃Free intumescent coatings for protection of munition containers[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 25

      Pauline Smith. Thermal Coating for Insensitive⁃Munitions Technologies [R]. ADA474504,2007.

    • 26

      Steven S Kim. Fast cook⁃off reaction improvement of the2.75⁃inch rocket motor[C]//Insensitive Munitions &Energetic Materials Technology Symposium.San Antonio, TX,USA, Nov. 2000.

    • 27

      Ben Smit. Mitigation Techniques for reduced rocket motor vulnerability against external thermal stimuli[C]//IMEMTS Symposium, Munich, Germany, October, 2010.

    • 28

      Andrew Strickland,Jean⁃Claude Nugeyre. A scientific review of the current state of IM mitigation devices for use with rocket motor systems and the future development outlook[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 29

      Laurent Delrieu.New French IM 500lb bombs[C]//MEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 30

      NATO standardization agency. Guidance on the assessment and development of insensitive munitions.2010, AOP⁃39(edition 3).

    • 31

      Gareth R T,Gianmaria Bullegas, Jose Videira. Stopping km/s Blunt fragments and limiting shock lensing with a new advanced energy absorbing composite[C]// IMEMTS, Portland, OR, USA, April2018.

    • 32

      Stephen H, Chris S, Phil Cheese, et al. Small scale fragment attack testing on the LMM missile boost motor and the influence of the conduit form on XDT threshold[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee, Sept, 2016.

    • 33

      Matt T, Nick P, Jon k. Composite material modeling for fragment impact[C]//IMEMTS Symposium, Nashville, Tennessee, USA, SEP, 2016.

    • 34

      Kevin T Miers, Nausheen M Al⁃Shehab, Daniel L Prillaman. Fragment impact modeling and experimental results for Insensitive Munitions compliance of a 120 mm warhead[J]. Procedia Engineering, 2017(204):223-230.

    • 35

      Arthur Daniels, James Pham, Koon Ng, et al. Development of particle impact mitigation sleeves to reduced IM response [C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 36

      Jared Grover. Pumice layered with projectile⁃resistant materials for bullet impact mitigation[C]//IMEMTS Symposium, Miami, October 15-18, 2007.

    • 37

      Fray A J, Cook J, House J, et al. Mitigation of bullet and fragment threats using armours and other protective systems[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 38

      Michael Steinberg, Jessica Stanfield. Fragment impact mitigation through shock⁃induced threat damage[C]//2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee.

    • 39

      Huntington⁃Thresher W, Frankl P, Cookl M, et al. The demonstration of a predictive modelling approach to the design of mass efficient fragment mitigation systems[C]//IMEMTS Symposium, Munich, Germany, October 11-14, 2010.

    • 40

      Bob Van Schaack, Greg Bender. Use of package methodologies and innovative materials to prevent sympathetic detonation of stowed naval ordance[C]//Insensitive Munitions & Energetic Materials Technology Symposium. Bordeaux, France, 2001.

    • 41

      Edward J O’connor, Kathleen M Sterba, Raymond Gamache, et al. Evaluation of sympathetic detonation shielding concepts for ship⁃stowed munitions[C]//Insensitive Munitions&Energetic Materials Technology Symposium,Orlando,Florida,10-13

      March , 2003.

    • 42

      Julian Taylor MSc, MIExpE, CpRINA. Explosive effects mitigation for4.5 inch Mk 8 HE medium range naval fire support munitions including a platform consequence analysis methodology [C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 43

      Jared Grover, Vicki Brady. WDU⁃36/B warhead sympathetic detonation—transport configuration[C]//2006 Insensitive Munitions & Energetic Materials Technology Symposium.

    • 44

      Robert Barnabi, Michael A Glick. TOW 2B sympathetic detonation container[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.

    • 45

      S Defisher, E L Baker, L Wells, et al. XM982 excalibur sympathetic detonation modeling and experimentation[C]//IMEMTS Symposium, Bristol, United Kingdom, Apri, 2006.