CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
谭惠民. 固体推进剂化学与技术[M]. 北京: 北京理工大学出版社, 2015.
TANHui⁃min. The chemistry and technology of solid rocket propellant[M]. Beijing: Beijing Institute of Technology Press, 2015.
参考文献 2
ZayedM A, SolimanA A, HassanM A. Evaluation of malonanilides as new stabilizers for double⁃base propellants[J]. Journal of Hazardous Materials, 2000, 73(3): 237-244.
参考文献 3
ZayedM A, HassanM A. Stability of non⁃isothermally treated double⁃base propellants containing different stabilizers in comparison with molecular orbital calculations[J]. Propellants Explosives Pyrotechnics, 2010, 35(5): 468-476.
参考文献 4
ZayedM A, MohamedA A, HassanM A M. Stability studies of double⁃base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies[J]. Journal of Hazardous Materials, 2010, 179(1-3): 453-461.
参考文献 5
ZayedM A, El⁃BegawyS E M, HassanH E S. Enhancement of stabilizing properties of double⁃base propellants using nano⁃scale inorganic compounds[J]. Journal of Hazardous Materials, 2012: 274-279.
参考文献 6
LINChun⁃ping, LIJin⁃shuh, TsengJ M, et al. Thermal runaway reaction for highly exothermic material in safe storage temperature[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 259-265.
参考文献 7
TracheD, KhimecheK. Study on the influence of ageing on chemical and mechanical properties of N,N′⁃dimethyl⁃N,N′⁃diphenylcarbamide stabilized propellants[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 305-312.
参考文献 8
TracheD, KhimecheK. Study on the influence of ageing on thermal decomposition of double⁃base propellants and prediction of their in⁃use time[J]. Fire and Materials, 2013: 37(4): 328-336.
参考文献 9
ZayedM A, El⁃BegawyS E M, HassanH E S. Mechanism study of stabilization of double⁃base propellants by using zeolite stabilizers (nano⁃ and micro⁃clinoptilolite)[J]. Arabian Journal of Chemistry, 2013, 10(4): 573-581.
参考文献 10
GJB 770B-2005. 火药试验方法[S]. 北京: 中国标准出版社,2005.
GJB 770B-2005. Test method of propellant[S]. Beijing: Chinese Standard Press, 2005.
参考文献 11
陈玲, 徐建国, 程宏凯, 等. 影响火药维也里试验结果判定的关键问题研究[J]. 中北大学学报(自然科学版), 2008, 29(2): 160-164.
CHENLin, XUJian⁃guo, CHENGHong⁃kai, et al. Key problems effecting result estimation in vieille test of powder[J]. Journal of North University of China (Natural Science Edition), 2008, 29(2): 160-164.
参考文献 12
贾昊楠, 路桂娥, 安振涛, 等. 高固含量改性双基推进剂的热危险性研究[J]. 推进技术, 2015, 36(5): 789-794.
JIAHao⁃nan, LUGui⁃e, ANZhen⁃tao, et al. Thermal hazard study of composite modified double⁃base propellant with high solid content[J]. Journal of Propulsion Technology, 2015, 36(5): 789-794.
参考文献 13
贾昊楠, 安振涛, 江劲勇, 等. 高RDX含量改性双基推进剂非等温反应动力学和热危险[J]. 固体火箭技术, 2015, 38(5):689-696.
JIAHao⁃nan, ANZhen⁃tao, JIANGJin⁃yong, et al. Non⁃isothermal kinetics and thermal hazard of CMDB propellant with higher RDX content[J]. Journal of Solid Rocket Technology, 2015, 38(5):689-696.
参考文献 14
楚士晋. 炸药热分析[M]. 北京: 科学出版社, 1994.
CHUShi⁃jin. Thermal analysis of explosive [M]. Beijing: Science Presss, 1994.
参考文献 15
唐秋凡, 樊学忠, 李吉祯,等. 双基系固体推进剂热安定性及安定机理研究进展[J]. 火炸药学报, 2015, (4):5-12.
TANGQiu⁃fan, FANXue⁃zhong, LIJi⁃zhen, et al. Progress in thermal stability and stability mechanism of double⁃base solid propellants[J]. Chinese Journal of Explosives and Propellants, 2015, (4):5-12.
参考文献 16
肖依依. 含能材料等温热分解新装置研究[D]. 绵阳:西南科技大学, 2018.
XIAOYi⁃yi. A new device to study the isothermal decomposition of energetic materials[D]. Mianyang:Southwest University of Science and Technology, 2018.
参考文献 17
XIAOYi⁃yi, JINBo, PENGRu⁃fang, et al. Thermal decomposition of CL⁃20 via a self⁃modified dynamic vacuum stability test[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1833-1840.
参考文献 18
LUOLi⁃qiong, JINBo, XIAOYi⁃yi, et al. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose[J]. Polymer Testing, 2019, 75: 337-343.
参考文献 19
胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 第二版. 北京: 科学出版社, 2008.
HURong⁃zu, GAOSheng⁃li, ZHAOFeng⁃qi, et al. Thermal analysis kinetics[M]. Second ed. Beijing: Science Press, 2008.
参考文献 20
刘子如,邵颖惠,任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.
LIUZi⁃ru, SHAOYin⁃hui, RENXiao⁃ning, et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives and Propellants, 2016, 39(2): 1-7.
目录 contents

    摘要

    为研究二苯胺(DPA)对硝化棉(NC)的等温热分解动力学的影响,采用等温热分解量气装置,获得378.15~398.15 K时NC/DPA(3%)混合样品热分解产生气体的压力随时间变化曲线,该曲线中存在明显的拐点。通过Arrhenius方程和模式配合法获得NC/DPA(3%)混合样品在拐点前和拐点后的等温热分解动力学参数。采用Berthelot方程外推得到不同温度下NC/DPA的贮存寿命。结果表明,拐点前NC/DPA(3%)混合样品的活化能为164.6 kJ·mol-1,拐点后NC/DPA(3%)混合样品的活化能为150.4 kJ·mol-1;与原料NC相比,拐点前NC/DPA(3%)混合样品的活化能提高17.7 kJ·mol-1;以分解深度0.1%作为评判标准,室温下NC/DPA(3%)混合样品可贮存18.3年,表明添加3%DPA后可延长NC贮存寿命7.7年。

    Abstract

    The influence of diphenylamine (DPA) on the thermal stability of nitrocellulose (NC) was investigated by isothermal decomposition kinetics. Pressure versus time curves of the gas generated by the thermal decomposition of NC/DPA (3%) mixed sample at 378.15-398.15 K were obtained by using the isothermal decomposition gas metering device. There is a visible inflection point in this curve. The thermal decomposition kinetic parameters of NC/DPA (3%) composite were calculated by Arrhenius equation and model⁃fitting method. The storage life of NC and NC/DPA composite was estimated using Berthelot equation. The results show that the activation energy of NC/DPA (3%) before the inflection point is 164.6 kJ·mol-1, and the activation energy of NC/DPA (3%) mixed sample after the inflection point is 150.4 kJ·mol-1. Compared with the NC raw material, the activation energy of NC/DPA (3%) before the inflection point is increased by 17.7 kJ·mol-1. With a decomposition extent of 0.1% as the criterion, the storage life of NC/DPA (3%) at room temperature is 18.3 years, indicating that the storage life of NC can be extended by 7.7 years after the addition of 3%DPA.

  • 1 引 言

    硝化棉(NC)作为固体推进剂、发射药以及部分混合炸药的主要能量组[1],其结构中含有大量不稳定的硝酸酯基团,受热易分解,导致NC基含能材料能量降低、药柱破裂、燃烧甚至爆[2,3,4,5,6,7,8,9]。为了抑制NC的自催化作用,提高其贮存性能,最有效的办法是添加少量弱碱性的化学安定剂,主要包括苯胺、苯脲和酚[1]

    传统的安定剂评价方法,如维也里试验、甲基紫试验等,主要通过肉眼观察试纸颜色的变化,进而评判试样的安定性,主观误差大,并且这些方法既不能反映试样热分解的变化过程和趋势,也不能获得热分解的动力学参[10,11]。非等温测定方法,如热重法、差示扫描量热法和绝热加速量热法等,反映的是试样完全分解的状[12,13]。而NC基含能材料在实际贮存过程中通常处于较低的温度,分解缓慢并且长时间处于热分解前期。等温测定方法实验温度相对较低、试样用量大、取样均匀、有代表性,能够反映出含能材料热分解前期的过[14]。目前,国内外对化学安定剂的研究多关注其热分解动力[15]。然而,受到研究方法的限制,等温条件下安定剂与NC的热分解动力学鲜有报道。本课题组肖依依[16]研制的等温热分解量气装置,可以较长时间自动记录试样热分解过程,获得等温热分解动力学参数,预估试样的贮存寿命,并成功研究了六硝基氮杂异戊兹烷(CL⁃20)和NC的等温热分解动力[17,18]

    二苯胺(DPA),作为一种传统安定剂,已被广泛应用于NC基含能材[1]。目前,关于DPA对NC的等温热分解动力学研究较少。因此,本研究旨在采用等温热分解量气装置研究DPA对NC等温热分解动力学的影响,提出一种可能的定量评价安定剂性能的方法。

  • 2 实验部分

  • 2.1 试剂与仪器

    试剂:NC(氮含量12.76%),泸州北方化学工业有限公司;二苯胺,分析纯,上海阿拉丁生化科技股份有限公司;无水乙醇,分析纯,成都科龙化学品有限公司。

    仪器:WRT⁃1D型热重分析仪(北京光学仪器厂);Q200型差式扫描量热仪(美国TA公司)。等温热分解量气装置(自制[16],该装置能够在线记录数据,实现无人值守;密封效果良好,实验体系数月不漏气,能够进行长时间的热分解实验;金属恒温浴使体系更安[16]

  • 2.2 实验过程

  • 2.2.1 NC/DPA混合样品的制备

    采用溶剂混合法制备NC/DPA混合样品,其中DPA的质量比为3%。首先选择易挥发的溶剂,该溶剂既对安定剂有很好的溶解性又不溶解NC,本实验选用无水乙醇。准确称取92.78 mg DPA,添加10 mL无水乙醇,超声溶解,配置浓度为9.28 mg·mL-1的溶液。准确移取1.0 mL上述溶液,加入装有300.0 mg干燥NC的专用反应管中,超声使溶液在NC表面均匀分散。随后,真空干燥至恒重,即得NC/DPA(3%)混合样品。

  • 2.2.2 测试方法

    热重分析(TG⁃DTG):升温速率为10 K· min-1,氮气流动气氛,陶瓷坩埚,试样量约0.5 mg。差示扫描量热仪(DSC):升温速率为10 K· min-1,氮气流动气氛,铝制样品皿,试样量约为0.5 mg。

    等温测试方法如下:(1)设定程序升温,使加热炉恒温在目标温度;(2)将装有NC/DPA混合样品的专用反应测试管,通过转接头辅以铅O型圈与压力传感器相连,之后在转接头右侧连接微型真空阀,组成反应测量单元;(3)采用真空机组对反应测量单元抽真空直至压力恒定为0 kPa,然后拧紧微型真空阀,在铅垫的作用下将整个反应测量单元密封;(4)进行气密性实验,设定间隔1 min采集压力数据,压力恒定在0 kPa超过24 h,表明反应测量单元不漏气,即密封性良好;(5)将反应测量单元放入已经恒温的加热炉内,在线记录NC热分解产生的气体压力随时间变化曲线(pt曲线)。测试NC/DPA混合样品为300.0 mg,测试温度分别为378.15,383.15,388.15,393.15,398.15 K。在433.15 K下进行10.0 mg NC/DPA混合样品的热分解实验,直至压力恒定不变,获得NC/DPA完全分解产生的气体总量。

  • 3 数据处理方法

  • 3.1 标准压力的换算

    实验在378.15~398.15 K区间的5个温度点下进行,连续测定在不同时间内DPA/NC热分解所产生的气体压力变化,并换算为同一温度下(298.15 K)试样热分解产生的气体压力,得到热分解曲线。换算公式如下:

    p0=pt×T0Tt
    (1)

    式中,p0为298.15 K时的压力,kPa;pt为某时刻试样热分解产生的气体压力,kPa;T0为标准状态温度,298.15 K;Tt为实际测试温度,K。

  • 3.2 等温热分解动力学

    分解深度(α)为试样在某时刻放出的气体压力值与试样完全分解产生的总气体压力值之比,即:

    α=ptp
    (2)

    式中,pt为某时刻试样热分解产生的气体压力值,kPa;p为试样完全分解产生的气体总压力,kPa。

    采用Arrhenius方程获得等温热分解动力学参数:

    logt=-logA+Ea/2.303RT
    (3)

    式中,t为反应达到某一分解深度所需要的时间,s;A为指前因子,s-1Ea为活化能,kJ·mol-1R为气体常数,8.314 J·mol-1·K-1T为实验温度,K。

    对于等温热分解反应,模式配合[19]应用更为广泛,基本形式如方程(4):

    Gα=0tAexp-EaRTdt=kt
    (4)

    式中,G(α)为关于分解深度α的41种机理函数模型;t为达到某一分解深度所需要的时间,s;A为指前因子,s-1Ea为活化能,kJ·mol-1R为气体常数,8.314 J·mol-1·K-1T为实验温度,K;k为速率常数,s-1。根据方程(4)获得各温度下的最佳机理函数和速率常数k。将各等温下的k值,代入Arrhenius方程:

    lnk=-Ea/RT+lnA
    (5)

    得到活化能Ea和指前因子A值。

  • 3.3 贮存寿命

    目前寿命预估方程主要有Semenov法和Berthelot[19]。其中,Semenov法的应用前提是反应级数n=1,Berthelot法则是不同温度下达到同一分解深度的G(α)形式不变。研究表明,由Berthelot方程外推获得的寿命小于Semenov方程,更接近实际寿[20]。且Berthelot方程被普遍应用于火药寿命预估领域,在我国的国军标中已被规定为火药寿命预测方[10]。因此,本研究采用Berthelot方程外推老化贮存寿命:

    logtT=a+bT
    (6)

    式中,T为温度,K;tT为贮存时间,s;ab都为待定系数。

  • 4 结果与讨论

  • 4.1 非等温热分解方法研究DPA对NC热稳定性的影响

    NC和NC/DPA(3%)的TG⁃DTG和DSC曲线如图1图2所示。从NC和NC/DPA(3%)的TG⁃DTG和DSC曲线可以观察到,3% DPA的加入对NC非等温热分解影响较小。对于纯的NC,当温度升至450 K时开始分解,分解峰值温度为480.5 K,加入3%的DPA后,其热分解失重曲线和放热曲线没有观察到明显变化,其对应的分解峰值温度为481.8 K。可见,非等温测定方法由于升温速率较快很难检测出缓慢的变化。

    图1
                            NC和NC/DPA (3%)的TG⁃DTG曲线

    图1 NC和NC/DPA (3%)的TG⁃DTG曲线

    Fig.1 TG⁃DTG curves of NC and NC/DPA (3%)

    图2
                            NC和NC/DPA (3%)的DSC曲线

    图2 NC和NC/DPA (3%)的DSC曲线

    Fig.2 DSC curves of NC and NC/DPA (3%)

  • 4.2 等温热分解方法研究DPA对NC热稳定性的影响

    采用等温热分解量气装置实时记录NC/DPA的等温热分解过程,获得NC/DPA热分解pt曲线,见图3。如图3a所示,在433.15 K下,10.0 mg NC/DPA经过1397 min分解完全,最终释放气体100.3 kPa。通过换算,300.0 mg NC/DPA完全分解应放出气体3009.4 kPa。由图3b可见,NC/DPA的反应速率随温度的升高而加快,其热分解pt曲线中存在明显的拐点,其原因可能是拐点处DPA消耗完全。

    html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F004.png

    a. 433.15 K

    html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F005.png

    b. 378.15~398.15 K

    图3 NC/DPA等温热分解产生的气体压力随时间变化曲线

    Fig. 3 Gas pressure versus time curves of the thermal decomposition of NC/DPA

    为了深入探究DPA对NC热分解过程的影响,将NC和NC/DPA混合样品热分解pt曲线进行对比(见图4)。显然,拐点前NC/DPA的pt曲线位于NC的pt曲线下方,表明NC/DPA压力增长速度小于NC,即热分解速率小于NC;拐点后NC/DPA压力增长速度明显变快,热分解速率超过NC的热分解速率,表明此时NC/DPA比NC分解更快,DPA与NOx结合后的产物对NC有加速分解的作用。

    图4
                            NC与NC/DPA的p⁃t曲线对比图

    图4 NC与NC/DPA的p⁃t曲线对比图

    Fig. 4 Comparison of pressure⁃time curves of NC and NC/DPA

  • 4.3 DPA对NC等温热分解动力学的影响

    根据式(2)从图3b可得,各温度下NC/DPA达到不同分解深度的压力和所需的时间,列于表1中。可见,随着温度的升高,NC/DPA热分解至同一分解深度的时间显著增加。符合van′t Hoff规则,即当温度升高10 K,反应速率大约增加2~4[14]。为了探究拐点处的分解深度,根据表1图4作分解深度分布图,如图5所示,可知拐点处分解深度约为0.5%。

    表1 不同温度下NC/DPA热分解达到不同分解深度所需的时间

    Table 1 Time required for NC/DPA thermal decomposition to reach a certain decomposition extent at different temperatures

    α/%p/kPatime / min
    378.15 K383.15 K388.15 K393.15 K398.15 K
    0.13.014472251226337
    0.26.02110253728015680
    0.39.031808860443253123
    0.412.0424151168597348166
    0.515.0528931426732434204
    0.618.0632841635846509237
    0.721.0736391821951573267
    0.824.08397619901049634295
    0.927.08430121551141693322
    1.030.09462323161235748349

    NOTE: α isdecomposition extent.

    图5
                            NC/DPA的分解深度分布图

    图5 NC/DPA的分解深度分布图

    Fig. 5 Distribution of different decomposition extents of NC/DPA

    基于Arrhenius方程,作logt⁃1/T关系图,如图6所示,根据拟合方程的斜率和截距分别求得各分解深度下的活化能Ea和指前因子A,结果列于表2中。与NC的动力学参数相比较,拐点前分解深度0.1%和0.5%时,NC/DPA的活化能分别为156.7 kJ·mol-1和162.6 kJ·mol-1,比NC的活化能高;拐点后,即分解深度为0.6%时,NC/DPA的活化能有所下降。

    图6
                            NC/DPA的logt⁃1/T关系图

    图6 NC/DPA的logt⁃1/T关系图

    Fig. 6 Plots of logt versus 1/T of NC/DPA

    表2 基于Arrhenius方程不同分解深度NC/DPA的动力学参数

    Table 2 Kinetic parameters of NC/DPA at different decomposition extents based on Arrhenius equation

    sampleα/%fitting equationEa / kJ· mol-1logAR
    NC/DPA0.1 (before the inflection point)logt=-17.22+8184.89/T156.717.220.9989
    NC/DPA0.5(before the inflection point)logt=-17.22+8491.58/T162.617.220.9965
    NC/DPA0.6 (after the inflection point)logt=-16.33+7827.22/T149.416.260.9878
    NC/DPA1.0(after the inflection point)logt=-15.74+7847.78/T150.215.730.9921
    NC[18]0.1logt=-15.83+7670.67/T146.915.830.9916
    NC[18]0.5logt=-14.91+7602.95/T145.614.910.9986

    采用模式配合法分别对拐点前和拐点后NC/DPA的动力学进行计算,获得各温度遵循的最佳机理函数及速率常数k,结果列于表3中。可见,NC/DPA在各温度下的等温热分解过程依然遵循28号函[19],即G(α)=1-(1-α)1/4,这与NC的热分解机理函数一致,即DPA没有改变NC的热分解机理。对kT作图(如图7所示),拐点前NC/DPA在各温度下的热分解速率普遍低于NC,而拐点后NC/DPA的分解速率明显大于NC的分解速率。基于模式配合法获得各温度下的速率常数k,做lnk⁃1/T线性拟合,如图8所示,计算得出拐点前和拐点后NC/DPA的热分解动力学参数,结果列于表4中。拐点前分解深度0.1%~0.5%时,NC/DPA的活化能分别为164.6 kJ·mol-1,比NC的活化能高;拐点后,即分解深度为0.6%时,NC/DPA的活化能降低至150.4 kJ·mol-1

    表3 基于模式配合法NC和NC/DPA在不同温度下的最佳机理函数及反应速率常数

    Table 3 Reaction rate constants and mechanism functions of NC and NC/DPA at different temperatures based on model⁃fitting method

    T / KNCNC/DPA
    α=0.1%-0.5%α=0.1%-0.5% (before the inflection point)α=0.6%-1.0% (after the inflection point)
    k×10-9/s-1Rk×10-8 / s-1Rk×10-8 / s-1R
    378.158.160.99660.670.99371.250.9989
    383.1514.050.99821.370.99792.530.9991
    388.1525.560.99922.710.99844.330.9985
    393.1547.760.99944.470.99947.150.9993
    398.1579.660.99949.940.999214.960.9989
    图7
                            NC和NC/DPA的反应数率常数随温度的变化关系

    图7 NC和NC/DPA的反应数率常数随温度的变化关系

    Fig. 7 Trend of reaction rate constants of NC and NC/DPA with temperature

    图8
                            NC/DPA的lnk⁃1/T关系图

    图8 NC/DPA的lnk⁃1/T关系图

    Fig. 8 Plots of lnk versus 1/T of NC/DPA

    表4 基于模式配合法NC/DPA的动力学参数

    Table 4 Kinetic parameters of NC/DPA based on model⁃fitting method

    α / %fitting equationEa / kJ· mol-1ln(A/s-1)R
    0.1-0.5 (before the inflection point)lnk=-19791.10/T+33.53164.633.530.9974
    0.6-1.0 (after the inflection point)lnk=-18091.91/T+29.66150.429.660.9987

    在等温热分解前期,即分解深度为0.1%~0.5%,DPA的加入使活化能升高,分解速率降低;当分解深度为0.6%~1.0%时,NC/DPA的活化能降低,分解速率明显增加。结合安定剂的作用机制,出现这一现象的原因可能是拐点前NC/DPA中有DPA安定剂,可及时吸收NC分解产生的NOx,从而抑制NC的自催化反应,使得NC/DPA分解慢于NC;在拐点后,由于DPA与NOx结合后的产物对NC有加速分解的作用,因此在拐点之后分解速率更快。

  • 4.4 DPA对NC贮存寿命的影响

    根据Berthelot方程,拟合logtTT的线性方程,如图9所示,分别以分解深度0.1%、0.5%作为寿命终点,预估NC/DPA在不同温度下的贮存寿命,结果列于表5中。在378.15 K时,NC/DPA的有效贮存寿命分别为432 min和2818 min,与实验测试值447 min、2893 min(表1)相比偏差小于3%。室温下,当分解深度为0.1%和0.5%时,NC/DPA的贮存寿命分别为18.3年和174.3年,与NC的贮存寿命10.6年和52.9年相[18],大幅度延长。

    图9
                            NC/DPA的logtT与T关系图

    图9 NC/DPA的logtTT关系图

    Fig. 9 Plots of logtT versus T of NC/DPA

    表5 不同分解深度下NC/DPA的经验公式及寿命预估

    Table 5 Empirical formulas and life estimation of NC/DPA at different decomposition extents

    α/%empirical formulasRtime / atime / atime / atime / dtime / dtime / min
    298.15 K303.15 K323.15 K343.15 K363.15 K378.15 K
    0.1logtT=-0.0543T+24.960.997818.39.80.8023.92.0432
    0.5logtT=-0.0564T+26.560.9966174.391.16.78184.313.72818
  • 5 结 论

    (1)采用等温热分解量气装置研究了NC/DPA的等温热分解过程,得到不同温度下NC/DPA热分解释放气体的压力随时间变化曲线,发现曲线上存在明显的拐点。

    (2)通过Arrhenius、模式配合法计算拐点前和拐点后的动力学参数。结果表明,拐点前,NC/DPA的活化能为164.6 kJ·mol-1,比NC的活化能高17.7 kJ· mol-1;拐点后,NC/DPA的活化能下降至150.4 kJ·mol-1

    (3)根据Berthelot方程计算获得NC/DPA在各温度下的贮存寿命。室温下,以分解深度0.1%作为寿命终点,加入3%DPA能够将NC的贮存寿命延长7.7年。

    (责编: 王艳秀)

  • 参考文献

    • 1

      谭惠民. 固体推进剂化学与技术[M]. 北京: 北京理工大学出版社, 2015.

      TAN Hui⁃min. The chemistry and technology of solid rocket propellant[M]. Beijing: Beijing Institute of Technology Press, 2015.

    • 2

      Zayed M A, Soliman A A, Hassan M A. Evaluation of malonanilides as new stabilizers for double⁃base propellants[J]. Journal of Hazardous Materials, 2000, 73(3): 237-244.

    • 3

      Zayed M A, Hassan M A. Stability of non⁃isothermally treated double⁃base propellants containing different stabilizers in comparison with molecular orbital calculations[J]. Propellants Explosives Pyrotechnics, 2010, 35(5): 468-476.

    • 4

      Zayed M A, Mohamed A A, Hassan M A M. Stability studies of double⁃base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies[J]. Journal of Hazardous Materials, 2010, 179(1-3): 453-461.

    • 5

      Zayed M A, El⁃Begawy S E M, Hassan H E S. Enhancement of stabilizing properties of double⁃base propellants using nano⁃scale inorganic compounds[J]. Journal of Hazardous Materials, 2012: 274-279.

    • 6

      LIN Chun⁃ping, LI Jin⁃shuh, Tseng J M, et al. Thermal runaway reaction for highly exothermic material in safe storage temperature[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 259-265.

    • 7

      Trache D, Khimeche K. Study on the influence of ageing on chemical and mechanical properties of N,N′⁃dimethyl⁃N,N′⁃diphenylcarbamide stabilized propellants[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 305-312.

    • 8

      Trache D, Khimeche K. Study on the influence of ageing on thermal decomposition of double⁃base propellants and prediction of their in⁃use time[J]. Fire and Materials, 2013: 37(4): 328-336.

    • 9

      Zayed M A, El⁃Begawy S E M, Hassan H E S. Mechanism study of stabilization of double⁃base propellants by using zeolite stabilizers (nano⁃ and micro⁃clinoptilolite)[J]. Arabian Journal of Chemistry, 2013, 10(4): 573-581.

    • 10

      GJB 770B-2005. 火药试验方法[S]. 北京: 中国标准出版社,2005.

      GJB 770B-2005. Test method of propellant[S]. Beijing: Chinese Standard Press, 2005.

    • 11

      陈玲, 徐建国, 程宏凯, 等. 影响火药维也里试验结果判定的关键问题研究[J]. 中北大学学报(自然科学版), 2008, 29(2): 160-164.

      CHEN Lin, XU Jian⁃guo, CHENG Hong⁃kai, et al. Key problems effecting result estimation in vieille test of powder[J]. Journal of North University of China (Natural Science Edition), 2008, 29(2): 160-164.

    • 12

      贾昊楠, 路桂娥, 安振涛, 等. 高固含量改性双基推进剂的热危险性研究[J]. 推进技术, 2015, 36(5): 789-794.

      JIA Hao⁃nan, LU Gui⁃e, AN Zhen⁃tao, et al. Thermal hazard study of composite modified double⁃base propellant with high solid content[J]. Journal of Propulsion Technology, 2015, 36(5): 789-794.

    • 13

      贾昊楠, 安振涛, 江劲勇, 等. 高RDX含量改性双基推进剂非等温反应动力学和热危险[J]. 固体火箭技术, 2015, 38(5):689-696.

      JIA Hao⁃nan, AN Zhen⁃tao, JIANG Jin⁃yong, et al. Non⁃isothermal kinetics and thermal hazard of CMDB propellant with higher RDX content[J]. Journal of Solid Rocket Technology, 2015, 38(5):689-696.

    • 14

      楚士晋. 炸药热分析[M]. 北京: 科学出版社, 1994.

      CHU Shi⁃jin. Thermal analysis of explosive [M]. Beijing: Science Presss, 1994.

    • 15

      唐秋凡, 樊学忠, 李吉祯,等. 双基系固体推进剂热安定性及安定机理研究进展[J]. 火炸药学报, 2015, (4):5-12.

      TANG Qiu⁃fan, FAN Xue⁃zhong, LI Ji⁃zhen, et al. Progress in thermal stability and stability mechanism of double⁃base solid propellants[J]. Chinese Journal of Explosives and Propellants, 2015, (4):5-12.

    • 16

      肖依依. 含能材料等温热分解新装置研究[D]. 绵阳:西南科技大学, 2018.

      XIAO Yi⁃yi. A new device to study the isothermal decomposition of energetic materials[D]. Mianyang:Southwest University of Science and Technology, 2018.

    • 17

      XIAO Yi⁃yi, JIN Bo, PENG Ru⁃fang, et al. Thermal decomposition of CL⁃20 via a self⁃modified dynamic vacuum stability test[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1833-1840.

    • 18

      LUO Li⁃qiong, JIN Bo, XIAO Yi⁃yi, et al. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose[J]. Polymer Testing, 2019, 75: 337-343.

    • 19

      胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 第二版. 北京: 科学出版社, 2008.

      HU Rong⁃zu, GAO Sheng⁃li, ZHAO Feng⁃qi, et al. Thermal analysis kinetics[M]. Second ed. Beijing: Science Press, 2008.

    • 20

      刘子如,邵颖惠,任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.

      LIU Zi⁃ru, SHAO Yin⁃hui, REN Xiao⁃ning, et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives and Propellants, 2016, 39(2): 1-7.

罗利琼

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

邮 箱:504339708@qq.com

作者简介:罗利琼(1995-),女,博士研究生,主要从事含能材料研究。e⁃mail:504339708@qq.com

柴作虎

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

金波

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

角 色:通讯作者

Role:Corresponding author

邮 箱:jinbo0428@163.com

作者简介:金波 (1982-),男,教授,博士生导师,主要从事含能材料研究。e⁃mail: jinbo0428@163.com

黄琼

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

楚士晋

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

彭汝芳

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environmental⁃friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F001.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F002.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F004.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F005.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F006.png
α/%p/kPatime / min
378.15 K383.15 K388.15 K393.15 K398.15 K
0.13.014472251226337
0.26.02110253728015680
0.39.031808860443253123
0.412.0424151168597348166
0.515.0528931426732434204
0.618.0632841635846509237
0.721.0736391821951573267
0.824.08397619901049634295
0.927.08430121551141693322
1.030.09462323161235748349
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F007.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F008.png
sampleα/%fitting equationEa / kJ· mol-1logAR
NC/DPA0.1 (before the inflection point)logt=-17.22+8184.89/T156.717.220.9989
NC/DPA0.5(before the inflection point)logt=-17.22+8491.58/T162.617.220.9965
NC/DPA0.6 (after the inflection point)logt=-16.33+7827.22/T149.416.260.9878
NC/DPA1.0(after the inflection point)logt=-15.74+7847.78/T150.215.730.9921
NC[18]0.1logt=-15.83+7670.67/T146.915.830.9916
NC[18]0.5logt=-14.91+7602.95/T145.614.910.9986
T / KNCNC/DPA
α=0.1%-0.5%α=0.1%-0.5% (before the inflection point)α=0.6%-1.0% (after the inflection point)
k×10-9/s-1Rk×10-8 / s-1Rk×10-8 / s-1R
378.158.160.99660.670.99371.250.9989
383.1514.050.99821.370.99792.530.9991
388.1525.560.99922.710.99844.330.9985
393.1547.760.99944.470.99947.150.9993
398.1579.660.99949.940.999214.960.9989
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F009.png
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F010.png
α / %fitting equationEa / kJ· mol-1ln(A/s-1)R
0.1-0.5 (before the inflection point)lnk=-19791.10/T+33.53164.633.530.9974
0.6-1.0 (after the inflection point)lnk=-18091.91/T+29.66150.429.660.9987
html/hncl/CJEM2019118/alternativeImage/abe59e07-9a6d-4cfe-8828-36641d7e3149-F011.png
α/%empirical formulasRtime / atime / atime / atime / dtime / dtime / min
298.15 K303.15 K323.15 K343.15 K363.15 K378.15 K
0.1logtT=-0.0543T+24.960.997818.39.80.8023.92.0432
0.5logtT=-0.0564T+26.560.9966174.391.16.78184.313.72818

图1 NC和NC/DPA (3%)的TG⁃DTG曲线

Fig.1 TG⁃DTG curves of NC and NC/DPA (3%)

图2 NC和NC/DPA (3%)的DSC曲线

Fig.2 DSC curves of NC and NC/DPA (3%)

图3 NC/DPA等温热分解产生的气体压力随时间变化曲线 -- a. 433.15 K

Fig. 3 Gas pressure versus time curves of the thermal decomposition of NC/DPA -- a. 433.15 K

图3 NC/DPA等温热分解产生的气体压力随时间变化曲线 -- b. 378.15~398.15 K

Fig. 3 Gas pressure versus time curves of the thermal decomposition of NC/DPA -- b. 378.15~398.15 K

图4 NC与NC/DPA的p⁃t曲线对比图

Fig. 4 Comparison of pressure⁃time curves of NC and NC/DPA

表1 不同温度下NC/DPA热分解达到不同分解深度所需的时间

Table 1 Time required for NC/DPA thermal decomposition to reach a certain decomposition extent at different temperatures

图5 NC/DPA的分解深度分布图

Fig. 5 Distribution of different decomposition extents of NC/DPA

图6 NC/DPA的logt⁃1/T关系图

Fig. 6 Plots of logt versus 1/T of NC/DPA

表2 基于Arrhenius方程不同分解深度NC/DPA的动力学参数

Table 2 Kinetic parameters of NC/DPA at different decomposition extents based on Arrhenius equation

表3 基于模式配合法NC和NC/DPA在不同温度下的最佳机理函数及反应速率常数

Table 3 Reaction rate constants and mechanism functions of NC and NC/DPA at different temperatures based on model⁃fitting method

图7 NC和NC/DPA的反应数率常数随温度的变化关系

Fig. 7 Trend of reaction rate constants of NC and NC/DPA with temperature

图8 NC/DPA的lnk⁃1/T关系图

Fig. 8 Plots of lnk versus 1/T of NC/DPA

表4 基于模式配合法NC/DPA的动力学参数

Table 4 Kinetic parameters of NC/DPA based on model⁃fitting method

图9 NC/DPA的logtTT关系图

Fig. 9 Plots of logtT versus T of NC/DPA

表5 不同分解深度下NC/DPA的经验公式及寿命预估

Table 5 Empirical formulas and life estimation of NC/DPA at different decomposition extents

image /

无注解

无注解

无注解

无注解

无注解

α isdecomposition extent.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      谭惠民. 固体推进剂化学与技术[M]. 北京: 北京理工大学出版社, 2015.

      TAN Hui⁃min. The chemistry and technology of solid rocket propellant[M]. Beijing: Beijing Institute of Technology Press, 2015.

    • 2

      Zayed M A, Soliman A A, Hassan M A. Evaluation of malonanilides as new stabilizers for double⁃base propellants[J]. Journal of Hazardous Materials, 2000, 73(3): 237-244.

    • 3

      Zayed M A, Hassan M A. Stability of non⁃isothermally treated double⁃base propellants containing different stabilizers in comparison with molecular orbital calculations[J]. Propellants Explosives Pyrotechnics, 2010, 35(5): 468-476.

    • 4

      Zayed M A, Mohamed A A, Hassan M A M. Stability studies of double⁃base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies[J]. Journal of Hazardous Materials, 2010, 179(1-3): 453-461.

    • 5

      Zayed M A, El⁃Begawy S E M, Hassan H E S. Enhancement of stabilizing properties of double⁃base propellants using nano⁃scale inorganic compounds[J]. Journal of Hazardous Materials, 2012: 274-279.

    • 6

      LIN Chun⁃ping, LI Jin⁃shuh, Tseng J M, et al. Thermal runaway reaction for highly exothermic material in safe storage temperature[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 259-265.

    • 7

      Trache D, Khimeche K. Study on the influence of ageing on chemical and mechanical properties of N,N′⁃dimethyl⁃N,N′⁃diphenylcarbamide stabilized propellants[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 305-312.

    • 8

      Trache D, Khimeche K. Study on the influence of ageing on thermal decomposition of double⁃base propellants and prediction of their in⁃use time[J]. Fire and Materials, 2013: 37(4): 328-336.

    • 9

      Zayed M A, El⁃Begawy S E M, Hassan H E S. Mechanism study of stabilization of double⁃base propellants by using zeolite stabilizers (nano⁃ and micro⁃clinoptilolite)[J]. Arabian Journal of Chemistry, 2013, 10(4): 573-581.

    • 10

      GJB 770B-2005. 火药试验方法[S]. 北京: 中国标准出版社,2005.

      GJB 770B-2005. Test method of propellant[S]. Beijing: Chinese Standard Press, 2005.

    • 11

      陈玲, 徐建国, 程宏凯, 等. 影响火药维也里试验结果判定的关键问题研究[J]. 中北大学学报(自然科学版), 2008, 29(2): 160-164.

      CHEN Lin, XU Jian⁃guo, CHENG Hong⁃kai, et al. Key problems effecting result estimation in vieille test of powder[J]. Journal of North University of China (Natural Science Edition), 2008, 29(2): 160-164.

    • 12

      贾昊楠, 路桂娥, 安振涛, 等. 高固含量改性双基推进剂的热危险性研究[J]. 推进技术, 2015, 36(5): 789-794.

      JIA Hao⁃nan, LU Gui⁃e, AN Zhen⁃tao, et al. Thermal hazard study of composite modified double⁃base propellant with high solid content[J]. Journal of Propulsion Technology, 2015, 36(5): 789-794.

    • 13

      贾昊楠, 安振涛, 江劲勇, 等. 高RDX含量改性双基推进剂非等温反应动力学和热危险[J]. 固体火箭技术, 2015, 38(5):689-696.

      JIA Hao⁃nan, AN Zhen⁃tao, JIANG Jin⁃yong, et al. Non⁃isothermal kinetics and thermal hazard of CMDB propellant with higher RDX content[J]. Journal of Solid Rocket Technology, 2015, 38(5):689-696.

    • 14

      楚士晋. 炸药热分析[M]. 北京: 科学出版社, 1994.

      CHU Shi⁃jin. Thermal analysis of explosive [M]. Beijing: Science Presss, 1994.

    • 15

      唐秋凡, 樊学忠, 李吉祯,等. 双基系固体推进剂热安定性及安定机理研究进展[J]. 火炸药学报, 2015, (4):5-12.

      TANG Qiu⁃fan, FAN Xue⁃zhong, LI Ji⁃zhen, et al. Progress in thermal stability and stability mechanism of double⁃base solid propellants[J]. Chinese Journal of Explosives and Propellants, 2015, (4):5-12.

    • 16

      肖依依. 含能材料等温热分解新装置研究[D]. 绵阳:西南科技大学, 2018.

      XIAO Yi⁃yi. A new device to study the isothermal decomposition of energetic materials[D]. Mianyang:Southwest University of Science and Technology, 2018.

    • 17

      XIAO Yi⁃yi, JIN Bo, PENG Ru⁃fang, et al. Thermal decomposition of CL⁃20 via a self⁃modified dynamic vacuum stability test[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1833-1840.

    • 18

      LUO Li⁃qiong, JIN Bo, XIAO Yi⁃yi, et al. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose[J]. Polymer Testing, 2019, 75: 337-343.

    • 19

      胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 第二版. 北京: 科学出版社, 2008.

      HU Rong⁃zu, GAO Sheng⁃li, ZHAO Feng⁃qi, et al. Thermal analysis kinetics[M]. Second ed. Beijing: Science Press, 2008.

    • 20

      刘子如,邵颖惠,任晓宁, 等. 预估火炸药寿命的数学模型及其计算[J]. 火炸药学报, 2016, 39(2): 1-7.

      LIU Zi⁃ru, SHAO Yin⁃hui, REN Xiao⁃ning, et al. Mathematical models and its calculations for predicting the life of explosives and propellants[J]. Chinese Journal of Explosives and Propellants, 2016, 39(2): 1-7.