1 引 言
含能化合物(Energetic compounds)是指由单一分子结构物质组成,在适当的外界能量激发下,能发生爆炸反应并对周围介质做功的化合物,主要包括硝胺化合物、呋咱化合物、硝基芳烃化合物、硝酸酯化合物、叠氮化合物和全氮化合物
等[1] 。在含能化合物的生产、销毁及不完全燃烧过程中,都会产生大量含炸药的废水、废气和固体废物。炸药进入环境后,在土壤‑水体‑生物体系中发生复杂的迁移转化[2] ,并最终在物理、化学、生物等因素的作用下降解。炸药普遍具有较强的毒性,进入环境会影响生态系统,并可能最终损害人体健康。战争、演习等军事活动造成的炸药污染已成为世界各国普遍关注的环境问题。炸药在环境中的行为与归趋,与其生态影响及健康危害密切相关,对其进行深入研究是采取针对性防控措施的基础。本文在介绍场地含能化合物污染现状的基础上,综述了三硝基甲苯(TNT)、环三亚甲基三硝胺(RDX)和环四亚甲基四硝胺(HMX)等典型炸药环境行为与归趋研究的最新进展,并对未来研究重点和方向进行了展望。
2 场地炸药污染现状
2.1 炸药的物理化学性质
客观评估炸药场地污染情况的基础是掌握它们的物理化学性质以及正确理解其环境归趋过程。表1列出了常见的三种炸药基本的物理化学性质。
energetic compounds TNT RDX HMX CAS number 38082‑89‑2 00121‑82‑4 026914‑41‑0 chemical formula C7 H5 N3 O6 C3 H6 N6 O6 C4 H8 N8 O8 Molecular mass 227.13 222.26 296.16 melting point / ℃ 80-82 204 276-280 boiling point / ℃ 240(explodes) (decomposes) (decomposes) solubility in water / mg· L‑1 130(20 ℃) 42(20 ℃) 5(25 ℃) specific gravity 1.5-1.6 1.82 1.96 vapor pressure at 20 ℃ / Pa 7.3×1 0-4 5.4×1 0-7 4.4×1 0-12 KH / m3 ·mol-1 4.57×1 0-7 -1.1×10-8 6.3×1 0-8 -1.96×10-11 2.6×1 0-15 Log Kow 1.86 0.86 0.061 appearance and odor yellow flakes with bitter almond odor white or gray powder, odorless white or gray powder, odorless NOTE: KH is Henry′s law constant. Kow is octanol/water partitioning coefficient.
(1) TNT
TNT化学稳定性和热稳定性好,熔点低,微溶于水,蒸气压低且亨利定律常数小,表明挥发性弱。TNT的辛醇/水分配系数(Kow)为1.86(<10
)[3] (表1),说明溶解的TNT与土壤之间不存在强烈的吸附行为,可以在环境中迁移,从表层土壤向下层渗透,造成地下水等更大区域的污染[4] 。(2) RDX
RDX是一种热不稳定的硝胺化合物,被认为是一种威力最大、最强的军用烈性炸
药[4] 。RDX溶解度较小,蒸气压低,不易从溶液中挥发,其从水体挥发到大气中的作用可忽略不计。相较于TNT而言,RDX的Kow更小,仅为0.86[3] (表1),一旦发生溶解,将很难重新吸附在土壤或沉积物上,更容易迁移至地下水中造成污染,威胁人体健康和生态安全。(3) HMX
HMX是火箭推进剂中塑料粘结炸药的组成部分,属于高爆炸药。这种硝胺化合物也不挥发,在水中的溶解度大约为5 mg·
L-1 ,Kow极小(0.061)[3] (表1),一旦溶解在水中,便不会轻易被吸附到土壤或沉积物中,在环境中的移动性也更大。HMX结构很稳定,不易在外界作用下发生分解,能长期存在于环境中[4] 。2.2 场地含能化合物来源及污染水平
场地含能化合物污染问题在世界各国普遍存在,场地调查中常见的含能化合物包括炸药和推进剂两类。作为污染物存在的载体以及造成人体暴露的传输介质,含能化合物污染场地已成为污染场地中的重要一类。关于土壤、地下水和地表水中含能化合物浓度分布的报道已有很多(表2),这些化合物主要通过以下几种途径进入自然环境:(1)火炸药及弹药生产;(2)火炸药及弹药包装/储存;(3)废旧弹药处置和销毁;(4)军事活
动[4] 。据估计,在美国境内有超过2000个场地,约1500万英亩的土地受到炸药污染,87%出现地下水污染现象,30个被美国环境保护署(USEPA)列为国家重点保护名单[5,6] ,有研究证明美国爱德华兹营(Camp Edwards)的污染主要是炸药造成的[7] ;加拿大共有103个国防训练基地受到TNT污染,其中3个训练基地甚至出现残留弹药燃烧和爆炸现象[8] ,土壤和水中TNT的污染程度分别达到200 g·kg-1 和100 mg·L-1[9] ;在欧洲和亚洲等地区可能存在更多这类受污染的土地,如Claus等[10] 报道德国有3200个被TNT污染的场所需要进行环境修复。表2 典型军事污染场地土壤中含能化合物的浓度
Table 2 Concentration of energetic compounds in soil of typical military contaminated sites
countries sites energetic
compounds
concentration
/ μg·k
g-1 references the United States mortar
projectile low‑order
detonation
TNT
RDX
HMX
2‑ADNT
4‑ADNT
58 (max)
940 (max)
220 (max)
2 (max)
3 (max)
[22] hand
grenade
range
TNT
RDX
HMX
2 (max)
170 (max)
93 (max)
[22] indirect
fire impact area and
air force bombing
range
TNT
RDX
HMX
2‑ADNT
4‑ADNT
2,4‑DNT
NG
314000 (max)
1400 (max)
110 (max)
90 (max)
700 (max)
33 (max)
51 (max)
[22] Canada air
weapons
range
TNT
RDX
HMX
2,4‑DNT
1,3,5‑TNB
2,6‑DNT
NG
500000 (max)
6000 (max)
1470 (max)
760 (max)
4810 (max)
270 (max)
3590 (max)
[23] demolition
range
RDX
HMX
2,4‑DNT
11400 (mean)
1840 (mean)
491000(mean)
[15] antitank
rocket
range
TNT
HMX
NG
390000 (max)
1616000 (max)
4453000 (max)
[15] Korea shooting
range
TNT
RDX
HMX
659160 (max)
128510 (max)
2740 (max)
[24] Yugoslavia TNT‑filled
land mines
TNT
1,3‑DNB
2,4‑DNT
4‑ADNT
2‑ADNT
75 (max)
68 (max)
823 (max)
542 (max)
873 (max)
[25] NOTE: 2‑ADNT is 2‑Amino‑4,6‑dinitrotoluene; 4‑ADNT is 4‑Amino‑2,6‑dinitrotoluene; 1,3,5‑TNB is 1,3,5‑Trinitrobenzene; 2,6‑DNT is 2,6‑Dinitrotoluene; 1,3‑DNB is 1,3‑Dinitrobenzene.
全球每年生产1
06 kg TNT,每天向环境中排放近2000m3 受TNT及其他硝基芳香族化合物污染的废水[6] 。炸药生产过程的污染主要源于生产环节、不恰当的储存和废水处理过程,如美国军方一直使用蒸发/渗坑处理炸药加工过程产生的废水,导致许多炸药累积在渗坑表面,浓度高达104 mg·kg-1[11] 。工厂周围炸药可以到达地下近百米深处,甚至渗透到地下蓄水层,污染地下水。Newman等[12] 发现美国洛斯阿拉莫斯(Los Alamos)遗址附近土壤中炸药含量达到20%(质量比),地表水中高达80 μg·L-1 。Eisentraeger等[13] 报道德国某弹药工厂在运营期间生产了108 kg TNT,且产生了超过5×106 m3 的TNT废水。含TNT的废水由于呈红色,也被称为“红水”,“红水”中还同时含有30余种其他芳香族化合物,这些废水在地表径流和渗透作用下严重污染地表水和地下水,对周围居民的健康和生态系统造成不容忽视的威胁[5] 。除炸药生产、包装、存储、运输、处理等过程可能造成的环境污染,军事训练场地的炸药污染情况也备受关注,其浓度和种类与军事场地使用年限、武器的类型密切相关。
(1) 火炮训练场
火炮主要包括各种不同规格的榴弹炮、坦克炮和迫击炮,这些炮弹的主要成分为TNT、B炸药(60%RDX、39%TNT、1%蜡)和特里托纳尔炸药(80%TNT、20%铝粉),炸药残留物在火炮场地分布广泛且不均匀。高阶爆炸区域土壤炸药浓度几乎都小于1 μg·k
g-1 ,地下水小于1 μg·L-1[14] ,目标附近土壤TNT、RDX和HMX的浓度小于1 mg·kg-1[15,16,17] 。但在低阶爆炸区域,浓度增大3~4个数量级,如TNT在表层土壤中浓度达到1.5%,2,4‑二硝基甲苯(2,4‑DNT)的浓度为237 mg·kg-1[14] 。(2) 反坦克火箭训练场
反坦克火箭弹药主要由HMX和TNT(4:6)组成,使用双基推进剂进行发射,主要成分为硝化纤维(NC)和硝化甘油(NG)。因此,HMX、TNT和NG分别是着弹区域和发射阵地主要的含能残留物。美国雅基马(Yakima)军事训练中心表层土壤(0~5 cm)中HMX、TNT的浓度分别为10400 mg·k
g-1 和358 mg·kg-1 ,并检测出了少量的RDX,随着深度的增加,HMX和TNT的浓度迅速降低至49 mg·kg-1 和1.7 mg·kg-1 (6~10 cm)[15,18] 。加拿大彼得华华(Petawawa)军事基地地下水中HMX和RDX的浓度达到了17 μg·L-1 ,后者超过了USEPA规定的终生暴露饮用水健康阈值(2.0 μg·L-1 )。NG作为最常使用的双基推进剂的主要成分,大量残留在土壤中,浓度可达102 ~103 mg·kg-1[15] 。Brochu等[19] 报道了彼得华华(Petawawa)军事基地距离发射阵地0~10 m和10~20 m处土壤中NG的浓度分别为2400 mg·kg-1 和380 mg·kg-1 。(3) 手榴弹投弹场
手榴弹的炸药主要为B炸药,因此手榴弹投弹场地的含能化合物主要为RDX和TNT。手榴弹投弹区土壤中含能化合物的浓度变化很大,1 m范围内土壤中含能化合物的浓度相差两个数量级以上。Jenkins
等[14,15] 分析了美国路易斯堡(Fort Lewis)训练场表层土壤中RDX的浓度,发现表层土壤中RDX的平均浓度和最高浓度分别为1.6 mg·kg-1 和51.2 mg·kg-1 ,TNT和HMX的最大浓度分别为40.6 mg·kg-1 和5.2 mg·kg-1 ,表层土壤RDX和HMX的平均浓度分别为地下10 cm深处的10.8和12.5倍,TNT更是高达49倍。(4) 废旧弹药销毁场地
通常采用焚烧或爆破的方式处理废旧弹药。由于RDX是爆破炸药C4(91%RDX、9%塑化剂)的主要成分,当发生低阶爆炸或C4爆破炸药未完全爆炸时,大量的含能化合物就会分散在土壤中,露天焚烧和开放爆炸的区域污染尤其严
重[20] 。在美国霍洛曼(Holloman)空军基地一个半径为25 m的爆破坑周围检测到RDX和HMX的浓度分别为11.4 mg·kg-1 和1.84 mg·kg-1[15] 。Clark等[21] 报道了路易斯安那州陆军弹药厂周围土壤中RDX、TNT和HMX的浓度高达1900,1000,900 mg·kg-1 ,均由炸药爆破和焚烧造成。2.3 场地炸药污染的健康风险
TNT、RDX和HMX是土壤中最常见的炸药,分子结构的差异导致三种炸药的毒性存在很大差别,相对而言TNT和RDX毒性较高,且有致癌性,被USEPA定义为潜在的人类致癌物。TNT的毒性已被大量的蚯蚓、小鼠和水生生物等的急性或慢性毒性试验证实,TNT还会影响水体颜色、pH值、电导率、总溶解固体、溶解氧、化学需氧量和生化需氧量等。对人体健康而言,TNT一般与人体肝功能异常、视力和视野受损以及再生障碍性贫血有
关[26,27] 。RDX的慢性毒性效应表现为大鼠体重减轻、神经和肝脏损害,达到一定剂量时会造成大鼠胃肠道和肺部充血,RDX对啮齿动物的半数致死剂量(LD50 )为70~200 mg·kg-1 ·d-1[28] 。McMurry等[29] 研究了HMX在绿色蜥蜴(变色龙)体内的积累和影响,发现HMX对绿色蜥蜴的LD50 >2000 mg·kg-1 ,当土壤中HMX的浓度达到一定水平时,蜥蜴蛋的孵化率会明显降低。细菌和藻类毒性试验证明毒性TNT>RDX≫HMX。目前关于土壤和地下水中炸药环境质量评价指导限值的唯一官方指南是由USEPA颁布的,但是也有很多其他国家的政府和科学家通过研究提出了土壤和地下水中炸药环境质量评价的初步指导限值(表3)。从已有的研究案例来看,很多场地已经遭受了严重的炸药污染,部分场地的炸药浓度已经达到了损害生态环境、危害人体健康的程度。例如美国对某军用射击场的评估表明,炸药和重金属的非致癌因子达到了62.5,其中RDX的非致癌危害超过了50,亟待修
复[30] 。compound soil guidance values / mg·k g-1 ground water guidance values
/ μg·
L-1 USEP Aa BR IENW bBR IHH cBR IAL dUSEPA BR Ie TNT 80 3.7 41 31 1 4.7 RDX / 4.7 250 7.6 2 28 HMX / 32 4100 13 400 93 2,4‑DNT / 11 0.14 130 0.17 0.7 2,6‑DNT / 8.5 0.14 130 0.0068 0.7 NG / 65 2500 2.4 5 280 NOTE: a is United States Environmental Protection Agency; b is preliminary soil quality guideline for the environment; c is preliminary soil quality guideline for human health; d is preliminary soil quality guideline to protect aquatic life in case of groundwater discharge; e is Biotechnology Research Institute.
3 炸药的环境归趋
3.1 炸药的环境多相界面分配
通过军事训练活动进入环境的炸药,主要为块状或颗粒状残留固体(例如TNT、RDX和HMX),而在生产过程中会有部分炸药溶解在水体中以废水的形式排放出来。溶解是固体炸药进入土壤后环境行为的起点,是影响其在场地中迁移传输的关键,只有溶解后才会进一步发生其他环境行为。而溶于废水中的炸药进入环境后不受第一步溶解的限制,直接在土壤的固‑液‑气‑生界面发生挥发、吸附/解吸等一系列的再分配行为,从而导致污染的迁移与扩
散[3] (图1)。本课题组在大量野外调查的基础上,并结合国外军事场地炸药环境污染研究成果[6,24,25,26] ,绘出了炸药在特殊场地中的环境归趋概念模型图(图2,图中描述了我国典型军事污染场地中炸药可能的污染来源及其在多相介质中的迁移转化和环境归趋过程,并说明了在军事场地环境中炸药对生态和人体健康风险的主要暴露途径)。下面就炸药在多相环境介质中的物理、化学和生物过程进行详细评述。图2 军事场地炸药污染的产生和迁移概念模型(a、b、c、d、e、f和g均为我国典型军事场地野外调查照片)
Fig.2 Conceptual model of a military range showing the dispersion and transportation of explosives(a, b, c, d, e, f and g, are pictures of field investigation of typical military ranges in China)
3.1.1 溶解/沉淀
TNT、RDX和HMX在水中的溶解度均很低,溶解度大小依次为:TNT>RDX>HMX。温度、表面接触面积、混合速率对这三种物质在水中的溶解速率影响较大。例如,温度为10 ℃时,TNT、RDX和HMX的溶解速率分别为8.7×1
0-3 ,6.3×10-3 ,1.3×10-3 mg·min-1 ·cm-2 ,并且在一定温度区间内,每升高10 ℃,炸药的溶解速率会增加一倍[4] 。由于呈固态的含能化合物溶解速率很慢,这意味着未爆弹药如不及时清理,将会向环境持续释放含能化合物造成污染。当土壤水分降低或者理化性质发生变化时,溶解的炸药会发生沉淀析出,例如在炸药废水的渗漏池底部有可能出现炸药固体结晶物。3.1.2 挥发
溶解在水体中的含能化合物可以通过挥发以蒸气的形式从液相再次进入气相,挥发程度由化合物本身的亨利定律常数(KH)决定,在标准大气压下,KH>1
0-5 m3 ·mol-1 时,化合物易从液相中挥发出来。TNT、RDX和HMX的KH为10-7 ~10-15 m3 ·mol-1 (表1),表明这三种物质溶解于水中时,都不易挥发进入大气。TNT、RDX和HMX在0~40 ℃下,蒸气压很低(10-4 ~10-12 Pa),其升华作用也可以忽略不计。3.1.3 吸附/解吸
土壤等固定相对炸药分子的吸附,直接影响溶解态炸药随流动相的迁移扩散。粘土矿物类型、阳离子交换量、官能团种类和有机碳含量均会影响炸药在环境中的吸附过程。Sharma
等[31] 测定了TNT、RDX和HMX在高有机碳和高粘土含量土壤中的吸附系数(Kd),与高粘土含量的土壤相比,富含有机碳的土壤对TNT、RDX和HMX的吸附能力更强,吸附量顺序均为TNT>RDX>HMX。Jenkins等[32] 在反坦克火箭训练场地表下120 cm处仍检出HMX,但在地下15 cm深处就检测不到TNT和RDX。溶解的HMX和RDX可以穿过土壤不饱和带并渗透到地下水中,因此通常可以在地下水中检测出RDX和HMX,却检测不出TNT。TNT与土壤之间的吸附通常为可逆吸附,主要吸附机理为硝基官能团与土壤胶体之间的氢键结合、离子交换作用以及与有机碳含量相关的疏水分配作
用[31] 。表4列出了影响TNT吸附过程的主要因素。不同粘土矿物对TNT的吸附能力有明显差异,如蒙脱土对TNT的吸附能力远远大于高岭土[3] 。吸附还受粘土表面可交换阳离子类型和数量的影响[33] 。同时,土壤中炸药的吸附还与有机质含量有很大的关系,有机质含量越高,吸附效果越好[31] ,尤其是可溶性有机质。例如,富里酸对TNT有较强的吸附能力(吸附系数Kd=2.24)[34] ,优于有机膨润土的吸附性能(Kd=1.81)[35] ,这主要与富里酸中的网状结构和亲水基/疏水基比值有关。炸药分子的官能团种类会影响其在土壤有机质与水之间的分配过程,TNT在土壤有机质中的分配能力要大于其转化产物,但是还原生成的胺类衍生物可以通过固定化机制(如与土壤有机质形成─NH─C(O)─共价键发生不可逆的化学吸附)增强其吸附能力,从而减缓迁移速度[36] 。Sheremata等[37] 指出随着氨基官能团的增加,炸药的吸附能力越来越强,TNT的吸附系数小于其分解产物4‑氨基‑2,6‑二硝基甲苯(4‑ADNT),而4‑ADNT的吸附能力又不如2,4‑二氨基‑6‑硝基甲苯(2,4‑DANT)。TNT的转化产物与土壤有机质共价结合,无法被提取出来,可能会导致高估土壤吸附TNT的能力。对土壤中的纯铁氧化物的吸附研究表明,其不能有效地吸附硝基芳香化合物,甚至产生吸附抑制作用,这可能是因为它们覆盖在粘土表面上,阻碍了硝基芳香化合物在粘土矿物上的吸附[38] 。表4 影响TNT吸附过程的主要因素
Table 4 Major factors affecting TNT adsorption process
influencing factors adsorption capacity references clay mineral montmorillonite (156 L·k g-1 )>kaolin (1.0 L·kg-1 )[3] exchangeable cation K+ /NH4 +>Ca2+ /Na+ /Mg2+ /Al3+ [33] organic carbon the higher the organic carbon content, the better the adsorption capacity [31] functional group the more amino functional groups, the better the adsorption capacity
(2,4‑DANT>4‑ADNT>TNT)
[36,37] pure iron oxide no (negative) effect [38] RDX和HMX是杂环化合物,极性更强,Kow更小,不易被粘土矿物吸附。Tucker
等[39] 观察到RDX的吸附系数Kd值与土壤有机碳含量存在显著的线性关系,可以用线性吸附等温线描述具体的吸附过程,这表明有机质疏水分配是土壤对RDX主要的吸附机制。与TNT不同,土壤对RDX的吸附作用几乎都是不可逆的共价结合反应,但与TNT类似的是,氧化铁含量对RDX的吸附无明显影响,去除土壤/沉积物细颗粒物中的铁氧化物并不影响RDX的吸附能力。HMX在土壤中的吸附行为与RDX类似,但土壤中有机碳含量并不会显著影响HMX的吸附能力[40] 。相对于土壤中炸药吸附过程及其机理方面的大量研究,炸药从土壤表面解吸过程的研究还很少见有报道,加强炸药的解吸行为研究,将有助于全面理解炸药在环境多相介质中的再分配行为。3.2 炸药在环境中的转化
3.2.1 光解
光解是由直接光照或间接光照引起的化合物转化现象,直接光解是指化合物直接吸收光能发生转化,过程受波长和光强度的影响;间接光解则通过光敏物质(如过氧化物、臭氧、腐殖质)将能量转移,使目标化合物发生转
化[41] 。由于溶解度很低,炸药会在土壤表面残留很多年,因此光解对表层土壤中炸药自然衰减的贡献不可忽视。RDX吸收约为330 nm波长的辐射,因此可以被太阳光中的中波紫外射线(280~315 nm)和长波紫外射线(315~400 nm)降解[42] 。TNT光转化包括甲基氧化、硝基还原和二聚体形成等过程,产生硝基苯、苯甲醛、偶氮二羧酸和硝基酚[31] ,RDX颗粒暴露在汞灯下会发生光解,产物为偶氮化合物、NH3 、NO2 -、NO3 -、N2 O和HCHO等[41] (图3)。太阳光强度、盐度、溶解性有机质含量和土壤含水率都会影响含能化合物的光解过程,其中光强度又与纬度、海拔、时间以及云量的变化紧密相关。Spanggord
等[44] 通过实验测定的RDX半衰期比使用模型预测的半衰期大20%~160%,这是因为他们研究地点的纬度(46.9°N)比模型使用的纬度(40°N)更高,天空中云量覆盖度也更大,太阳光透过率减小,RDX光解速度变慢。短波辐射强度变化也会影响RDX的光解速率,如臭氧层空洞的形成可以显著提高吸收短波辐射太阳光的化学物质的降解速率[42] 。此外,含水率、盐度也会影响含能化合物的光解速率,土壤含水率从0增加到50%和100%时,TNT光解速率分别增大7倍和21倍[45] ,海水盐度越大,则TNT光降解速率越快[46] 。炸药在环境中的存在形式也会影响光解速率,溶解态化合物比颗粒态降解速率快[42] 。天然光敏剂和光催化剂也会影响TNT的光解速率,张文通等[47] 发现加入TiO2 催化剂后能使土壤中浓度为500 mg·kg-1 的TNT的去除率从36%提高到95%以上。除了需要关注炸药本身的光降解,深入研究炸药光解产物的毒性以及降解速率是至关重要的,因为这关系到其降解产物是否会在环境中累积,如产物N
O3 -在有氧条件下会长期存在。目前在加拿大的多个军事训练场地的地下水中均检出了NO3 -[48],因为许多训练场附近还存在其他NO3 -来源,几种来源的共同作用使地下水中NO3 -的总浓度有可能超过饮用水允许的最大浓度,而且NO3 -是水生植物重要的氮源,大量NO3 -输入有可能导致严重的水体富营养化。3.2.2 水解
水解是指有机化合物的官能团与水反应形成新的C─O键的过程。中性土壤条件下,硝基芳香化合物和芳香胺类化合物都不容易发生水
解[4] 。通过向水或土壤系统中添加NaOH或Ca(OH)2 调节至pH>10可以促进TNT的水解。通常情况下,TNT水解程度随着pH的升高而增大,pH=12时,溶液中TNT浓度降低了95%以上,而在pH=11时,浓度仅降低25%[49] 。虽然自然环境难以达到这么高的pH条件,但是碱性水解作为一种修复炸药污染土壤的技术已经得到了广泛的应用[43,50] 。碱性条件下RDX和HMX也会发生水解,Sviatenko
等[51] 观察到HMX在pH>10时C─N键会断开,发生水解作用,产物主要为4‑硝基‑2,4‑重氮丁醇、甲酸盐、HCHO、NO2 -、N2 O和NH3 ,但速率较慢,pH升高至11~13时,降解速率会显著加快。3.2.3 还原
含有硝基官能团的含能化合物易发生非生物还原反应,将硝基还原为氨
基[43] ,该过程主要受环境pH、氧化还原电位、有机碳含量、阳离子交换量、可膨胀粘土和金属还原剂(Fe2+ 、Mn2+ 和Fe)的影响,并且需要铁化合物、粘土矿物或有机大分子作为催化剂。目前已有很多研究报道了铁(如磁铁矿、亚铁、零价铁)还原TNT、RDX和HMX的过
程[52,53] 。在蒙脱土或高岭土存在的情况下,Fe2+ 对TNT的转化速率随pH值的升高而增加,产物主要为胺类化合物和偶氮化合物,最常见的是单氨基化合物如2‑ADNT和4‑ADNT[54] 。但这些芳香多胺类物质都很稳定,一般不会被铁进一步还原(图3),需要通过生物降解或吸附处理,大孔树脂对这些还原产物的吸附率可以达到94.7%[55] 。还原态可溶性有机质可以将电子传递给硝基芳香化合物,促使其还原降解[56] 。氧化还原条件也会影响炸药的转化,TNT溶液在强还原条件下(-150 mV)反应1天就会完全消失,但是在+500 mV时,则需要4天才能转化完全[57] 。RDX可以被磁铁矿悬浮液中的Fe2+ 催化依次还原为亚硝基中间体(MNX、DNX、TNX)和最终产物(NH4 +、N2 O和HCHO)(图3)[58] ,并且随着pH的升高,磁铁矿上吸附的Fe2+ 增多,RDX转化速率也更快。关于HMX的还原转化研究相对较少,但已有的研究发现氧化还原条件和pH值对HMX的影响较小,零价铁(ZVI)还原HMX的转化率也显著小于TNT和RDX,而且在RDX存在时,HMX的还原转化还可能会受到抑制。3.2.4 微生物降解
微生物(细菌和真菌)在好氧和厌氧条件下均可以降解TNT、RDX和HMX。微生物降解可导致炸药的矿化或者生成其他产物,这些产物有可能进一步发生聚合、共价结合和络合反
应[43,59] 。关于TNT的微生物降解,Kalderis
等[43] 和Juhasz等[4] 都进行了详细的综述,微生物通常以TNT分子作为碳和/或氮源,或者作为替代底物以共代谢的方式实现TNT的降解。来自肠道细菌的硝基还原酶可将TNT还原为胺类衍生物(2‑ADNT、4‑ADNT、2,4‑DANT和2,6‑DANT)[9] ,这些衍生物在好氧和绝对厌氧条件下可继续降解生成不同的产物(图4)[3,43] 。但在实际环境中,由于上述胺类衍生物可能会与土壤发生共价结合,从而限制了进一步反应的可能性。此外,来自大肠杆菌PB2(Enterobacter cloacae PB2)的季戊四醇四硝酸酯还原酶不仅可以还原硝基官能团,还可以让氢化物加成到芳环上,并释放NO2 -[60],但该过程释放氮的机理目前仍然不是很清楚,解析TNT复杂的环裂解和矿化途径仍然是未来的研究目标。除了上述细菌外,很多研究证明真菌也可以降解或矿化硝基芳香化合物,真菌通过非特异性细胞外酶系统(木质素过氧化物酶、锰过氧化物酶、漆酶)的作用矿化TNT(图4)。黄孢原毛平革菌(Phanerochaete chrysosporium)是目前研究最多的TNT降解真菌,这种真菌对TNT的降解率可达到80%,且对高浓度的TNT(1000 mg·kg-1 )表现出良好的耐受性[61,62] 。RDX和HMX的生物降解和矿化效率通常高于TNT,这是因为TNT具有芳香性,电子稳定性更
强[63] 。环硝胺的生物降解机制主要包括[64] :(a)硝胺自由基的形成和硝基官能团的破坏;(b)硝基官能团的还原;(c)直接酶促裂解;(d)α‑羟基化;(e)中间体自发分解产生NO2 -、N2 O、HCHO或HCOOH等最终产物。酶促反应最容易使环硝胺的N—N键断裂,形成硝胺和HCHO,硝胺通过非生物转化为N2 O,HCHO通过生物转化为CO2 [43]。许多从RDX污染土壤中分离出来的棒状杆菌科(Corynebacterium)微生物可以代谢RD
X[65,66] 。在光照条件下,红球菌(Rhodococcus)在72 h内可以完全降解RDX[67] 。在厌氧和好氧两种途径中,RDX降解都是由反硝化水合作用下的环裂解引发的,常见的中间体和最终产物,见图5[68]。Yang等[69] 首次报道了RDX的好氧降解,并鉴定了3种纯棒状杆菌菌株,它们以RDX作为唯一的氮源维持自身代谢,最高效的菌株可以在32 h内去除培养基中0.18 mM的RDX。相较于好氧降解,RDX在厌氧条件下更容易降解,Hawari等[70] 利用几种污泥进行降解实验,发现厌氧污泥降解RDX的速度最快,在2天内可以使0.27 mM的RDX浓度降低90%。HMX既可发生厌氧降解,也可发生好氧转化,其过程与RDX类似。已有文献报道了污泥、土壤、海洋沉积物中的HMX可以被微生物降
解[71] 。纯菌株如好氧白腐真菌以及一些厌氧菌株都可以降解HMX,如黄孢原毛平革菌(Phanerochaete chrysosporium)在没有其他氮源的情况下可以矿化HMX。Perumbakkam等[72] 研究发现绵羊的瘤胃微生物也可以降解HMX,在这一过程中的关键微生物是普雷沃菌属(Prevotella)。另外,Nagar等[73] 从炸药污染土壤中分离出一种动性微菌属(Planomicrobium flavidum)菌株S5‑TSA‑19,该菌株20天内可以降解70%的HMX。总的来看,HMX有两种生物降解途径,一种是硝基还原形成亚硝基中间体,进一步转化为HCHO和N2 O,最终矿化为CO2 等小分子化合物[4] ;另外一种涉及环氧化的HMX降解途径,该过程会瞬时生成亚甲基二硝胺(MDNA)和双(羟基甲基)硝胺(BHNA),然后进一步转化为N2 O和HCHO,再通过反硝化或产甲烷作用转化为N2 、CO2 和CH4 [74](图5)。由于炸药的可生物降解性,微生物修复技术已广泛用于炸药污染环境的治理。如Jugnia
等[75] 发现向污染土壤中添加废弃甘油可以促进RDX的微生物降解。此外,可以通过向污染土壤施加一些添加剂,促进TNT的微生物修复。Vasilyeva等[76] 提出使用活性炭可降低TNT的毒性,增加微生物对高污染土壤的修复潜力。在TNT原位厌氧生物降解时,向土壤中添加碳源(如乳酸和乙醇等)可以提高TNT的降解速率和程度。无机盐、淀粉、葡萄糖、表面活性剂等物质也可以用来提高微生物对炸药的降解能力。3.2.5 植物吸收和转化
植物对炸药的吸收和转化程度取决于植物种类、土壤炸药浓度以及炸药的生物可利用性。目前对炸药化合物的吸收和转化研究至少涵盖了45种植物,包括杨树、农作物、香根草和湿地植物
等[77,78] ,不同植物对炸药的吸收存在很大差异(表5)。Adamia等[79] 研究了8种植物对TNT的同化作用,发现大豆(Glycine max)对TNT的吸收能力最强,且TNT主要分布在植物根部组织中,硝基还原酶将TNT还原为羟基氨基二硝基甲苯(HADNT)、氨基二硝基甲苯(ADNT)和二氨基硝基甲苯(DANT)。与TNT相反,RDX和HMX在植物组织中的转运很明显,杂交杨树(Populus deltoides × nigra DN34)在含有RDX的溶液中培养48h后,90.9%的RDX被转移到叶片中,4.4%转移到茎中,仅有3.9%保留在根中。和杨树一样,RDX在柳枝稷(Panicum vigratum Alamo)中也容易发生转运,但它在叶片和根中分布的更加均匀,根和叶片中的占比分别为41.9%和58.1%[80] 。综合文献报道,TNT、RDX和HMX在植物中的吸收转运模式如图6所示。由于植物对炸药的吸收和累积效应,一些植物已经被用作调查炸药污染场地的生物指示计[81] ,例如Manley等[82] 通过榆树(Ulmus alata)和葡萄藤(Vitis labrusca)暴露在RDX和TNT下9周,发现两种植物的色素含量、叶面积、比叶面积和生物量等参数均发生变化,表明这两种植物可以作为炸药污染场地的指示性植物。表5 陆生植物对TNT、RDX和HMX的吸收
Table 5 TNT, RDX and HMX uptake by terrestrial plants
species energetic compounds initial concentration / mg·k g-1 incubation time / d removal capacity references Tagetes patula TNT 100-1000 90 87.6-98.6* [83] vetiver grass TNT 40 48 100* [84] Populus deltoides
xnigra, DN34
TNT 100 40 100* [85] Zea mays RDX 100 28 1.21** [86] Triticum aestivum RDX 100 28 1.4** [86] Lolium perenne HMX 30 77 8.1** [87] Brassica rapa HMX 30 77 5.2** [87] NOTE: * is the removal rate of explosives from the soil (%). ** is the uptake of explosives by plants(mg·
g-1 ).虽然植物对炸药的吸收率很高,但植物本身降解或解毒炸药的能力很低。为此研究人员将能降解含能化合物的细菌基因植入到植物体中,用于污染场地的植物修复。如Zhang
等[88] 让编码细菌硝基还原酶的nfsI基因转移到烟草植株(Nicotiana tabacum)中,发现这种转基因烟草对TNT的耐受、同化和解毒能力都明显增强。在进一步的研究中,Zhang等[89] 将xplA和xplB以及nfsI基因植入到西部麦草(Pascopyrum smithii)中,发现这种转基因植物不仅可以对TNT解毒,而且提高了对RDX的吸收及转化能力,积累在植物中的这两种炸药含量都明显降低,这也是首次研究出能同时降解RDX和TNT的可应用的转基因植物,展示了植物联合转基因技术在原位处理和修复炸药污染方面的巨大前景。4 新型炸药的环境行为
更高能量密度、更好安定性的炸药是军事工业不懈的追求。IMX‑101是目前最常用的钝感弹药之一,其含有40%~45%的2,4‑二硝基苯甲醚(DNAN)、18%~23%的3‑硝基‑1,2,4‑三唑‑5‑酮(NTO)和35%~40%的1‑硝基胍(NQ
)[90] ,这种炸药的爆炸威力与传统炸药相当,敏感度更低。但相对于传统的含能化合物而言,目前有关新型炸药的环境行为研究较少。表6总结了新型炸药的基本性质。由于较低的溶解度,DNAN在土壤表面存留的时间更长,它在环境中既存在非生物降解过程,也存在生物转化途径。零价铁作用下DNAN可以还原为2‑氨基‑4‑硝基苯甲醚(2‑ANAN
)[91] ,光解产物为NO3 -、HCHO、HCOOH和2,4‑二硝基苯酚(DNP)[91] 。最近,Halasz等[90] 发现了一种新的DNAN光解产物甲氧基‑二硝基苯酚,是由DNAN光产物甲氧基‑硝基苯酚进一步转化生成的,但目前对于甲氧基‑二硝基苯酚的毒性尚不清楚。Temple等[92] 通过土壤柱试验和静态试验观察到DNAN在有机质含量高的土壤中6天内就会被完全降解,生物降解的主要产物为2‑氨基‑4‑硝基苯甲醚(2‑ANAN)以及痕量的4‑氨基‑2‑硝基苯甲醚(4‑ANAN),在严格厌氧条件下还会生成2,4‑二氨基苯甲醚(DAAN)[91] 。目前已经报道了几种可以降解DNAN的微生物,如芽孢杆菌(Bacillus)好氧降解DNAN,假单胞菌株(Pseudomonas sp.)FK357和红球菌株(Rhodococcus imtechensis)RKJ300矿化DNAN。尽管DNAN比TNT更易溶解,Kow更小,相对于TNT而言,DNAN的毒性更小[91] ——与RDX相当[92] ,但其光解产物DNP的毒性则增强。表6 新型炸药理化性质及毒性研究
Table 6 Physicochemical properties and toxicity of novel explosives
novel explosive DNAN NTO NQ CL‑20 CAS number 119‑27‑7 932‑64‑9 556‑88‑7 135285‑90‑4 chemical formula C7 H6 N2 O5 C2 H2 N4 O3 C H4 N4 O2 C6 H6 N12 O12 MW 198.13 130.06 104.07 438.19 melting point / ℃ 97 161 239 350 boiling point / ℃ 320 390 404 806 solubility in water
/ mg·
L-1 27 6[110] 1664 2[93] 380 0[111] 3.86, 2.9 1[112] Henry′s law constant,KH / m3 ·mol-1 5.5×1 0-4[113] / 7×1 0-6[100] / adsorption
coefficient / L·k
g-1 9. 1[91] 0.37-1.03 1[94] <0. 1[100] 0.02-3.8 3[108] octanol/water
partitioning
coefficient LogKow
1.5 8[91] 0.82,-1.1 9[114] 0.14 8[100] 1.9 2[115] major degradation products 2‑ANAN, 4‑ANAN,
DAAN, DN
P[91] urea, ATO, N
O2 -,guanidine, urea,
dicyandiamide,
N
O2 -, NH3 ,N2 O[101] HCOOH, N
H3 N2 O[106] degrading
microorganisms
Bacillus[118]Enterobacter, Pseudomonas fluorescens, Burkholderia cepacia,
Shewanella oneidensis[91]
Bacillus
licheniformis,
Penicillium sp.[118]
Variovorax[102] Pseudomonas sp.[119] toxic effect L
D50 =199 (rats)[92] 96h‑L
C50 =24.328d‑LOEC=2.4
(Rana pipiens
)[98] 28d‑LOEC=5.0
(Rana pipiens
)[98] 7d‑LOEC=1000
14d‑LOEC=500 (mice
)[120] 96h‑NOEC=0.37
96h‑LOEC=0.59
96h‑L
C50 =1.15(Selenastrum capricorntum
)[121] E
C50 =53.4(Eisenia Andrei
)[122] E
C50 =0.08‑0.62(Enchytraeus crypticus
)[123] NOTE: L
D50 ( mg·kg-1 )is median lethal dose. 96 h‑LC50 (mg·L-1 )is median lethal concentration. 28 d(96 h)‑LOEC(mg·L-1 ) is lowest observed effect concentration. 7(14)d‑LOEC(mg·L-1 ) is lowest observed effect concentration. 96 h‑NOEC(mg·L-1 ) is non‑observed effect concentration (test maximum concentration). EC50 (mg·L-1 ) is median effect concentration.钝感炸药不完全爆炸时会有大量的离子型化合物NTO沉积在土壤表面,并且NTO的溶解度很
大[93] ,因此准确测定NTO的吸附系数和转化速率常数对于预测NTO的环境行为至关重要。NTO在环境中通常带负电荷,因此带负电荷的粘土矿物对NTO的吸附能力较低,吸附系数与土壤pH值呈显著负相关。NTO在环境中会随着降雨向下层土壤甚至地下水中运移[94] ,容易造成深层土壤和地下水污染。NTO还可以被带正电荷的针铁矿吸附[95] 。目前报道的可降解NTO的微生物包括青霉菌(Penicillium sp.)和地衣芽孢杆菌(Bacillus licheniformis)。NTO可以作为地衣芽孢杆菌的单一氮源而被降解,生成3‑氨基‑1,2,4‑三唑‑5‑酮(ATO)、尿素、NO2 -、NO3 -和CO2 [96]。Madeira等[97] 对NTO开展了连续厌氧‑好氧生物降解研究,发现NTO在厌氧条件下发生矿化释放无机氮,转化率达到93.5%,降解产物ATO在好氧条件下可以被完全降解。NTO的毒性比DNAN低,对模糊网纹蚤(Ceriodaphnia dubia)、绿藻(Selenastrum capricornutum)和蝌蚪(Rana pipiens)有低毒性,但会在一定程度上抑制大鼠的生殖能力[98,99] 。NQ的溶解度介于DNAN和NTO之间,不会被土壤矿物显著吸附,因此可以快速迁移至地下水中。光解作用是NQ主要的自然衰减机制,在40°N的表层土中NQ的光解半衰期为0.6(夏季)~2.3天(冬季
)[100] ,光解产物为胍、尿素、氰基胍和NO2 -[101]。与DNAN一样,NQ在高有机质含量的土壤中会受生物降解的影响,尤其是厌氧生物降解,半衰期为4天,终产物为氰胺,其毒性比母体化合物更强,值得关注[100] 。Perreault等[102] 研究发现贪噬菌株(Variovorax)VC1在葡萄糖和琥珀酸盐存在下可以好氧降解NQ,产物为NH3 或N2 O。目前一些研究报道了植物对新型炸药的吸收转化作用。Richard
等[103] 研究了植物对DNAN、NTO和NQ的吸收转化,经225天处理后,土壤中三种化合物的去除率都达到了96%以上。Panja等[104] 对香根草(Chrysopogon zizanioides)进行了连续培养试验,DNAN和NQ的去除率分别达到96%和79%。NQ主要分布在植物的茎和叶中,DANA从根部转运到茎中的现象不明显,但研究发现在拟南芥属植物(Arabidopsis)中会转化生成2‑ANAN[105] ,NTO在植物的根和芽中均未检测到,表明NTO在植物组织中更容易转化。2,4,6,8,10,12‑六硝基‑2,4,6,8,10,12‑六氮杂异伍兹烷(HNIW,CL‑20)是20世纪80年代合成的一种新型含能化合物,是目前已知能量最高、威力最大的非核单质炸药,并且表现出一定的生殖毒性,其环境危害越来越受到关注。Balakrishnan
等[106] 研究了CL‑20在pH 10~12.3之间的水解特征,发现CL‑20脱除两个硝基后生成了HCOOH、NH3 和N2 O,但没有如RDX和HMX一样生成HCHO和4‑硝基‑2,4‑二氮杂萘(4‑NDAB)。斯蒂文斯理工学院环境工程中心[107] 对CL‑20的环境行为进行了初步研究,认为在15~50 ℃内CL‑20在水中的溶解度非常有限,经过63天的分枝杆菌培养,CL‑20含量下降了约25%,而在没有经过微生物接种的矿物土壤中也下降了20%,表明非生物作用在CL‑20的降解中占了很大部分。Szecsody等[108] 研究了CL‑20在表层沉积物中的吸附和氧化降解行为,发现沉积物和矿物质对CL‑20的吸附量很小,导致溶解性的CL‑20随地下水迁移扩散的风险较大,但在层状硅酸盐黏土、含云母和铁锰氧化物矿物的沉积物中降解速率较快。另外,有研究表明土壤中的有机质会吸附CL‑20,且被吸附的CL‑20不会发生氧化还原转化,进一步降低了土壤中CL‑20降解速率[109] 。尽管CL‑20存在自然降解作用,但Szecsody等[108] 认为CL‑20降解中间体可能不足以减轻其对环境的影响,因为到目前为止许多中间体化合物及其毒性仍然未知。5 总结与展望
炸药污染已成为世界上许多国家重要的环境问题。炸药在环境中的溶解、挥发、吸附、光解、水解、还原、微生物转化/降解、植物吸收/转化等行为,与土壤及炸药自身的物理化学性质密切相关,这些因素除了决定炸药在环境介质中的浓度和分布,还影响其生物可利用性、生物富集和生物毒性。我国拥有为数众多的军工企业和演习/训练场,场地土壤/地下水的炸药污染概莫能外,但目前开展该方面的研究工作还非常有限。在以后的研究中,应当深入探讨炸药及其他含能化合物的环境归趋,准确评估环境介质中含能化合物的生态和健康风险,为含能化合物污染场地的风险管控和修复治理奠定科学基础。为了更好地解决与炸药污染有关的环境问题,建议加强以下几方面的研究:
(1)全球沿海有大量被人为弃置的弹药,是海洋水域重要的化学污染源。大多数水下弹药源于20世纪初的世界大战,在海洋环境条件下不断腐蚀,对海洋生态环境造成极大的威胁。相对于陆地,对海洋中弹药的分布和行为更加缺乏了解,对相关的环境行为及污染程度更是知之甚少。当前海底技术的迅速发展解决了水下弹药位置识别的问题,如侧向扫描、多波束声纳、底部探测和磁力测定等方法都已成功用于绘制海底未爆弹药的分布。同时,水产养殖、风电场、电缆和油气管道等近海基础设施的建设也为探明海底弹药的分布提供了动力。随着沿海水域经济活动的持续增加,弹药外壳的腐蚀程度越来越严重,了解全球水下弹药污染的环境行为和污染程度,评估其生态风险更加迫切。
(2)炸药污染不仅包括含能有机物,往往还含有铅、汞和砷等重金属,这些重金属与含能有机物相互作用,彼此耦合构成的复合型污染,严重危害生态系统。目前关注污染场地单一含能化合物或重金属的研究较多,但对于含能化合物‑重金属复合污染的研究较少,未来需要关注这两种类型污染物之间的相互作用过程和环境归趋,从而更准确地判断炸药污染场地的生态和人体健康风险,提出更加合理且经济有效的修复和管理措施。
(3)相较于传统炸药,对新型炸药如呋咱系、叠氮类和氮杂环类炸药的研究较少,相关信息非常有限。虽然这些新型炸药可能比传统炸药的毒性低,但它们的溶解度更大(如NTO和NQ),且它们降解产物的毒性可能高于母体化合物(如DNP > DNAN)。因此在这些新型炸药被大规模使用之前,要探明它们在环境中的迁移转化过程和降解产物,评估新型含能化合物及其主要转化产物的毒性,预测可能引起的环境风险。
(4)环境介质中炸药的分布极不均匀,在较小的范围内呈现出数量级的变化。有关环境中代表性含能化合物的动力学和环境归趋已经进行了大量的研究,但对其转化产物的认识还不够深入,未来要关注母体化合物和产物之间的转化动力学过程及其对环境和受体的共同作用。此外,关于TNT、RDX和HMX对生态和人体健康的影响还需要继续深入研究,目前风险评估模型多是基于污染物100%可利用的假设,但是越来越多的研究证明污染物毒性效应在很大程度上受土壤性质、污染物的形态和污染年限的影响。一部分的污染物与土壤紧密结合,并不具有生物有效性,风险与总浓度之间并无绝对关系,而是与可以被受体吸收的那部分直接相关,即具有生物有效性的部分。未来应更多地关注污染物生物有效性在场地风险管理中的重要作用,促进炸药污染场地从基于污染物总浓度进行评估和修复向基于风险的环境管理决策方向转变。
(5)传统研究方法通常以污染源调查和污染物、代谢产物的浓度梯度分析作为环境行为推断的基础,难以确定降解过程中的电子受体和质量平衡关系,在多个污染源并存的情况下将增加源解析的难度。目前稳定同位素技术已在土壤和地下水污染诊断中得到了广泛的应用。单体同位素分析技术(Compound‑specific stable isotope analysis,简称CSIA)最早被用来研究TNT的微生物降解过程,利用CSIA技术不仅可以阐明炸药的具体降解过程,还能利用同位素分馏原理定量估算炸药的原位降解程度,甚至溯源污染羽中不同来源的炸药化合物。另外,也可以利用稳定同位素标记示踪法来研究含能材料的降解过程,如通
过13 C或15 N标记来研究含能化合物是否可以作为微生物的碳/氮源,从而发生降解反应。上述两种方法在未来有望成为深入研究炸药环境行为的关键技术。(责编:张 琪)
参考文献
- 1
覃光明, 葛忠学. 含能化合物合成反应与过程[M]. 北京: 化学工业出版社, 2011: 1-2.
QIN Guang‑ming, GE Zhong‑xue. Synthesis reaction and process of energetic compounds[M]. Beijing: Chemical Industry Press, 2011: 1-2.
- 2
张颖. 高能太根发射药中 RDX 迁移的研究[D]. 南京: 南京理工大学, 2004.
ZHANG Ying. Study on RDX migration in high‑energy TEGN gun propellant[D]. Nanjing: Nanjing University of Science and Technology, 2004.
- 3
Pichtel J. Distribution and fate of military explosives and propellants in soil: a review[J]. Applied and Environmental Soil Science,(Article ID617236), 2012. doi:10.1155/2012/617236.
- 4
Juhasz A L, Naidu R. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments[M]. Reviews of Environmental Contamination and Toxicology. Springer International Publishing, 2007: 163-215.
- 5
Rodgers J D, Bunce N J. Treatment methods for the remediation of nitroaromatic explosives[J]. Water Research, 2001, 35(9): 2101-2111.
- 6
Serrano‑Gonzalez M Y, Chandra R, Castillo‑Zacarias C, et al. Biotransformation and degradation of 2,4,6‑trinitrotoluene by microbial metabolism and their interaction[J]. Defence Technology, 2018, 14(2): 151-164.
- 7
Clausen J, Robb J, Curry D, et al. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA[J]. Environmental Pollution, 2004, 129(1): 13-21.
- 8
Hawari J. Biodegradation of RDX and HMX: from basic research to field application[M]. Biodegradation of Nitroaromatic Compounds Explosives. CRC Press, 2000: 277-310.
- 9
Symons Z C, Bruce N C. Bacterial pathways for degradation of nitroaromatics[J]. Natural Product Reports, 2006, 23(6): 845-850.
- 10
Claus H. Microbial degradation of 2,4,6‑trinitrotoluene in vitro and in natural environments[M]. Biological Remediation of Explosive Residues. Springer International Publishing, 2014: 15-38.
- 11
Martel R, Robertson T J, Doan M Q, et al. 2,4,6‑Trinitrotoluene in soil and groundwater under a waste lagoon at the former Explosives Factory Maribyrnong (EFM), Victoria, Australia[J]. Environmental Geology, 2008, 53(6): 1249-1259.
- 12
Newman B D, Hickmott D D, Gram P. Flow and high explosives transport in a semiarid mesa in New Mexico, USA[J]. Vadose Zone Journal, 2007, 6(4): 774-785.
- 13
Eisentraeger A, Reifferscheid G, Dardenne F, et al. Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis[J]. Environmental Toxicology and Chemistry, 2007,26(4): 634-646.
- 14
Jenkins T F, Pennington J C, Ranney T A, et al. Characterization of explosives contamination at military firing ranges[R]. ERDC‑TR‑01‑5, 2001.
- 15
Pennington J C, Jenkins T F, Appleman G, et al. Distribution and fate of energetics on DoD test and training ranges[R]. ERDC‑TR‑06‑13, 2006.
- 16
Jenkins T F, Ranney T A, Hewitt A D, et al. Representative sampling for energetic compounds at an antitank firing range[R]. ERDC/CRREL‑TR‑04‑7, 2004.
- 17
Hewitt A D, Bigl S R. Elution of energetic compounds from propellant and composition B residues[R]. ERDC/CRREL‑TR‑05‑13, 2005.
- 18
Pennington J C, Jenkins T F, Ampleman G, et al. Distribution and fate of energetics on DoD test and training ranges: interim report 3[R]. ERDC‑TR‑03‑2, 2003.
- 19
Brochu S, Diaz E, Thiboutot S, et al. Assessment of 100 years of military training in Canada: the case of Canadian Force Base Petawawa[R]. TR‑2008‑118, 2008.
- 20
Hewitt A D, Jenkins T F, Ramsey C A, et al. Estimating energetic residue loading on military artillery ranges: large decision units[R]. ERDC/CRREL‑TR‑05‑7, 2005.
- 21
Clark B, Boopathy R. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana[J]. Journal of Hazardous Materials, 2007, 143(3): 643-648.
- 22
Walsh M E, Collins C M, Jenkins T F, et al. Sampling for explosives‑residues at Fort Greely, Alaska[J]. Soil and Sediment Contamination, 2003, 12(5): 631-645.
- 23
Bordeleau G, Martel R, Ampleman G, et al. Environmental impacts of training activities at an air weapons range[J]. Journal of Environmental Quality, 2008, 37(2): 308-317.
- 24
Bae B, Park J. Distribution and migration characteristics of explosive compounds in soil at military shooting ranges in Gyeonggi province[J]. Journal of the Korean Geoenvironmental Society, 2014, 15(6): 17-29.
- 25
Jenkins T F, Leggett D C, Miyares P H, et al. Chemical signatures of TNT‑filled land mines[J]. Talanta, 2001, 54(3): 501-513.
- 26
Lotufo G R: Toxicity and bioaccumulation of munitions constituents in aquatic and terrestrial organisms[M]. Energetic Materials. Springer International Publishing, 2017: 445-479.
- 27
覃政活, 朱林平, 黄雪雁, 等. 某化工厂职业性三硝基甲苯白内障患病情况分析[J]. 工业卫生与职业病, 2013, 39(3): 179-180.
QIN Zheng‑huo, Zhu Lin‑ping, Huang Xue‑yan, et al. Analysis of the prevalence of occupational trinitrotoluene cataract in a chemical plant[J]. Industrial Health and Occupational Diseases, 2013, 39(3): 179-180.
- 28
Bannon D I, Williams L R: Wildlife toxicity assessment for 1,3,5‑trinitrohexahydro‑1,3,5‑triazine (RDX)[M]. Wildlife Toxicity Assessments for Chemicals of Military Concern. Elsevier, 2015: 53-86.
- 29
Mcmurry S, Jones L, Smith P, et al. Accumulation and effects of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine (HMX) exposure in the green anole (Anolis carolinensis)[J]. Ecotoxicology, 2012, 21(2): 304-314.
- 30
Ryu H, Han J K, Jung J W, et al. Human health risk assessment of explosives and heavy metals at a military gunnery range[J]. Environmental Geochemistry Health, 2007, 29(4): 259-269.
- 31
Sharma P, Mayes M A, Tang G. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils[J]. Chemosphere, 2013, 92(8): 993-1000.
- 32
Jenkins T, Walsh M, Thorne P, et al. Site characterization at the inland firing range impact area at Ft. Ord[R]. CRREL‑SR‑98‑9, 1998.
- 33
Shukla M K, Boddu V M, Steevens J A, et al. High explosives and propellants energetics: their dissolution and fate in soils[M]. Energetic Materials: From Cradle to Grave. Springer International Publishing, 2017: 373-401.
- 34
郝全龙, 谯华, 周从直, 等. 富里酸对TNT的吸附‑解吸行为[J]. 环境工程学报, 2016, 10(5): 2687-2692.
HAO Quan‑long, QIAO Hua, ZHOU Cong‑zhi, et al. Adsorption and desorption behaviors of TNT on fulvic acid[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2687-2692.
- 35
汪浩, 袁凤英, 邸玉静. 有机膨润土对 TNT 吸附性能及机理的研究[J]. 火工品, 2010, (2): 51-54.
WANG Hao, YUAN Feng‑ying, DI Yu‑jing. Study on the adsorption mechanism of organobentonite to TNT[J]. Initiators & Pyrotechnics, 2010, (2): 51-54.
- 36
Thorn K, Kennedy K. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose[J]. Environmental Science & Technology, 2002, 36(17): 3787-3796.
- 37
Sheremata T W, Thiboutot S, Ampleman G, et al. Fate of 2,4,6‑trinitrotoluene and its metabolites in natural and model soil systems[J]. Environmental Science & Technology, 1999, 33(22): 4002-4008.
- 38
Weissmahr K W, Haderlein S B, Schwarzenbach R P. Complex formation of soil minerals with nitroaromatic explosives and other π‑acceptors[J]. Soil Science Society of America Journal, 1998, 62(2): 369-378.
- 39
Tucker W A, Murphy G J, Arenberg E D. Adsorption of RDX to soil with low organic carbon: laboratory results, field observations, remedial implications[J]. Soil and Sediment Contamination, 2002, 11(6): 809-826.
- 40
Monteil‑Rivera F, Groom C, Hawari J. Sorption and degradation of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine in soil[J]. Environmental Science & Technology, 2003, 37(17): 3878-3884.
- 41
Glover D, Hoffsommer J. Photolysis of RDX. Identification and reactions of products[R]. NSWC TR‑79‑349, 1979.
- 42
Bordeleau G, Martel R, Ampleman G, et al. Photolysis of RDX and nitroglycerin in the context of military training ranges[J]. Chemosphere, 2013, 93(1): 14-19.
- 43
Kalderis D, Juhasz A L, Boopathy R, et al. Soils contaminated with explosives: environmental fate and evaluation of state‑of‑the‑art remediation processes (IUPAC technical report)[J]. Pure and Applied Chemistry, 2011, 83(7): 1407-1484.
- 44
Spanggord R, Mill T, Chou T, et al. Environmental fate studies on certain munition wastewater constituents, final report, phase 1: literature review[R]. CA LSU‑7934, 1980.
- 45
Im S, Jung J‑W, Jho E H, et al. Effect of soil conditions on natural attenuation of 2, 4, 6‑trinitrotoluene (TNT) by UV photolysis in soils at an active firing range in South Korea[J]. Journal of Soils and Sediments, 2015, 15(7): 1455-1462.
- 46
Prak D J L, Breuer J E, Rios E A, et al. Photolysis of 2,4,6‑trinitrotoluene in seawater and estuary water: impact of pH, temperature, salinity, and dissolved organic matter[J]. Marine Pollution Bulletin, 2017, 114(2): 977-986.
- 47
张文通, 陈勇, 薛明,等. 土壤中TNT的TiO2光催化降解动力学研究[J]. 环境化学, 2016, 35(4): 826-832.
ZHANG Wen‑tong, CHEN Yong, XUE Ming, et al. TiO2 photocatalytic degradation kinetics of TNT in soil[J]. Environmental Chemistry, 2016, 35(4): 826-832.
- 48
Bordeleau G, Martel R, Ampleman G, et al. The fate and transport of nitroglycerin in the unsaturated zone at active and legacy anti‑tank firing positions[J]. Journal of Contaminant Hydrology, 2012, 142: 11-21.
- 49
Bajpai R, Parekh D, Herrmann S, et al. A kinetic model of aqueous‑phase alkali hydrolysis of 2,4,6‑trinitrotoluene[J]. Journal of Hazardous Materials, 2004, 106(1): 55-66.
- 50
Oh S Y, Shin D S. Remediation of explosive‑contaminated soils: alkaline hydrolysis and subcritical water degradation[J]. Soil and Sediment Contamination: An International Journal, 2015, 24(2): 157-171.
- 51
Sviatenko L K, Gorb L, Hill F C, et al. In silico alkaline hydrolysis of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine: density functional theory investigation[J]. Environmental Science & Technology, 2016, 50(18): 10039-10046.
- 52
Niedźwiecka J B, Finneran K T. Combined biological and abiotic reactions with iron and Fe (III)‑reducing microorganisms for remediation of explosives and insensitive munitions (IM)[J]. Environmental Science: Water Research & Technology, 2015, 1(1): 34-39.
- 53
Oh S Y, Seo Y D, Ryu K S, et al. Redox and catalytic properties of biochar‑coated zero‑valent iron for the removal of nitro explosives and halogenated phenols[J]. Environmental Science: Processes & Impacts, 2017, 19(5): 711-719.
- 54
Riefler R G, Smets B F. Enzymatic reduction of 2,4,6‑trinitrotoluene and related nitroarenes: kinetics linked to one‑electron redox potentials[J]. Environmental Science & Technology, 2000, 34(18): 3900-3906.
- 55
魏威, 金若菲, 高冬婧,等. 大孔树脂对还原后TNT红水中苯胺类物质的吸附性能[J]. 环境工程学报, 2017, 11(4): 2273-2278.
WEI Wei, JIN Ruo‑fei, GAO Dong‑jing, et al. Adsorption of phenyl amines in reduced TNT red water by macroporous resin[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2273-2278.
- 56
黄斌, 顾丽鹏, 任东, 等. 可溶有机质介导硝基芳香化合物降解研究进展[J]. 化工进展, 2015, 34(3): 848-856.
HUANG Bin, Gu Li‑peng, REN Dong, et al. Research advances in dissolved organic matter mediated degradation of nitroaromatic compounds[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 848-856.
- 57
Price C B, Brannon J M, Hayes C A. Effect of redox potential and pH on TNT transformation in soil‑water slurries[J]. Journal of Environmental Engineering, 1997, 123(10): 988-992.
- 58
Ariyarathna T, Ballentine M, Vlahos P, et al. Tracing the cycling and fate of the munition, hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, 15N‑[RDX][J]. Science of the Total Environment, 2019, 647: 369-378.
- 59
Zhu S H, Reuther J, Liu J, et al. The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine (RDX) in Gordonia sp. strain KTR9[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 459-467.
- 60
Williams R E, Rathbone D A, Scrutton N S, et al. Biotransformation of explosives by the old yellow enzyme family of flavoproteins[J]. Applied and Environmental Microbiology, 2004, 70(6): 3566-3574.
- 61
Anasonye F, Winquist E, Räsänen M, et al. Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions[J]. International Biodeterioration & Biodegradation, 2015, 105: 7-12.
- 62
Madaj R, Kalinowska H, Sobiecka E. Nitroaromatic enzymatic biodegradation system in Phanerochaete chrysosporium[J]. Biotechnology and Food Science, 2018, 82(2): 113-1128.
- 63
Chatterjee S, Deb U, Datta S, et al. Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation[J].Chemosphere, 2017, 184: 438-451.
- 64
Crocker F H, Indest K J, Fredrickson H L. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL‑20[J]. Applied Microbiology and Biotechnology, 2006, 73(2): 274-290.
- 65
Wilson F P, Cupples A M. Microbial community characterization and functional gene quantification in RDX‑degrading microcosms derived from sediment and groundwater at two naval sites[J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7297-7309.
- 66
Sabir D K, Grosjean N, Rylott E L, et al. Investigating differences in the ability of XplA/B‑containing bacteria to degrade the explosive hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine(RDX)[J].FEMS Microbiology Letters, https://doi.org/10.1093/femsle/fnx144. 2017, 364(14).
- 67
Millerick K. Ex situ biodegradation of explosives using photosynthetic bacteria and biological granular activated carbon systems[D]. University of Illinois at Urbana‑Champaign, Champaign, 2014.
- 68
Singh R, Singh A: Biodegradation of military explosives RDX and HMX[M]. Microbial Degradation of Xenobiotics. Springer International Publishing, 2012: 235-261.
- 69
Yang Y, Wang X, Yin P, et al. Studies on three strains of Corynebacterium degrading cyclotrimethylene‑trinitroamine (RDX)[J]. Acta Microbiologica Sinica, 1983, 23:251-256.
- 70
Hawari J, Halasz A, Sheremata T, et al. Characterization of metabolites during biodegradation of hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine (RDX) with municipal anaerobic sludge[J]. Applied and Environmental Microbiology, 2000, 66(6): 2652-2657.
- 71
An C, Shi Y, He Y, et al. Biotransformation of RDX and HMX by anaerobic granular sludge with enriched sulfate and nitrate[J]. Water Environment Research, 2017, 89(5): 472-479.
- 72
Perumbakkam S, Craig A. Anaerobic transformation of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine (HMX) by ovine rumen microorganisms[J]. Research in Microbiology, 2012, 163(8): 567-575.
- 73
Nagar S, Shaw A K, Anand S, et al. Aerobic biodegradation of HMX by Planomicrobium flavidum[J]. 3 Biotech, 2018, 8(11): 455.
- 74
Hawari J, Beaudet S, Halasz A, et al. Microbial degradation of explosives: biotransformation versus mineralization[J]. Applied Microbiology and Biotechnology, 2000, 54(5): 605-618.
- 75
Jugnia L‑B, Beaumier D, Holdner J, et al. Enhancing the potential for in situ bioremediation of RDX contaminated soil from a former military demolition range[J]. Soil and Sediment Contamination: An International Journal, 2017, 26(7-8): 722-735.
- 76
Vasilyeva G K, Kreslavski V D, Oh B T, et al. Potential of activated carbon to decrease 2,4,6‑trinitrotoluene toxicity and accelerate soil decontamination[J]. Environmental Toxicology and Chemistry, 2001, 20(5): 965-971.
- 77
Das P, Sarkar D, Datta R. Kinetics of nitroreductase‑mediated phytotransformation of TNT in vetiver grass[J]. International Journal of Environmental Science and Technology, 2017, 14(1): 187-192.
- 78
Torralba‑Sanchez T L. Bioconcentration of munitions compounds in plants and worms: experiments and modeling[D]. University of Delaware, Newark, 2016.
- 79
Adamia G, Ghoghoberidze M, Graves D, et al. Absorption, distribution, and transformation of TNT in higher plants[J]. Ecotoxicology and Environmental Safety, 2006, 64(2): 136-145.
- 80
Brentner L B, Mukherji S T, Walsh S A, et al. Localization of hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine (RDX) and 2,4,6‑trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography[J]. Environmental Pollution, 2010, 158(2): 470-475.
- 81
Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild‑type plants using plant nanobionics[J]. Nature Materials, 2017, 16(2): 264.
- 82
Manley I Paul V. Plant functional trait and hyperspectral reflectance responses to Comp B exposure: efficacy of plants as landmine detectors[D]. Virginia Commonwealth University, Richmond, 2016.
- 83
Hooda L, Celin S M, Singh S. Phytoremediation of 2,4,6‑Trinitrotoluene (TNT) by Tagetes patula[J]. European Journal of Advances in Engineering and Technology, 2016, 3(3): 60-63.
- 84
Das P, Datta R, Makris K C, et al. Vetiver grass is capable of removing TNT from soil in the presence of urea[J]. Environmental Pollution, 2010, 158(5): 1980-1983.
- 85
Panz K, Miksch K. Phytoremediation of soil contaminated with explosive compounds[M]. Biological Remediation of Explosive Residues. Springer International Publishing, 2014: 235‑257.
- 86
Chen D, Liu Z L, Banwart W. Concentration‑dependent RDX uptake and remediation by crop plants[J]. Environmental Science and Pollution Research, 2011, 18(6): 908-917.
- 87
Groom C A, Halasz A, Paquet L, et al. Accumulation of HMX (octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine) in indigenous and agricultural plants grown in HMX‑contaminated anti‑tank firing‑range soil[J]. Environmental Science & Technology, 2002, 36(1): 112-118.
- 88
Zhang L, Rylott E L, Bruce N C, et al. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase[J]. Plant Molecular Biology, 2017, 95(1-2): 99-109.
- 89
Zhang L, Rylott E L, Bruce N C, et al. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT[J]. Planta, 2019, 249(4): 1007-1015.
- 90
Halasz A, Hawari J, Perreault N N. New insights into the photochemical degradation of the insensitive munition formulation IMX‑101 in water[J]. Environmental Science & Technology, 2018, 52(2): 589-596.
- 91
Hawari J, Monteil‑Rivera F, Perreault N, et al. Environmental fate of 2,4‑dinitroanisole (DNAN) and its reduced products[J]. Chemosphere, 2015, 119: 16-23.
- 92
Temple T, Ladyman M, Mai N, et al. Investigation into the environmental fate of the combined Insensitive High Explosive constituents 2,4‑dinitroanisole (DNAN), 1‑nitroguanidine (NQ) and nitrotriazolone (NTO) in soil[J]. Science of the Total Environment, 2018, 625: 1264-1271.
- 93
Taylor S, Dontsova K, Walsh M E, et al. Outdoor dissolution of detonation residues of three insensitive munitions (IM) formulations[J]. Chemosphere, 2015, 134: 250-256.
- 94
Mark N, Arthur J, Dontsova K, et al. Adsorption and attenuation behavior of 3‑nitro‑1, 2, 4‑triazol‑5‑one (NTO) in eleven soils[J]. Chemosphere, 2016, 144: 1249-1255.
- 95
Linker B R, Khatiwada R, Perdrial N, et al. Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces[J]. Environmental Chemistry, 2015, 12(1): 74-84.
- 96
Krzmarzick M J, Khatiwada R, Olivares C I, et al. Biotransformation and degradation of the insensitive munitions compound, 3‑nitro‑1,2,4‑triazol‑5‑one, by soil bacterial communities[J]. Environmental Science & Technology, 2015, 49(9): 5681-5688.
- 97
Madeira C L, Speet S A, Nieto C A, et al. Sequential anaerobic‑aerobic biodegradation of emerging insensitive munitions compound 3‑nitro‑1,2,4‑triazol‑5‑one (NTO)[J]. Chemosphere, 2017, 167: 478-484.
- 98
Stanley J K, Lotufo G R, Biedenbach J M, et al. Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles[J]. Environmental Toxicology and Chemistry, 2015, 34(4): 873-879.
- 99
Crouse L C, Lent E M, Leach G J. Oral toxicity of 3‑nitro‑1,2,4‑triazol‑5‑one in rats[J]. International Journal of Toxicology, 2015, 34(1): 55-66.
- 100
Haag W R, Spanggord R, Mill T, et al. Aquatic environmental fate of nitroguanidine[J]. Environmental Toxicology and Chemistry, 1990, 9(11): 1359-1367.
- 101
Richard T, Weidhaas J. Biodegradation of IMX‑101 explosive formulation constituents: 2, 4‑dinitroanisole (DNAN), 3‑nitro‑1,2,4‑triazol‑5‑one (NTO), and nitroguanidine[J]. Journal of Hazardous Materials, 2014, 280: 372-379.
- 102
Perreault N N, Halasz A, Manno D, et al. Aerobic mineralization of nitroguanidine by Variovorax strain VC1 isolated from soil[J]. Environmental Science & Technology, 2012, 46(11): 6035-6040.
- 103
Richard T, Weidhaas J. Dissolution, sorption, and phytoremediation of IMX‑101 explosive formulation constituents: 2,4‑dinitroanisole (DNAN), 3‑nitro‑1,2,4‑triazol‑5‑one (NTO), and nitroguanidine[J]. Journal of Hazardous Materials, 2014, 280: 561-569.
- 104
Panja S, Sarkar D, Datta R. Vetiver grass (Chrysopogon zizanioides) is capable of removing insensitive high explosives from munition industry wastewater[J]. Chemosphere, 2018, 209: 920-927.
- 105
Schroer H W, Li X, Lehmler H J, et al. Metabolism and photolysis of 2,4‑dinitroanisole in arabidopsis[J]. Environmental Science & Technology, 2017, 51(23): 13714-13722.
- 106
Balakrishnan V K, Halasz A, Hawari J. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL‑20: new insights into degradation pathways obtained by the observation of novel intermediates[J]. Environmental Science & Technology, 2003, 37(9): 1838-1843.
- 107
Koutsospyros A, Christodoulatos C, Panikov N, et al. Environmental relevance of CL‑20: preliminary findings[J]. Water, Air and Soil Pollution: Focus, 2004, 4(4‑5): 459-470.
- 108
Szecsody J E, Comfort S, Fredrickson H L, et al. In situ degradation and remediation of energetics TNT, RDX, HMX, and CL‑20 and a byproduct NDMA in the sub‑surface environment[M]. Biological Remediation of Explosive Residues. Springer International Publishing, 2014: 313-369.
- 109
Sviatenko L K, Gorb L, Shukla M K, et al. Adsorption of 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane (CL‑20) on a soil organic matter. A DFT M05 computational study[J]. Chemosphere, 2016, 148: 294-299.
- 110
Taylor S, Walsh M E, Becher J B, et al. Photo‑degradation of 2,4‑dinitroanisole (DNAN): an emerging munitions compound[J]. Chemosphere, 2017, 167: 193-203.
- 111
Mirecki J E, Porter B, Weiss Jr C A. Environmental transport and fate process descriptors for propellant compounds[R]. ERDC/EL‑TR‑06‑7, 2006.
- 112
Jenkins T F, Bartolini C, Ranney T A. Stability of CL‑20, TNAZ, HMX, RDX, NG, and PETN in moist, unsaturated soil[R]. ERDC/CRRELL‑TR‑03‑7, 2003.
- 113
Boddu V M, Abburi K, Maloney S W, et al. Thermophysical properties of an insensitive munitions compound, 2,4‑dinitroanisole[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1120-1125.
- 114
Toghiani R K, Toghiani H, Maloney S W, et al. Prediction of physicochemical properties of energetic materials[J]. Fluid Phase Equilibria, 2008, 264(1-2): 86-92.
- 115
Monteil‑Rivera F, Paquet L, Deschamps S, et al. Physico‑chemical measurements of CL‑20 for environmental applications: comparison with RDX and HMX[J]. Journal of Chromatography, 2004, 1025(1): 125-132.
- 116
Krzmarzick M J, Khatiwada R, Olivares C I, et al. Biotransformation and degradation of the insensitive munitions compound, 3‑nitro‑1,2,4‑triazol‑5‑one, by soil bacterial communities[J]. Environmental Science & Technology, 2015, 49(9): 5681-5688.
- 117
Le Campion L, Vandais A, Ouazzani J. Microbial remediation of NTO in aqueous industrial wastes[J]. FEMS Microbiology Letters, 1999, 176(1): 197-203.
- 118
Indest K J, Hancock D E, Crocker F H, et al. Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(7): 987-995.
- 119
Bhushan B, Paquet L, Spain J C, et al. Biotransformation of 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane (CL‑20) by denitrifying Pseudomonas sp. strain FA1[J]. Applied and Environmental Microbiology, 2003, 69(9): 5216-5221.
- 120
Mullins A B, Despain K E, Wallace S M, et al. Testicular effects of 3‑nitro‑1,2,4‑triazol‑5‑one (NTO) in mice when exposed orally[J]. Toxicology Mechanisms and Methods, 2016, 26(2): 97-103.
- 121
Burton D T, Turley S D, Peters G T. Toxicity of nitroguanidine, nitroglycerin, hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine (RDX), and 2,4,6‑trinitrotoluene (TNT) to selected freshwater aquatic organisms[R]. WREC‑93‑83, 1993.
- 122
Robidoux P Y, Sunahara G I, Savard K, et al. Acute and chronic toxicity of the new explosive CL‑20 to the earthworm (Eisenia andrei) exposed to amended natural soils[J]. Environmental Toxicology and Chemistry, 2004, 23(4): 1026-1034.
- 123
Dodard S G, Sunahara G I, Kuperman R G, et al. Survival and reproduction of enchytraeid worms, Oligochaeta, in different soil types amended with energetic cyclic nitramines[J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2579-2587.
- 1
摘要
以三硝基甲苯(TNT)、环三亚甲基三硝胺(RDX)和环四亚甲基四硝胺(HMX)为代表的含能化合物具有较强的毒性,进入环境后会在土壤‑水体‑生物体系中发生复杂的再分配和迁移转化,并危害生态系统和人类健康。在总结国内外场地含能化合物污染现状的基础上,综述了土壤中TNT、RDX和HMX三种炸药溶解/沉淀、挥发、吸附/解吸、光解、水解、还原、微生物降解以及被植物吸收和转化等环境行为的研究进展,分析了炸药和土壤的物理化学性质以及场地环境条件对这些复杂环境行为的影响,并简要介绍了六硝基六氮杂异伍兹烷(CL‑20)等新型炸药环境行为的最新研究成果。综合国内外研究现状,建议进一步加强对海洋弹药污染以及含能化合物与重金属复合污染效应的研究,并注重应用单体同位素等最新技术研究炸药的环境行为和归趋。
Abstract
Energetic compounds represented by trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX) and cyclotetramethylene tetranitramine (HMX) are highly toxic. When released into the environment, these energetic compounds will undergo complex redistribution, migration and transformation in soil‑water‑organism system, and pose hazards to ecosystems and human health. According to the pollution status of energetic compounds in domestic and foreign sites, the environmental behaviors of TNT, RDX and HMX in soil such as dissolution/precipitation, volatilization, adsorption/desorption, photolysis, hydrolysis, reduction, microbial degradation and plant uptake and transformation were reviewed. The physical and chemical properties of explosives and soils, and the effect of on‑site environmental conditions on these complex environmental behaviors were also analyzed. The latest research on the environmental behavior of hexanitrohexaazaisowurtzitane (CL‑20) and other novel explosives was briefly introduced. Based on the current research status, it is recommended that more attention should be paid to marine environmental ammunition pollution and combined pollution between energetic compounds and heavy metals in the future, and more attention should be paid to the application of the advanced technologies, such as compound‑specific stable isotope analysis, to the environmental behavior and fate of explosives.