CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
TranT D, PagoriaP F, HoffmanD M, et al. Small‑scale safety and performance cheracterization of new plastic bonded explosives containing LLM‑105[R]. Lawrence Livermore National Laboratory, Livermore, CA94551.
参考文献 2
TarverC M, UrtiewP A, TranT D. Sensitivity of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide[J]. Journal of Energetic Materials, 2005, 23(3): 183-203.
参考文献 3
田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考[J]. 含能材料, 2016, 24(12): 1132‑1135.
TIANYong, HANYong, YANGGuang‑cheng. Some understanding and thinking of insensitive high explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12): 1132-1135.
参考文献 4
MaH X, SongJ R, ZhaoF Q, et al. Crystal Structure, Safety performance and density‑functional theoretical investigation of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105)[J]. Chinese Journal of Chemistry, 2008, 26(11): 1997-2002.
参考文献 5
杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.
YANGZhi‑jian, LIUXiao‑bo, HEGuan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1): 2-11.
参考文献 6
LiuZ W, XieH M, LiK X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6): 627-635.
参考文献 7
JinA I, Jian‑JunL I, Jian‑BoC, et al. Kinetics of thermal decomposition reaction of LLM‑105 based PBX explosives[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 37-41.
参考文献 8
AlexanderE G, FowziaZ, JenniferM, et al. FY2014 LX‑21 aging and compatibiligy[R]. Lawrence Livermore National Laboratory, CA, 2014, 94550.
参考文献 9
WeeseR K, BurnhamA K, TurnerH C, et al. Physical characterization of RX‑55‑AE‑5 a formulation of97.5% 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105) and 2.5% Viton A[R]. Lawrence Livermore National Laboratory, CA, 2005. UCRL‑CONF‑214557.
参考文献 10
WangH J, LiuS S. Study on coating and technological conditions of LLM‑105[J]. Advanced Materials Research, 2011, 328-330: 1161-1166.
参考文献 11
XiaoJ, HuangH, LiJ, et al. Computation of interface interactions and mechanical properties of HMX‑based PBX with Estane 5703 from atomic simulation[J]. Journal of Materials Science, 2008, 43(17): 5685-5691.
参考文献 12
WangH J. The choice and application of binder in new energetic matierals[J]. Applied Mechanics & Materials, 2013, 330: 3-7.
参考文献 13
YuY, ChenS, LiX, et al. Molecular dynamics simulations for 5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50) and its PBXs[J]. RSC Advances, 2016, 6(24): 20034-20041.
参考文献 14
陶俊, 王晓峰, 赵省向, 等. ε‑CL‑20/含能黏结剂复合体系结合能及力学性能的模拟[J]. 含能材料, 2015, 23(4): 315-322.
TAOJun, WANGXiao‑feng, ZHAOSheng‑xiang, et al. Simulation and calculation for binding energy and mechanical properties of ε‑CL‑20/energetic polymer binder mixed system[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(4): 315-322.
参考文献 15
HooksD E, RamosK J, BolmeC A, et al. Elasticity of crystalline molecular explosives[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3): 333-350.
参考文献 16
JunyingW, ShaohuaJ, ShusenC, et al. Molecular dynamic simulations for FOX‑7 and FOX‑7 based PBXs[J]. Journal of Molecular Modeling, 2018, 24(7): 145-153.
参考文献 17
WangX J, XiaoJ J. Molecular dynamics simulation studies of the ε‑CL‑20/HMX co‑crystal‑based PBXs with HTPB[J]. Structural Chemistry, 2017, 28(6): 1645-1651.
目录 contents

    摘要

    高聚物与2,6‑二氨基‑3,5‑二硝基吡嗪‑1‑氧化物(LLM‑105)的界面相互作用直接影响LLM‑105的表面包覆效果,在原子分子层次的作用模式和强度分析,有助于揭示界面相互作用的微观机制。采用分子动力学(MD)方法,模拟了氟聚物(F2311F2313F2314F2462)和聚氨酯(Estane 5703)与LLM‑105不同晶面的界面相互作用,分析了高聚物与LLM‑105晶面的作用模式和强度,初步提出了高聚物黏结剂的筛选原则,并采用该原则筛选了一个新的高聚物——硝化细菌纤维素(NBC),同时模拟了其与LLM‑105晶面的相互作用。采用静态弹性常数分析法讨论了6种高聚物对LLM‑105力学性能的影响。模拟结果表明,所选高聚物与LLM‑105各晶面的结合能均为正值,结合强度从大到小的顺序为LLM‑105/NBC≈LLM‑105/Estane 5703>LLM‑105/F2313≈LLM‑105/F2314≈LLM‑105/F2311 > LLM‑105/F2462。结合能最大的(1 0 1)晶面,在晶体中的显露面最小(0.39%),而结合能小的(0 2 0)和(0 1 1)晶面,其显露面却占了很大比例(二者之和>60%)。在界面相互作用中,范德华力均占据优势地位,远远超过静电相互作用。能与LLM‑105发生强相互作用的高聚物应能同时提供氢键良给体和良受体。通过对有效各向同性模量和柯西压值的分析得到,加入NBC、Estane 5703和F2462对LLM‑105力学性能有所改善,F2311F2313未有改善,而F2314则有所下降。

    Abstract

    Interfacial interactions of polymers with 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105) directly influence the surface boating effects of LLM‑105. The analyses of interactional models and strength at the atomic and molecular level will help to reveal the micro‑mechanism of the interfacial interactions. In this work, molecular dynamics (MD) method was used to simulate the interfacial interactions of fluoropolymers (F2311, F2313, F2314, F2462) and polyurethane (Estane 5703) with LLM‑105 at different crystal faces. Interactional mode and strength between the polymers and LLM‑105 at different crystal faces were analyzed, and the screening principle of the polymer binders was preliminarily proposed. According to the principle, nitrifying bacterial cellulose (NBC, a new polymer) was selected and the interactions between NBC and LLM‑105 were simulated. The effect of six polymers on the mechanical properties of LLM‑105 was discussed using static elastic constant analysis. The simulation results show that the bonding energies of all polymers with LLM‑105 at various crystal faces are positive and the increasing order of bonding strength is LLM‑105/NBC≈LLM‑105/Estane 5703>LLM‑105/F2313≈LLM‑105/F2314≈LLM‑105/F2311>LLM‑105/F2462. The (1 0 1) crystal face with the largest binding energy has the smallest exposed surface in the crystal(0.39%), while the(0 2 0) and (0 1 1) crystal faces with smaller binding energies have the larger exposed surface (>60% in total). The Van der Waals force is dominant in the interfacial interactions and is much higher than the electrostatic interactions. The polymers possessing strong interactions with LLM‑105 simultaneously have good hydrogen‑bonding donors and acceptors. The effective isotropic modulus and the Cauchy pressure values show that NBC, Estane 5703, and F2462 can slightly improve, F2311 and F2313 has no influence, and F2314 reduce the mechanical properties of LLM‑105.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018349/alternativeImage/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-F003.jpg

    The interfacial interactions and mechanical properties for LLM‑105 and six polymers were investigated through MD simulations. Simulated results can give some explanations for the poor coating effects of polymers to LLM‑105.

  • 1 引 言

    2,6‑二氨基‑3,5‑二硝基吡嗪‑1‑氧化物(LLM‑105)由美国劳伦斯利弗莫尔国家实验室于1995年首次合成,晶体密度高(1.913 g·cm-3),安全性能好(对撞击、火花、摩擦和冲击波钝感),耐热性能优于多数高能炸药,其DSC放热峰值(354 ℃)与1,3,5‑三氨基‑2,4,6‑三硝基苯(TATB)几乎一致,做功能力介于TATB和环四亚甲基四硝胺(HMX)之间,能量比TATB高15%,是HMX的81%[1,2]。基于此,LLM‑105基复合炸药有望成为一种性能优越的钝感高能炸药(IHE),受到各国含能材料研究者的高度关[3,4]

    研究表明,高聚物黏结炸药包覆层的包覆度、均匀性和致密度会严重影响炸药的感度、力学性能和加工成型[5,6]。研究发现LLM‑105表面黏结性能差,包覆效果不[7,8],这无疑会对LLM‑105的力学性能、成型性能、安全性能等产生影响。因此,选择合适的高分子黏结剂对制备性能优越的LLM‑105基高聚物黏结炸药至关重要。

    高聚物黏结炸药的力学性能主要取决于主体炸药本身性[9]、黏结剂性质和界面相互作[10,11,12]。Yu[13]等人采用分子动力学方法模拟了F2311F2641、聚乙二醇(PEG)和乙烯—乙酸乙烯酯共聚物(EVA)对5,5'‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)的力学性能、可塑性和结合能的影响,表明添加少量高聚物黏结剂可有效提升纯TKX‑50的力学性能和可塑性。陶[14]等人采用分子动力学方法模拟了不同软硬段(3‑叠氮甲基‑3‑甲基氧丁环(AMMO):3,3‑二叠氮甲基氧丁环(BAMO))比例的含能黏结剂与六硝基六氮杂异戊兹烷(CL‑20)的结合能以及作用方式,发现,含能黏结剂可有效地降低ε‑CL‑20的刚性,增强延展性。高聚物黏结剂对LLM‑105的包覆效果与二者之间的界面相互作用关联度很大,而这方面的研究尚未见报道。因此,本研究以LLM‑105为主体炸药,选择5种高聚物黏结剂(F2311F2313F2314F2462、Estane 5703),模拟这些高聚物与LLM‑105不同晶面的界面相互作用,分析影响界面结合强度的主要因素,初步建立LLM‑105基配方中高聚物的筛选原则,并按该原则筛选得到一种新的聚合物——硝化细菌纤维素(NBC),模拟分析其与LLM‑105各个晶面的相互作用,以验证筛选原则。此外,还模拟了以上6种高聚物对LLM‑105力学性能的影响。研究结果可为LLM‑105基配方中高聚物的筛选以及解决其表面包覆问题提供依据。

  • 2 计算方法

  • 2.1 真空中LLM‑105晶体形貌预测方法

    首先基于剑桥有机晶体数据库(CCDC)获取LLM‑105的晶体结构数据(CCDC编号为YEKQAG),构建其晶胞模型。利用Materials Studio材料模拟平台中的Forcite模块,对其进行结构优化。设置如下优化参数:Compass力场,“Fine”精度(能量收敛值4.186×10‑1 J·mol-1),“Smart”方法,优化晶胞参数。采用Morphology模块中的附着能(AE)模型,对LLM‑105晶体的真空形貌进行预测。

  • 2.2 LLM‑105与聚合物界面模型构建

    研究不同高聚物与LLM‑105各个晶面的界面作用,选择的高聚物包括系列氟聚物(F2311F2313F2314F2462)、聚氨酯Estane 5703以及后续根据聚合物筛选原则选择的NBC,其结构式见图1,端基以H原子饱和。

    图1
                            高聚物黏结剂的分子结构式[11]

    图1 高聚物黏结剂的分子结构[11]

    Fig.1 Molecular structures of polymer binders

    高聚物与LLM‑105晶面相互作用模型的建立以F2311为例加以说明(见图2)。首先需根据聚合物的类型(均聚物、嵌段共聚物、无规共聚物)和聚合度构建聚合物链段,然后依据LLM‑105基配方中高聚物的大致含量(质量比约5%)来计算所需链段数(5条),再按照高聚物的实验密度来构建聚合物层。将聚合物层与不同晶面组合即可得到双层界面模型,其中真空层的厚度为40 Å。

    图2
                            F2311与LLM‑105界面作用的模型构建

    图2 F2311与LLM‑105界面作用的模型构建

    Fig.2 Interfacial interaction model construction between F2311 and LLM‑105

  • 2.3 分子动力学(MD)模拟方法

    首选对所构建的界面模型进行分子力学优化,优化参数设置同2.1。基于优化后的界面模型进行正则系综(NVT)下的MD模拟。模拟参数设置:控温方法Anderson,积分步长1.0 fs,总模拟时间为200 ps,Ewald方法计算范德华和静电相互作用,每隔1000步输出一帧,最后一帧用来分析性能。为了模拟力学性能,基于NVT模拟的最后一帧,进行等温等压系综(NPT)下的MD模拟。除采用Parrinello方法控制压力外,其它参数同NVT模拟。

  • 3 结果与讨论

  • 3.1 LLM‑105在真空中的晶体形貌

    LLM‑105的空间群为P21/n,单斜晶系。采用Compass力场优化前后的晶胞参数和相对误差列于表1。从表1可以看出,最大误差为b轴的7.7%。究其原因可能是由于b轴方向主要为层与层之间的范德华力,对这种非常弱的分子间相互作用的模拟,要达到较高的准确度难度更大。总的来说,模拟误差在可接受的范围之内。

    表1 模拟前后的晶胞参数及相对误差

    Table 1 Cell parameters and relative error before and after simulation

    cell parametersa / Åb / Åc / Åβ / (°)
    exp.5.71615.8508.414101.041
    calc.6.09714.6298.384105.863
    Er/%6.77.70.330.05

    采用Morphology模块中的AE模型,预测得到LLM‑105在真空中的晶体形貌见图3,各个晶面的参数见表2。模拟结果表明,LLM‑105的晶体形貌由6个独立晶面组成,分别为(0 2 0)、(0 1 1)、(1 0 1¯)、(1 1 0)、(1 1 1¯)、(1 0 1),其中最大显露面为(0 1 1),占总显露面的35.72%,其次是(0 2 0)(28.60%)和(1 1 0)(20.07%)。显露面最小的是(1 0 1)面,只占了0.39%。不同晶面的表面化学和拓扑结构也各不相同(见图4)。从图4可以看出,各个晶面的显露基团种类、密度、暴露程度以及晶面的台阶、扭折结构均不相同。由于各个晶面在化学组成和结构上的差异,导致其附着能Eatt也各不相同。比如晶面面积最小的晶面(0 2 0),其附着能Eatt的绝对值为43.45 kJ·mol-1,其中静电能为14.78 kJ·mol-1,范德华力 28.67 kJ·mol-1,该绝对值远小于晶面面积最大的(1 0 1)面,其值为78.12 kJ·mol-1。同时表2中也列出了各个晶面的溶剂可接触面积,该值定量反映了晶面的拓扑结构。可以看出,晶面面积最小的(0 2 0)面,其溶剂可接触面积也最小,仅57.71 Å2,而(1 0 1)面拥有最大的溶剂可接触面积,267.88 Å2

    图3
                            LLM‑105在真空中的晶体形貌

    图3 LLM‑105在真空中的晶体形貌

    Fig.3 Crystal morphology of LLM‑105 in vacuum

    图4
                            LLM‑105各个晶面的表面化学和拓扑结构(括号内数字为晶面扩大倍数)

    图4 LLM‑105各个晶面的表面化学和拓扑结构(括号内数字为晶面扩大倍数)

    Fig.4 Surface chemistry and topological structures of LLM‑105 at different crystal faces (the number in bracket denotes the expansion multiples)

    表2 真空中LLM‑105各个晶面的性质参数

    Table 2 Property parameters at each crystal surface of LLM‑105 in vacuum

    crystal

    surface

    mult.1)

    total facet

    area2) / %

    Su3)nit

    / Å2

    Eatt

    / kJ·mol-1

    S4)acce

    / Å2

    (0 2 0)228.6049.17-43.4557.71
    (0 1 1)435.72101.85-53.34135.48
    (1 0 1¯)210.21130.45-64.71171.12
    (1 1 0)420.07132.14-65.58244.38
    (1 1 1¯)45.01139.41-69.35224.32
    (1 0 1)20.39170.23-78.12267.88

    NOTE: 1) Multiplicity of crystal faces; 2) The exposed area of each crystal face as a percentage of the total exposed area; 3)Area of crystal faces in a unit cell; 4) Solvent accessible area of crystal faces in a unit cell.

  • 3.2 高聚物粘结剂与LLM‑105不同晶面的结合能

    基于NVT模拟的最终平衡结构计算6种高聚物与LLM‑105不同晶面相互作用能(Eint),计算公式如(1)式:

    Ebind=-Eint=-(Etot-Epoly-ELLM105)
    (1)

    式中,Etot为体系总能量;ELLM‑105为去掉高聚物链后LLM‑105晶面的单点能;Epoly为去掉LLM‑105晶面后高聚物的单点能,单位均为kJ·mol-1。按照(1)式分别求得每组高聚物与不同晶面的相互作用能,并按照晶面扩展倍数进行归一化,结果列于表3

    表3 6种高聚物与LLM‑105不同晶面的结合能

    Table 3 Binding energies between six polymers and LLM‑105 at different crystal faceskJ·mol-1

    interfacial modelbinding energy(0 1 1)(1 0 1)(1 1 0)(0 2 0)(1 1 1¯)(1 0 1¯)
    LLM‑105/Estane 5703Etotal108.133203.063150.29454.154168.265142.207
    Evan74.477145.970106.37944.861112.85994.068
    Eele33.65557.09343.9159.29355.40648.139
    LLM‑105/F2314Etotal83.025150.629116.80636.431136.974100.112
    Evan69.010115.433108.27931.738109.23884.373
    Eele14.014735.1928.5234.69327.73615.744
    LLM‑105/F2313Etotal75.921160.550116.58444.430136.46497.312
    Evan66.524134.111102.12639.855111.23080.480
    Eele9.39826.43514.4634.57525.23316.832
    LLM‑105/F2462Etotal76.641151.383136.51444.506128.740107.099
    Evan53.083100.98395.94733.68192.59475.428
    Eele23.55950.39940.566510.82936.14231.675
    LLM‑105/F2311Etotal82.527135.551112.63747.808132.479116.496
    Evan66.670113.993103.44038.306109.76588.609
    Eele15.85721.5589.1979.50222.71327.887
    LLM‑105/NBCEtotal107.848187.750150.15661.806156.565135.513
    Evan78.701122.507109.43547.360110.70398.739
    Eele29.14765.24740.72614.44645.85836.774

    NOTE: Evan is the van der Waals interaction,Eele is the electrostatic interaction, Etotal is the total interaction.

    从表3可以看出,6种高聚物与LLM‑105各晶面结合强度不同,且不同高聚物与不同晶面表现出了较大的差异性。首先对同一高聚物,不同晶面的结合能有的差异很大。比如Estane 5703,其与(1 0 1)面的结合能为203.063 kJ·mol-1,但与(0 2 0)晶面却只有54.154 kJ·mol-1。不同晶面结合能从大到小排序见表4。虽然不同高聚物的结合能排序有差异,但仍有共同之处。比如所有高聚物和(1 0 1)晶面的结合能都是最高的。除F2462外,其它高聚物与(1 1 1¯)面的结合能仅次于(1 0 1)面。即使是F2462,(1 1 1¯)排到了第三位,但也仅比(1 1 0)面差7.774 kJ·mol-1。在所选5种高聚物中,结合能最低的晶面均为(0 2 0)面,其次为(0 1 1)。结合能最大的(1 0 1)和(1 1 1¯)面,在真空的显露面最小,分别占总显露面的0.39%和5.01%。而结合能低的两个晶面(0 2 0)和(0 1 1),却在整个显露面中占据了很大的比例,二者之和均超过了50%(见表2)。其次,在界面相互作用中,范德华力均占据优势地位,远远超过了静电相互作用。比如F2311与(1 0 1)面的结合能为135.551 kJ·mol-1,其中范德华力为113.993 kJ·mol-1,占了约90%。以上分析可以初步说明,5种高聚物虽都能与LLM‑105相结合,但结合品质不高,即相互作用力主要是弱的范德华力。此外,结合能大的晶面在结晶形貌中所占比例较小,而结合能小的晶面却占据了很大的比例。这些模拟结果可为实验上LLM‑105与高聚物黏结性差,包覆效果不好提供一定的解释。

    表4 高聚物与LLM‑105不同晶面结合能排序

    Table 4 Binding energy order of polymers with LLM‑105 at different crystal faces

    PolymersCompatibility order of polymers and crystal faces
    Estane 5703(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
    F2311(1 0 1)>(1 1 1¯)>(1 01¯)>(1 1 0)>(0 1 1)>(0 2 0)
    F2313(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
    F2314(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
    F2462(1 0 1)>(1 1 0)>(1 11¯)>(1 0 1¯)>(0 1 1)>(0 2 0)
    NBC(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)

    为了更好地比较不同高聚物与LLM‑105晶面相互作用的强弱趋势,绘制了图5的柱状图。综合分析表3数据和图5的直观对比,得出结合强度从大到小的大致顺序:LLM‑105/Estane5703>LLM‑105/F2313≈LLM‑105/F2314≈LLM‑105/F2311>LLM‑105/F2462

    html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image007.png

    a. total binding energy

    html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image008.png

    b. Van der Waals binding energy

    html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image009.png

    c. electrostatic binding energy

    图5 高聚物与LLM‑105晶面相互作用强弱对比

    Fig.5 The trend of interactions between polymers and LLM‑105 at different crystal faces

    结合能的差异也可从高聚物和晶面构成的界面结构得到一定程度的解释。从图4可知,LLM‑105晶面上显露的基团为─NH2、─NO2和─N→O基团,既有氢键的良受体,也有氢键的良给体。Estane 5703具有的基团为─COONH─和─COO─,不但可提供氢键给体,也可提供氢键受体,能显著增强与LLM‑105晶面的氢键作用。对三个系列氟聚物F2311F2313F2314,除氢键受体F和Cl外,氢键给体则是非常弱的C─H。而F2462氟聚物,氢键受体全部为F,给体同样为C─H。通过对界面结构的分析发现,四个氟聚物(F2311F2313F2314F2462)均只提供了氢键受体(F和Cl),没能提供氢键给体。而Estane 5703则既提供了氢键给体也提供了氢键受体,形成的氢键数目明显大于氟聚物,这也是Estane 5703与LLM‑105各个晶面的相互作用均大于四个氟聚物的原因。当然,除了高聚物的化学组成(基团)之外,和晶面作用时的空间位阻也会影响相互作用的强弱。因此,在选择LLM‑105的高聚物时,需考虑基团和空间结构两方面的因素,其候选物最好同时具有─OH、─COOH、─NH和─COO─等氢键良给体和良受体基团。基于该原则选择了一个新的聚合物,即硝化细菌纤维素(NBC),为方便起见其分子结构式也一并显示在图1中。采用相同模拟方法计算得到其和LLM‑105各个晶面的相互作用(见表3和图5)。对模拟结果的综合分析表明,NBC和LLM‑105晶面的相互作用模式和强度与Estane 5703基本相当,这也初步证实了该选择原则的合理性。

  • 3.3 力学性能

    弹性力学性能的主要参量包括弹性系数、有效各向同性模量和泊松比。广义胡克定[15,16]为:

    σi=Cijεj
    (2)

    其中弹性系数Cij反映应力‑应变(σ‑ε)关系。即Cij越大,产生相同的应变时,需要承受更大的应力。模量则是评价材料刚性的指标,是材料抵抗弹性形变能力的度量。塑性和断裂性质与模量是相关联的,剪切模量(G)值越大,材料的硬度和屈服强度越高,二者是材料抵抗塑性形变能力的度量;体积模量(K)值越大则表明材料断裂强度越大。体积模量与剪切模量的比值(K/G)用于衡量材料的延展性,K/G值越大材料延展性越好。Cauchy压(C12C44)反映材料的脆性程度,Cauchy压为负值,材料表现脆性,负值越小,脆性越强。反之Cauchy压为正值时,材料表现韧性[17]

    对平衡状态下NPT系综MD模拟数据进行静态弹性力学性能分析,得到LLM‑105和高聚物界面模型的弹性系数Cij、体模量G、剪切模量K及Cauchy压(C12C44)。根据各向同性材料之间的相关系:

    E=2G(1+v)=3K(12v)
    (3)

    可求得其拉伸模量E和泊松比v,计算结果见表4。对表4的分析表明,加入聚氨酯Estane 5703后,除(0 1 1)晶面外,其余晶面的EKG值均比纯组分的值小,刚性减弱。(0 1 1)晶面的KG值与纯组分相比,变化较小。每个晶面的泊松比vK/G的值较纯组分LLM‑105大,表明体系的伸长率增大,塑性和延展性变好。柯西压值增大,且大部分晶面为正值,即添加Estane 5703后,炸药的韧性变好。可见,加入Estane 5703后LLM‑105的力学性能有所改善。

    加入NBC后,除(1 0 1)面之外,大部分晶面的E、KG值比纯组分的值小,刚性降低。泊松比vK/G的值较纯组分LLM‑105增大,表明体系的伸长率增大,塑性和延展性较好。(1 0 1)面的柯西压值变化最大,从纯组分的15.3646变为3.5461。综合来说,韧性稍有改善。

    表5 纯LLM‑105及其与6种高聚物形成的界面模型的力学性能

    Table 5 Mechanical properties of pure LLM‑105 and interface models of LLM‑105 with six polymers

    (0 1 1)(1 1 1¯)(0 2 0)(1 0 1)(1 1 0)(1 0 1¯)
    LLM‑105E1.64263.99005.302118.29882.762120.7599
    G0.78331.79753.05628.59741.176111.736
    K0.60641.70461.3976.99821.41325.621
    V0.04850.1099-0.13250.06420.1743-0.1155
    K/G0.77420.94830.45710.81391.20160.4789
    C12C44-0.1506-1.41760.3381-15.3646-1.50584.4155
    LLM‑105/Estane 5703E4.15190.3803-3.06741.9994-6.25510.0238
    G1.68870.1398-0.68260.694-1.21863.7014
    K2.55630.45440.68455.60170.977511.4471
    V0.22930.36051.24690.44051.56650.3541
    K/G1.51383.2504-1.0038.0716-0.80223.0926
    C12‑C443.79330.79281.505212.7914-0.35911.0655
    LLM‑105/F2314E5.44152.90720.38531.07410.62604.6395
    G3.44342.70730.21180.38760.23011.9590
    K1.27760.50310.10881.56450.74612.4481
    V-0.2098-0.4631-0.09030.38560.36020.1841
    K/G0.37100.18580.51374.03643.24251.2497
    C12‑C44-8.4966-5.2206-0.0371.28370.0366-6.0153
    LLM‑105/F2313E2.82944.5258-3.27370.058752.40761.3772
    G1.10962.2604-1.28950.3631-3.07180.5168
    K2.09571.5119-2.36590.00690.21211.3698
    V0.27490.00110.2694-0.9191-1.39190.3324
    K/G1.88870.66891.83470.0190-0.06902.6505
    C12‑C444.0412‑0.92160.5807-0.4997-0.5039-4.7798
    LLM‑105/F2462E1.32543.86653.21850.97770.72940.1716
    G0.7858‑5.93240.95070.3909‑3.4812-0.1594
    K0.54371.20181.71970.45130.23760.0511
    V0.21890.6086-0.06420.083160.53490.6795
    K/G0.6919‑0.20251.80891.1545‑0.0683-0.3205
    C12‑C441.67214.6924‑0.0598-0.58652.01570.0625
    LLM‑105/F2311E-2.4549-0.67484.9536-1.69912.9049-0.2891
    G-0.8708-0.21783.0349-0.37061.2093-0.0881
    K-4.5232.2831.20720.35741.61950.3423
    V0.40950.5493‑0.18381.29230.20110.6408
    K/G5.1941-10.48210.3978-0.96441.3392-3.8853
    C12‑C44-8.5564.7386‑5.54211.3973-0.70660.4742
    LLM‑105/NBCE1.25861.35693.20699.064413.79382.1912
    G0.46480.48961.50193.62015.27120.7833
    K1.43561.98021.23616.090611.99973.6051
    V0.35390.38580.06760.25190.30840.3987
    K/G3.08864.04450.82301.68242.27654.6025
    C12‑C44-3.11361.5207-0.1996-3.5461-2.73491.7746

    NOTE: E is tensile modulus. G is shear modulus.K is bulk modulus.C12‑C44 is Cauchy. The units of E, G, K and C12‑C44 are GPa. v is Poissom′s ratio. K/G is the ratio of bulk modulus to shear modulus.

    加入F2314氟聚物后,每个晶面的弹性系数大多有所减小,且多数晶面的EKG值均比纯组分LLM‑105小,表明刚性减弱。除了(0 1 1)和(1 1 1¯)晶面,其余晶面的泊松比vK/G值比纯组分大,因此体系的伸长率增大,塑性和延展性增强。由于(0 1 1)和(1 1 1¯)晶面在晶体中的显露面大(占整个晶体显露面的40.64%),那么这两个面对整体力学性能的影响较其它晶面显著,其vK/G值的降低将导致塑性和延展性变差。

    加入F2313氟聚物后,多个晶面的弹性系数及EKG值较纯组分均有所减小,表明刚性减弱。但显露面最大的(0 1 1)晶面,其弹性系数EKG值均比纯组分大,刚性增强。(0 2 0)、(0 1 1)、(1 0 1¯)三个晶面的泊松比vK/G和柯西压值比纯组分大,表明其伸长率、延展性和韧性增强。综上,LLM‑105与F2313形成的PBX其力学性能未得到明显改善。

    加入F2311氟聚物后,多数晶面的EKG值均比纯组分小,刚性减弱。泊松比vK/G值较纯组分大,体系的伸长率增大,塑性和延展性增强,其中变化最明显的是(1 0 1)和(1 0 1¯)晶面。多数晶面的柯西压值增大,但负值居多,说明LLM‑105与F2311形成的PBX韧性较纯LLM‑105增强,但仍不理想。

    加入F2462氟聚物后,每个晶面的弹性系数多有所减小,且每个晶面的EKG值均比纯组分小,表明刚性减弱。泊松比vK/G和柯西压的值较纯组分LLM‑105大,体系的塑性、延展性和韧性增强,说明F2462对LLM‑105的力学性能稍有改善。

  • 4 结 论

    (1)构建高聚物和LLM‑105不同晶面的双层界面模型,采用MD模拟方法,在COMPASS力场和NVT系综下的界面相互作用能计算结果表明,六种高聚物与LLM‑105各晶面的结合能均为正值,结合强度从大到小的顺序为:LLM‑105/NBC≈LLM‑105/Estane 5703>LLM‑105/F2313≈LLM‑105/F2314≈LLM‑105/F2311>LLM‑105/F2462

    (2)高聚物与LLM‑105晶面的相互作用能中,范德华力占据优势地位(约>90%),远远超过静电相互作用。结合力最大的(1 0 1)晶面,在晶体中的显露面最小,仅占总显露面的0.39%,而结合力小的两个晶面(0 2 0)和(0 1 1),其显露面却占了很大的比例(>60%)。这些模拟结果可为实验上LLM‑105与高聚物黏结性差,包覆效果不好提供一定的理论解释。

    (3)通过相互作用能和界面结构的综合分析发现,界面结合力强的高聚物是能同时提供氢键良给体和良受体,可与LLM‑105晶面上的─NO2、─NH2以及─N→O基团形成强氢键,大大增加静电作用力,因此在筛选LLM‑105的高聚物时,最好具有─OH、─COOH、─NH等基团。基于该选择原则筛选的高聚物NBC,表现出了和Estane 5703相当的结合能力,表明该选择原则的合理性。

    (4)基于NPT系综下的MD模拟结果表明,加入6种高聚物后,LLM‑105的力学性能改善均不理想。和纯LLM‑105相比, 加入Estane 5703、NBC和F2462的力学性能稍有改善,加入F2313F2311未有改善,而加入F2314的力学性能则有所下降。

  • 参考文献

    • 1

      Tran T D, Pagoria P F, Hoffman D M, et al. Small‑scale safety and performance cheracterization of new plastic bonded explosives containing LLM‑105[R]. Lawrence Livermore National Laboratory, Livermore, CA94551.

    • 2

      Tarver C M, Urtiew P A, Tran T D. Sensitivity of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide[J]. Journal of Energetic Materials, 2005, 23(3): 183-203.

    • 3

      田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考[J]. 含能材料, 2016, 24(12): 1132‑1135.

      TIAN Yong, HAN Yong, YANG Guang‑cheng. Some understanding and thinking of insensitive high explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12): 1132-1135.

    • 4

      Ma H X, Song J R, Zhao F Q, et al. Crystal Structure, Safety performance and density‑functional theoretical investigation of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105)[J]. Chinese Journal of Chemistry, 2008, 26(11): 1997-2002.

    • 5

      杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.

      YANG Zhi‑jian, LIU Xiao‑bo, HE Guan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1): 2-11.

    • 6

      Liu Z W, Xie H M, Li K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6): 627-635.

    • 7

      Jin A I, Jian‑Jun L I, Jian‑Bo C, et al. Kinetics of thermal decomposition reaction of LLM‑105 based PBX explosives[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 37-41.

    • 8

      Alexander E G, Fowzia Z, Jennifer M, et al. FY2014 LX‑21 aging and compatibiligy[R]. Lawrence Livermore National Laboratory, CA, 2014, 94550.

    • 9

      Weese R K, Burnham A K, Turner H C, et al. Physical characterization of RX‑55‑AE‑5 a formulation of97.5% 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105) and 2.5% Viton A[R]. Lawrence Livermore National Laboratory, CA, 2005. UCRL‑CONF‑214557.

    • 10

      Wang H J, Liu S S. Study on coating and technological conditions of LLM‑105[J]. Advanced Materials Research, 2011, 328-330: 1161-1166.

    • 11

      Xiao J, Huang H, Li J, et al. Computation of interface interactions and mechanical properties of HMX‑based PBX with Estane 5703 from atomic simulation[J]. Journal of Materials Science, 2008, 43(17): 5685-5691.

    • 12

      Wang H J. The choice and application of binder in new energetic matierals[J]. Applied Mechanics & Materials, 2013, 330: 3-7.

    • 13

      Yu Y, Chen S, Li X, et al. Molecular dynamics simulations for 5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50) and its PBXs[J]. RSC Advances, 2016, 6(24): 20034-20041.

    • 14

      陶俊, 王晓峰, 赵省向, 等. ε‑CL‑20/含能黏结剂复合体系结合能及力学性能的模拟[J]. 含能材料, 2015, 23(4): 315-322.

      TAO Jun, WANG Xiao‑feng, ZHAO Sheng‑xiang, et al. Simulation and calculation for binding energy and mechanical properties of ε‑CL‑20/energetic polymer binder mixed system[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(4): 315-322.

    • 15

      Hooks D E, Ramos K J, Bolme C A, et al. Elasticity of crystalline molecular explosives[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3): 333-350.

    • 16

      Junying W, Shaohua J, Shusen C, et al. Molecular dynamic simulations for FOX‑7 and FOX‑7 based PBXs[J]. Journal of Molecular Modeling, 2018, 24(7): 145-153.

    • 17

      Wang X J, Xiao J J. Molecular dynamics simulation studies of the ε‑CL‑20/HMX co‑crystal‑based PBXs with HTPB[J]. Structural Chemistry, 2017, 28(6): 1645-1651.

郭蓉

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environment‑friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

邮 箱:guorong_0501@126.com

作者简介:郭蓉(1995-),女,硕士,主要从事含能材料计算与模拟研究。e‑mail:guorong_0501@126.com

杨志剑

机 构:中国工程物理研究院化工材料研究所,四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

段晓惠

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environment‑friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

角 色:通讯作者

Role:Corresponding author

邮 箱:duanxiaohui@swust.edu.cn

作者简介:段晓惠(1970-),女,教授,主要从事材料计算与模拟研究。e‑mail:duanxiaohui@swust.edu.cn

裴重华

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:State Key Laboratory of Environment‑friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image004.png
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image005.png
cell parametersa / Åb / Åc / Åβ / (°)
exp.5.71615.8508.414101.041
calc.6.09714.6298.384105.863
Er/%6.77.70.330.05
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image001.png
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image002.png

crystal

surface

mult.1)

total facet

area2) / %

Su3)nit

/ Å2

Eatt

/ kJ·mol-1

S4)acce

/ Å2

(0 2 0)228.6049.17-43.4557.71
(0 1 1)435.72101.85-53.34135.48
(1 0 1¯)210.21130.45-64.71171.12
(1 1 0)420.07132.14-65.58244.38
(1 1 1¯)45.01139.41-69.35224.32
(1 0 1)20.39170.23-78.12267.88
interfacial modelbinding energy(0 1 1)(1 0 1)(1 1 0)(0 2 0)(1 1 1¯)(1 0 1¯)
LLM‑105/Estane 5703Etotal108.133203.063150.29454.154168.265142.207
Evan74.477145.970106.37944.861112.85994.068
Eele33.65557.09343.9159.29355.40648.139
LLM‑105/F2314Etotal83.025150.629116.80636.431136.974100.112
Evan69.010115.433108.27931.738109.23884.373
Eele14.014735.1928.5234.69327.73615.744
LLM‑105/F2313Etotal75.921160.550116.58444.430136.46497.312
Evan66.524134.111102.12639.855111.23080.480
Eele9.39826.43514.4634.57525.23316.832
LLM‑105/F2462Etotal76.641151.383136.51444.506128.740107.099
Evan53.083100.98395.94733.68192.59475.428
Eele23.55950.39940.566510.82936.14231.675
LLM‑105/F2311Etotal82.527135.551112.63747.808132.479116.496
Evan66.670113.993103.44038.306109.76588.609
Eele15.85721.5589.1979.50222.71327.887
LLM‑105/NBCEtotal107.848187.750150.15661.806156.565135.513
Evan78.701122.507109.43547.360110.70398.739
Eele29.14765.24740.72614.44645.85836.774
PolymersCompatibility order of polymers and crystal faces
Estane 5703(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
F2311(1 0 1)>(1 1 1¯)>(1 01¯)>(1 1 0)>(0 1 1)>(0 2 0)
F2313(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
F2314(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
F2462(1 0 1)>(1 1 0)>(1 11¯)>(1 0 1¯)>(0 1 1)>(0 2 0)
NBC(1 0 1)>(1 1 1¯)>(1 1 0)>(1 0 1¯)>(0 1 1)>(0 2 0)
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image007.png
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image008.png
html/hncl/CJEM2018349/media/07a60108-e3ec-4bdc-83da-b41c5a3ca56c-image009.png
(0 1 1)(1 1 1¯)(0 2 0)(1 0 1)(1 1 0)(1 0 1¯)
LLM‑105E1.64263.99005.302118.29882.762120.7599
G0.78331.79753.05628.59741.176111.736
K0.60641.70461.3976.99821.41325.621
V0.04850.1099-0.13250.06420.1743-0.1155
K/G0.77420.94830.45710.81391.20160.4789
C12C44-0.1506-1.41760.3381-15.3646-1.50584.4155
LLM‑105/Estane 5703E4.15190.3803-3.06741.9994-6.25510.0238
G1.68870.1398-0.68260.694-1.21863.7014
K2.55630.45440.68455.60170.977511.4471
V0.22930.36051.24690.44051.56650.3541
K/G1.51383.2504-1.0038.0716-0.80223.0926
C12‑C443.79330.79281.505212.7914-0.35911.0655
LLM‑105/F2314E5.44152.90720.38531.07410.62604.6395
G3.44342.70730.21180.38760.23011.9590
K1.27760.50310.10881.56450.74612.4481
V-0.2098-0.4631-0.09030.38560.36020.1841
K/G0.37100.18580.51374.03643.24251.2497
C12‑C44-8.4966-5.2206-0.0371.28370.0366-6.0153
LLM‑105/F2313E2.82944.5258-3.27370.058752.40761.3772
G1.10962.2604-1.28950.3631-3.07180.5168
K2.09571.5119-2.36590.00690.21211.3698
V0.27490.00110.2694-0.9191-1.39190.3324
K/G1.88870.66891.83470.0190-0.06902.6505
C12‑C444.0412‑0.92160.5807-0.4997-0.5039-4.7798
LLM‑105/F2462E1.32543.86653.21850.97770.72940.1716
G0.7858‑5.93240.95070.3909‑3.4812-0.1594
K0.54371.20181.71970.45130.23760.0511
V0.21890.6086-0.06420.083160.53490.6795
K/G0.6919‑0.20251.80891.1545‑0.0683-0.3205
C12‑C441.67214.6924‑0.0598-0.58652.01570.0625
LLM‑105/F2311E-2.4549-0.67484.9536-1.69912.9049-0.2891
G-0.8708-0.21783.0349-0.37061.2093-0.0881
K-4.5232.2831.20720.35741.61950.3423
V0.40950.5493‑0.18381.29230.20110.6408
K/G5.1941-10.48210.3978-0.96441.3392-3.8853
C12‑C44-8.5564.7386‑5.54211.3973-0.70660.4742
LLM‑105/NBCE1.25861.35693.20699.064413.79382.1912
G0.46480.48961.50193.62015.27120.7833
K1.43561.98021.23616.090611.99973.6051
V0.35390.38580.06760.25190.30840.3987
K/G3.08864.04450.82301.68242.27654.6025
C12‑C44-3.11361.5207-0.1996-3.5461-2.73491.7746

图1 高聚物黏结剂的分子结构[11]

Fig.1 Molecular structures of polymer binders

图2 F2311与LLM‑105界面作用的模型构建

Fig.2 Interfacial interaction model construction between F2311 and LLM‑105

表1 模拟前后的晶胞参数及相对误差

Table 1 Cell parameters and relative error before and after simulation

图3 LLM‑105在真空中的晶体形貌

Fig.3 Crystal morphology of LLM‑105 in vacuum

图4 LLM‑105各个晶面的表面化学和拓扑结构(括号内数字为晶面扩大倍数)

Fig.4 Surface chemistry and topological structures of LLM‑105 at different crystal faces (the number in bracket denotes the expansion multiples)

表2 真空中LLM‑105各个晶面的性质参数

Table 2 Property parameters at each crystal surface of LLM‑105 in vacuum

表3 6种高聚物与LLM‑105不同晶面的结合能

Table 3 Binding energies between six polymers and LLM‑105 at different crystal faceskJ·mol-1

表4 高聚物与LLM‑105不同晶面结合能排序

Table 4 Binding energy order of polymers with LLM‑105 at different crystal faces

图5 高聚物与LLM‑105晶面相互作用强弱对比 -- a. total binding energy

Fig.5 The trend of interactions between polymers and LLM‑105 at different crystal faces -- a. total binding energy

图5 高聚物与LLM‑105晶面相互作用强弱对比 -- b. Van der Waals binding energy

Fig.5 The trend of interactions between polymers and LLM‑105 at different crystal faces -- b. Van der Waals binding energy

图5 高聚物与LLM‑105晶面相互作用强弱对比 -- c. electrostatic binding energy

Fig.5 The trend of interactions between polymers and LLM‑105 at different crystal faces -- c. electrostatic binding energy

表5 纯LLM‑105及其与6种高聚物形成的界面模型的力学性能

Table 5 Mechanical properties of pure LLM‑105 and interface models of LLM‑105 with six polymers

image /

无注解

无注解

无注解

无注解

无注解

1) Multiplicity of crystal faces; 2) The exposed area of each crystal face as a percentage of the total exposed area; 3)Area of crystal faces in a unit cell; 4) Solvent accessible area of crystal faces in a unit cell.

Evan is the van der Waals interaction,Eele is the electrostatic interaction, Etotal is the total interaction.

无注解

无注解

无注解

无注解

E is tensile modulus. G is shear modulus.K is bulk modulus.C12‑C44 is Cauchy. The units of E, G, K and C12‑C44 are GPa. v is Poissom′s ratio. K/G is the ratio of bulk modulus to shear modulus.

  • 参考文献

    • 1

      Tran T D, Pagoria P F, Hoffman D M, et al. Small‑scale safety and performance cheracterization of new plastic bonded explosives containing LLM‑105[R]. Lawrence Livermore National Laboratory, Livermore, CA94551.

    • 2

      Tarver C M, Urtiew P A, Tran T D. Sensitivity of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide[J]. Journal of Energetic Materials, 2005, 23(3): 183-203.

    • 3

      田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考[J]. 含能材料, 2016, 24(12): 1132‑1135.

      TIAN Yong, HAN Yong, YANG Guang‑cheng. Some understanding and thinking of insensitive high explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12): 1132-1135.

    • 4

      Ma H X, Song J R, Zhao F Q, et al. Crystal Structure, Safety performance and density‑functional theoretical investigation of 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105)[J]. Chinese Journal of Chemistry, 2008, 26(11): 1997-2002.

    • 5

      杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.

      YANG Zhi‑jian, LIU Xiao‑bo, HE Guan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1): 2-11.

    • 6

      Liu Z W, Xie H M, Li K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6): 627-635.

    • 7

      Jin A I, Jian‑Jun L I, Jian‑Bo C, et al. Kinetics of thermal decomposition reaction of LLM‑105 based PBX explosives[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 37-41.

    • 8

      Alexander E G, Fowzia Z, Jennifer M, et al. FY2014 LX‑21 aging and compatibiligy[R]. Lawrence Livermore National Laboratory, CA, 2014, 94550.

    • 9

      Weese R K, Burnham A K, Turner H C, et al. Physical characterization of RX‑55‑AE‑5 a formulation of97.5% 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide (LLM‑105) and 2.5% Viton A[R]. Lawrence Livermore National Laboratory, CA, 2005. UCRL‑CONF‑214557.

    • 10

      Wang H J, Liu S S. Study on coating and technological conditions of LLM‑105[J]. Advanced Materials Research, 2011, 328-330: 1161-1166.

    • 11

      Xiao J, Huang H, Li J, et al. Computation of interface interactions and mechanical properties of HMX‑based PBX with Estane 5703 from atomic simulation[J]. Journal of Materials Science, 2008, 43(17): 5685-5691.

    • 12

      Wang H J. The choice and application of binder in new energetic matierals[J]. Applied Mechanics & Materials, 2013, 330: 3-7.

    • 13

      Yu Y, Chen S, Li X, et al. Molecular dynamics simulations for 5,5′‑bistetrazole‑1,1′‑diolate (TKX‑50) and its PBXs[J]. RSC Advances, 2016, 6(24): 20034-20041.

    • 14

      陶俊, 王晓峰, 赵省向, 等. ε‑CL‑20/含能黏结剂复合体系结合能及力学性能的模拟[J]. 含能材料, 2015, 23(4): 315-322.

      TAO Jun, WANG Xiao‑feng, ZHAO Sheng‑xiang, et al. Simulation and calculation for binding energy and mechanical properties of ε‑CL‑20/energetic polymer binder mixed system[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(4): 315-322.

    • 15

      Hooks D E, Ramos K J, Bolme C A, et al. Elasticity of crystalline molecular explosives[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3): 333-350.

    • 16

      Junying W, Shaohua J, Shusen C, et al. Molecular dynamic simulations for FOX‑7 and FOX‑7 based PBXs[J]. Journal of Molecular Modeling, 2018, 24(7): 145-153.

    • 17

      Wang X J, Xiao J J. Molecular dynamics simulation studies of the ε‑CL‑20/HMX co‑crystal‑based PBXs with HTPB[J]. Structural Chemistry, 2017, 28(6): 1645-1651.