CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
SinghR P, GaoH X, MeshriD T, et al. Nitrogen‑rich heterocycles[J]. Struct Bond, 2007, 125: 35-83.
参考文献 2
KlapötkeT M. New nitrogen‑rich high explosives[J]. Struct Bond, 2007, 125: 85-121.
参考文献 3
HouK H, MaC M, LiuZ L. Synthesis, characterization and theoretical study of 2‑azido‑4‑nitroimidazole based energetic salts[J]. Chin Chem Lett, 2014, 25(3): 438-440.
参考文献 4
WangY L, ZhaoF Q, JiY P, et al. Synthesis and thermal behaviors of 4‑amino‑3,5‑dinitro‑1H‑pyrazole[J]. J Anal Appl Pyrol, 2012, 98: 231-235.
参考文献 5
KlapötkeT M, PierceyD G. 1,1′‑Azobis(tetrazole): a highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorg Chem, 2011, 50(7): 2732-2734.
参考文献 6
LiY N, ZhangZ Z, ZhouY S, et al. Study on the synthesis, structure characterization and thermal performance of 3,4‑disubstituted furoxano derivatives[J]. Acta Chimica Sinic, 2011, 69(6): 701-708.
参考文献 7
LiY C, CaiQ, LiS H, et al. 1,1′‑Azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. J Am Chem Soc, 2010,132(35): 12172-12173.
参考文献 8
TangY X, YangH W, WuB, et al. Synthesis and characterization of a stable, catenated N11 energetic salt[J]. Angew Chem Int Ed, 2013, 52(1): 1-4.
参考文献 9
LiY N, ZhangZ Z, GeZ X, et al. Study of furoxan derivatives for energetic applications[J]. Chin J Chem, 2013, 31(4): 520-524.
参考文献 10
ThottempudiV, GaoH X, ShreeveJ M. Trinitromethyl‑substituted 5‑nitro‑ or 3‑azo‑1,2,4‑triazoles: synthesis, characterization, and energetic properties[J]. J Am Chem Soc, 2011, 133(16): 6464-6471.
参考文献 11
PhilipF P, GregoryS L, AlexanderR M, et al. A review of energetic materials synthesis[J]. Thermochimi Acta, 2002, 384(1): 187-204.
参考文献 12
VasiliiM V, LgorL D, SvyatoslavA S. N‑amination of pyrazoles: a general approach[J]. Mendeleev Commun, 1993, 31(4): 111.
参考文献 13
LiY N, TangT, LianP, et al. Synthesis, thermal performance and quantum chemistry study on 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole (DADNP)[J]. Chin J Org Chem, 2012, 32(3): 580-588.
参考文献 14
LiY N, WangB Z, ShuY J, et al. Synthesis and property of 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole and its derivatives[J]. Cent Eur J Energ Mater, 2016, 13(2): 321-331.
参考文献 15
LiY N, ShuY J, WangB Z, et al. Synthesis, structure and properties of neutral energetic materials based on N‑functionalization of 3,6‑dinitropyrazolo[4,3‑c]pyrazole[J]. RSC Adv, 2016, 6(88): 84760-84768.
参考文献 16
YinP, ZhangJ H, MitchellL A, et al. 3,6‑Dinitropyrazolo[4,3‑c]pyrazole‑based multipurpose energetic materials through versatile N‑functionalization strategies[J]. Angew Chem Int Ed, 2016, 55(41): 12895-12897.
参考文献 17
HanD L, WangT F, LinZ K, et al. Promoting effects of polyacrylamide on ignition and combustion of Al/H2O based fuels: experimental studies of polyacrylamide aqueous solution flash pyrolysis[J]. J Anal Appl Pyrol, 2010, 87: 56-64.
参考文献 18
WuS H, ChiJ H, HuangC C, et al. Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC[J]. J Therm Anal Calorim, 2010, 102(2): 563-568.
参考文献 19
AnT, ZhaoF Q, WangQ, et al. Preparation, characterization and thermal decomposition mechanism of Guanidinium aztetrazolate(GUZT)[J]. J Anal Appl Pyrol, 2013, 104: 405-411.
参考文献 20
MaH X, SongJ R, HuR Z, et al. Non‑isothermal decomposition kinetics, thermal behavior and computational detonation properties on 4‑amino‑1,2,4‑triazol‑5‑one(ATO)[J]. J Anal Appl Pyrol, 2008, 83: 145-150.
参考文献 21
NasuiM, MosR B, Petrisor JrT, et al. Synthesis, crystal structure and thermal decomposition of a new copper propionate [Cu(CH3CH2COO)2]·2H2O[J]. J Anal Appl Pyrol, 2011, 92: 439-444.
参考文献 22
KissingerH E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(12): 1702-1706.
参考文献 23
OzawaT. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Japan, 1965, 38(11): 1881-1886.
目录 contents

    摘要

    以3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)为原料,经N‑胺化反应合成了1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑(DADNP),采用红外光谱、核磁共振(1H NMR13C NMR)、质谱及元素分析等手段表征了化合物结构;利用差示扫描量热仪(DSC)、热重仪(TG)、固相原位热红外检测仪(RSFTIR)、热重‑质谱联用技术(TG‑MS)等热分析方法研究了DADNP的热分解过程和机理,结果表明,DADNP热分解反应的活化能和指前因子分别为166.45 kJ·mol-1和1016.53 s-1。DADNP的热分解过程主要包含两个阶段,第一阶段分别在电离源或加热条件下,DADNP分子中C─NO2首先发生断裂,生成NO2小分子;第二阶段是吡唑并吡唑环的进一步破裂及二次氧化反应,生成HCN、N2H2等小分子。

    Abstract

    1,4‑Diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole(DADNP) was synthesized by N‑amination reaction, and its structure was characterized by NMR, IR, MS and element analysis. The thermal decomposition kinetics and mechanism were studied by means of different heating rate differential scanning calorimetry(DSC), rapid‑scan fourier transform infrared spectroscopy(RSFTIR) and thermogravimetry‑mass spectrometer(TG‑MS) coupling technique. The results show that the apparent activation energy and pre‑exponential constant of the exothermic decomposition reaction of DADNP obtained by Kissinger method are 166.45 kJ·mol-1, 1016.53 s-1. The decomposition of DADNP includes two stages, which begins with the rupture of C─NO2 with subsequent loss of NO2 under electron impact and heating condition, respectively. In the first stage of decomposition, the rupture of one C─NO2 and one pyrazole ring in DADNP molecule with the release of NO2 and N2H2 occur under electron impact condition, whereas the homolysis of two C─NO2 bonds occur with the loss of two molecular NO2 under heating condition.

  • 1 引 言

    氮杂芳环含能化合物由于分子结构中含有大量的C─N、C N、N—N和N N键,相较于传统的碳芳环化合物,具有正生成热高、密度大、氮含量高、热稳定性好、分解产物清洁等优[1,2,3],该类化合物主要包括含吡唑、咪唑、吡嗪、三唑、四唑以及呋咱(氧化呋咱)等母体环的化合[4,5,6,7,8,9],大多具有独特性能,且燃烧产物主要是清洁无污染的氮气,在当前“经济发展、环保先行”的政策导向和理念指引下,发展环境友好型绿色含能材料也势在必行,大量氮杂芳环含能化合物的设计、合成及作为高能炸药和推进剂配方组分应用,已被广泛报[1,2,4,10]。2002年Philip F P[11]首次报道了新型富氮含能化合物DADNP的合成过程,并发现DADNP具有优良爆轰性能, 其晶体密度为1.85 g·cm-3,氮含量达49.12%,预测爆轰能量水平为HMX的104%,热分解峰温度高达240 ℃以[11,12]。国内外研究者均以3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)为原料,经中和、N‑胺化等反应制备DADNP,同时利用DADNP分子结构中N‑氨基的反应活性,设计合成了一系列DADNP的中性及含能离子盐衍生物,并对结构和爆轰性能进行了详细的表[13,14,15,16]。然而,当前研究者主要将研究重点集中在DADNP及其含能衍生物的结构设计、合成及爆轰性能理论研究方面,缺乏对该化合物的热稳定性及热分解机理的系统研究,而热性能是衡量含能化合物能否进一步应用的重要评价指标参数。

    为此,本研究以自主合成的1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑(DADNP)为研究对象,采用不同升温速率下差示扫描量热(DSC)方法解析了DADNP的热分解动力学过程和参[17,18,19],采用固相原位热红外检测技术(Thermolysis/RSFTIR)、热重 (TG)、热重‑质谱联用技术(TG‑MS)等多种热分析方法研究了DADNP的热分解机[20,21],为该化合物的进一步工艺放大、性能测试及应用探索研究提供基础数据。

  • 2 实验部分

  • 2.1 试剂及仪器

    3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)及2,4,6‑三甲基苯磺酰羟胺(MSH)自制;甲醇、乙腈等均为分析纯,成都市科龙化工试剂厂;四乙基氢氧化铵甲醇溶液(25%),分析纯,Aldrich试剂公司。

    X‑6型显微熔点测定仪,北京泰克仪器有限公司;LC‑2010A型高效液相色谱仪,日本岛津公司;AV 500型(500 MHz)超导核磁共振仪,瑞士BRUKER公司;NEXUS 870型傅立叶变换红外光谱仪,美国热电尼高力公司;VARIO‑EL‑3型元素分析仪,德国EXEMENTAR公司;GCMS‑QP2010型质谱仪,日本岛津公司;美国Nicolet公司,TA 2950热重仪;Q‑200型差示扫描量热仪,美国TA公司;STA 449C型热质(TG‑MS)联用仪,德国NETZSCH公司。

  • 2.2 合成路线

    以自制的3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)为原料、2,4,6‑三甲基苯磺酰羟胺(MSH)为N‑胺化试剂,经中和、N‑胺化等反应合成了1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑(DADNP),反应式如Scheme 1

    Scheme 1 The synthetic route of DADNP

  • 2.3 1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑(DADNP)的合成

    室温下,将4.0 g(20.2 mmol)3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)加入到60.0 mL甲醇中,冰水浴冷却至5~10 ℃,滴加29.7 g质量分数为25%的四乙基氢氧化铵(50.5 mmol)甲醇溶液,40 ℃反应1 h,冷却、浓缩、过滤、干燥得黄褐色固体;室温下,将2.56 g(12 mmol)2,4,6‑三甲基苯磺酰羟胺(MSH)溶解于60.0 mL乙腈溶液中,取1.824 g(4 mmol)上述黄色固体分批加入到MSH的乙腈溶液中,在20~25 ℃反应5 h,过滤、蒸除溶剂,加入15.0 mL水搅拌,过滤、水洗、干燥得0.79 g黄色固体,收率为86.6%,纯度为99.1%(HPLC),m.p.:248.2~249.1 ℃。

    1H NMR(DMSO‑d6,500 MHz)δ:7.22(s, 4H, 2NH2)13C NMR(DMSO‑d6,500 MHz)δ:128.49, 131.94. IR(KBr,ν/cm-1):3319, 3272, 1638, 1532, 1395, 1229, 1112, 1019。Anal. calcd for C4H4N8O4(%): C 21.05, H 1.75, N 49.12; found C 21.09, H 1.82, N 49.07. MS(m/z,%):228(56.21), 182(70.50), 165(15.54), 135(23.22), 122(10.44), 77(84.51), 52(78.59), 44(19.98), 30(100.00);DSC(10 ℃·min-1): 248.37 ℃(最大放热峰)。

  • 3 结果与讨论

  • 3.1 N‑胺化反应机理探讨

    氮杂芳环化合物DNPP由于杂环本身共轭离域体系的形成及硝基取代基吸电子效应的影响,使得DNPP分子结构中亚氨基(NH—)具有一定酸性,在四乙基氢氧化铵碱性条件下,DNPP首先与四乙基氢氧化铵发生中和反应生成相应的DNPP四乙基铵盐,然后该有机盐与N‑胺化试剂2,4,6‑三甲基苯磺酰羟胺(MSH)发生亲核取代反应,即DNPP负离子进攻N‑胺化试剂中氨基的氮原子,同时消除脱去2,4,6‑三甲基苯磺酸盐生成相应的N‑氨基氮杂芳环目标物DADNP,推测反应机理如Scheme 2

    Scheme 2 The reaction mechanism of N‑amination

  • 3.2 DADNP质谱裂解过程

    DADNP的电离源(EI)质谱解析图谱如图1所示。

    图1
                            DADNP的质谱谱图

    图1 DADNP的质谱谱图

    Fig.1 Mass spectrum of DADNP

    图1可以看出,其中m/z 228为该试样的分子离子峰,这与DADNP分子量为228相同,且分子量显示为偶数,与DADNP分子中含有偶数个氮原子保持一致;m/z=182的碎片离子峰为DADNP分子失去1分子NO2的碎片峰;该碎片失去1分子·OH自由基,得到m/z=165的碎片离子; m/z=165的碎片离子经不同裂解途径,分别失去1分子HN3、NO、N2形成m/z=122,135,137的碎片离子; m/z=135碎片失去1分子N2得到m/z=107碎片;m/z=107碎片进一步裂解,分别失去一分子N2H2、HCN,形成更小的碎片m/z=77,80,推测其可能的裂解途径如Scheme 3所示。

    Scheme 3 Predicted cleavage route of DADNP

  • 3.3 DADNP热分解动力学参数解析

    为了获得DADNP放热分解反应过程的表观活化能和指前因子等动力学参数,利用DSC方法测试了不同升温速率(5,10,15 ℃·min-1和20 ℃·min-1)下的DADNP热分解曲线(如图2),采用Kissinger方[22](式1)、Wall‑Ozawa方[23](式2)等计算了热分解动力学参数,所得结果见表1

    lnβiTpi2=lnAKREK-EKRTpi
    (1)
    lgβi+0.4567ERTpi=C
    (2)

    式中,Tp为放热分解峰温度,K;β为线性加热速率,K·min-1E为表观活化能,kJ·mol-1A为指前因子,s-1R为气体常数,为8.314 J·mol-1·K-1C为常数。

    图2
                            不同升温速率下DADNP的DSC曲线

    图2 不同升温速率下DADNP的DSC曲线

    Fig.2 DSC curves of DADNP at different heating rates

    表1 两种方法计算的 DADNP的热分解动力学参数

    Table 1 Thermal decomposition kinetic parameters of DADNP

    EK/kJ·mol-1log(AK/s-1)rKEO/kJ·mol-1rO
    166.4516.530.9996166.540.9996

    NOTE: EK and EO are apparent activation energy obtained using Kissinger′s method and Ozawa′s method. AK is pre‑exponential constant. rK and rO are linear correlation coefficient obtained using Kissinger's method and Ozawa′s method.

    表1可以看出,采用Kissinger和Wall‑Ozawa方法计算的表观活化能分别为166.45 kJ·mol-1和166.54 kJ·mol-1,基本相当;而线性相关系数都为0.9996,均接近于1,故采用这两种算法对于所选化合物DADNP动力学参数的计算可信度较高。此外,DADNP的热分解反应的表观活化能较高,表明该化合物的热稳定性较好。

  • 3.4 DADNP热分解机理

  • 3.4.1 DADNP的热行为

    DADNP的DSC曲线和TG曲线如图3所示。实验条件为:动态氮气气氛,温度50~450 ℃,升温速率10 ℃·min-1,试样量0.5~1.0 mg,试样皿为铝盘。

    图3
                            DADNP的DSC和TG曲线

    图3 DADNP的DSC和TG曲线

    Fig.3 DSC and TG curves of DADNP

    图3中DSC曲线可以看出,DADNP的初始放热温度为230 ℃,放热峰温248.4 ℃。DADNP的热分解不经过吸热熔化的相变过程,固相直接分解,且放热峰型尖锐,温度跨度较小,放热量大,出现突变现象,表明DADNP在230~250 ℃内发生了剧烈的放热分解反应,因此,此物质可能具有显著的起爆药放热特征,未来有望应用于起爆药。

    图3中TG曲线可以看出,试样的热分解至少分为两个阶段,225 ℃以前比较稳定,最大质量损失出现在244 ℃,当温度达到247.2 ℃时,物质累计分解深度为40.65%。继续升高温度,达到275.5 ℃时,累计分解深度达到67.56%。随着温度的进一步升高,物质继续分解,最后还残留部分黑色“残渣”。

  • 3.4.2 DADNP热分解凝聚相变化

    对DADNP试样进行了凝聚相红外测试研究,其中DADNP室温条件下的红外光谱图如图4所示,由图4可知,C─NO2基团的对称和不对称伸缩振动吸收峰(υas(C─NO2)υas(C─NO2))分别在1529 cm-1和1385 cm-1,而NH2基团的对称和不对称缩振动吸收峰(νas(NH2)νs(NH2))分别在3343,3277 cm-1和1609 cm-1处。DADNP凝聚相在不同温度下的红外光谱变化情况如图5所示,从图5可以看出,当温度逐渐升高至250 ℃时,NO2和NH2的吸收峰显著减弱;随着温度的进一步升高,当温度达到300 ℃时,NO2和NH2的吸收峰几乎完全消失,此时吡唑并吡唑环的分子骨架也已经被破坏,同时在波数为2233 cm-1处明显地出现了氰基或炔基的红外特征吸收峰,表明此时有含氰基或氰根离子(KCN等)、以及炔基的化合物生成;当温度继续升高到400 ℃时,DADNP分子的红外吸收峰已经完全消失。

    图4
                            室温条件下的DADNP红外谱图

    图4 室温条件下的DADNP红外谱图

    Fig.4 The IR spectrum of DADNP at room temperature

    图 5
                            不同温度下DADNP凝聚相产物的红外光谱图

    图 5 不同温度下DADNP凝聚相产物的红外光谱图

    Fig.5 The IR spectrum of the condensed products of DADNP at different temperatures

  • 3.4.3 DADNP热分解气相产物分析

    采用TG‑MS(实验条件为:动态氮气气氛,温度50~550 ℃,升温速率10 ℃·min-1,试样量2.0 mg,试样皿为铝埚)联用技术,研究了DADNP热分解过程的气相产物(如图6),样品置于TG的样品盘上,TG和MS的接口为负压(0.1 MPa),将试样热分解生成的气体带入MS质量分析器中,在246 ℃时出现NO2(其特征质量数为:46、16、14)的最大峰MS信号,在248 ℃分别出现N2H2(其特征质量数为:30、14)和HCN(其特征质量数为:27、14、12)的离子流最高峰,这与TG图显示出的DADNP试样的热分解经历了两次明显的气体释放过程相吻合。

    图6
                            DADNP热分解气相产物质谱数据

    图6 DADNP热分解气相产物质谱数据

    Fig.6 MS data of thermal decomposition gas products of DADNP

  • 3.4.4 DADNP热分解机理

    基于上述DADNP的热分解气体产物的种类和热重实验结果,推测在加热条件下DADNP的热分解主要为两个阶段(Scheme 4):第一热分解阶段,DADNP分子中C─NO2断裂生成并失去两分子NO2,热重分析显示此时质量损失累积量为40.65%,与理论40.35%质量损失吻合度较好,在红外谱图上表现出硝基基团吸收峰的减弱直至消失;DADNP热分解的第二阶段发生在247~500 ℃内,随着温度的进一步升高,N─NH2基团的裂解和吡唑并吡唑母体环的破裂,红外谱图上各官能团吸收峰的强度都逐渐降低直至完全消失,同时利用红外凝聚相和TG‑MS法主要检测到N2H2、HCN等气体小分子的吸收峰及离子流峰,从TG曲线也可以看出,在500℃时仍存在约30%的黑色聚合物残渣。

    Scheme 4 The proposed decomposition process of DADNP under heating condition

  • 4 结 论

    (1) 以自制的3,6‑二硝基吡唑[4,3‑c]并吡唑(DNPP)为原料,经中和、N‑胺化等反应合成了1,4‑二氨基‑3,6‑二硝基吡唑[4,3‑c]并吡唑(DADNP),收率为86.6%,纯度为99.1%。

    (2) DADNP的热分解主要包含两个阶段:第一阶段分别在电离源和加热条件下,分子中C─NO2首先发生断裂,生成NO2小分子;第二阶段是N─NH2的开裂、吡唑并吡唑环的破裂及二次氧化反应,生成HCN、N2H2等小分子,热分解机理的研究对分析DADNP的热稳定性和热安全性具有重要的意义。

    (责编:张 琪)

  • 参考文献

    • 1

      Singh R P, Gao H X, Meshri D T, et al. Nitrogen‑rich heterocycles[J]. Struct Bond, 2007, 125: 35-83.

    • 2

      Klapötke T M. New nitrogen‑rich high explosives[J]. Struct Bond, 2007, 125: 85-121.

    • 3

      Hou K H, Ma C M, Liu Z L. Synthesis, characterization and theoretical study of 2‑azido‑4‑nitroimidazole based energetic salts[J]. Chin Chem Lett, 2014, 25(3): 438-440.

    • 4

      Wang Y L, Zhao F Q, Ji Y P, et al. Synthesis and thermal behaviors of 4‑amino‑3,5‑dinitro‑1H‑pyrazole[J]. J Anal Appl Pyrol, 2012, 98: 231-235.

    • 5

      Klapötke T M, Piercey D G. 1,1′‑Azobis(tetrazole): a highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorg Chem, 2011, 50(7): 2732-2734.

    • 6

      Li Y N, Zhang Z Z, Zhou Y S, et al. Study on the synthesis, structure characterization and thermal performance of 3,4‑disubstituted furoxano derivatives[J]. Acta Chimica Sinic, 2011, 69(6): 701-708.

    • 7

      Li Y C, Cai Q, Li S H, et al. 1,1′‑Azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. J Am Chem Soc, 2010,132(35): 12172-12173.

    • 8

      Tang Y X, Yang H W, Wu B, et al. Synthesis and characterization of a stable, catenated N11 energetic salt[J]. Angew Chem Int Ed, 2013, 52(1): 1-4.

    • 9

      Li Y N, Zhang Z Z, Ge Z X, et al. Study of furoxan derivatives for energetic applications[J]. Chin J Chem, 2013, 31(4): 520-524.

    • 10

      Thottempudi V, Gao H X, Shreeve J M. Trinitromethyl‑substituted 5‑nitro‑ or 3‑azo‑1,2,4‑triazoles: synthesis, characterization, and energetic properties[J]. J Am Chem Soc, 2011, 133(16): 6464-6471.

    • 11

      Philip F P, Gregory S L, Alexander R M, et al. A review of energetic materials synthesis[J]. Thermochimi Acta, 2002, 384(1): 187-204.

    • 12

      Vasilii M V, Lgor L D, Svyatoslav A S. N‑amination of pyrazoles: a general approach[J]. Mendeleev Commun, 1993, 31(4): 111.

    • 13

      Li Y N, Tang T, Lian P, et al. Synthesis, thermal performance and quantum chemistry study on 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole (DADNP)[J]. Chin J Org Chem, 2012, 32(3): 580-588.

    • 14

      Li Y N, Wang B Z, Shu Y J, et al. Synthesis and property of 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole and its derivatives[J]. Cent Eur J Energ Mater, 2016, 13(2): 321-331.

    • 15

      Li Y N, Shu Y J, Wang B Z, et al. Synthesis, structure and properties of neutral energetic materials based on N‑functionalization of 3,6‑dinitropyrazolo[4,3‑c]pyrazole[J]. RSC Adv, 2016, 6(88): 84760-84768.

    • 16

      Yin P, Zhang J H, Mitchell L A, et al. 3,6‑Dinitropyrazolo[4,3‑c]pyrazole‑based multipurpose energetic materials through versatile N‑functionalization strategies[J]. Angew Chem Int Ed, 2016, 55(41): 12895-12897.

    • 17

      Han D L, Wang T F, Lin Z K, et al. Promoting effects of polyacrylamide on ignition and combustion of Al/H2O based fuels: experimental studies of polyacrylamide aqueous solution flash pyrolysis[J]. J Anal Appl Pyrol, 2010, 87: 56-64.

    • 18

      Wu S H, Chi J H, Huang C C, et al. Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC[J]. J Therm Anal Calorim, 2010, 102(2): 563-568.

    • 19

      An T, Zhao F Q, Wang Q, et al. Preparation, characterization and thermal decomposition mechanism of Guanidinium aztetrazolate(GUZT)[J]. J Anal Appl Pyrol, 2013, 104: 405-411.

    • 20

      Ma H X, Song J R, Hu R Z, et al. Non‑isothermal decomposition kinetics, thermal behavior and computational detonation properties on 4‑amino‑1,2,4‑triazol‑5‑one(ATO)[J]. J Anal Appl Pyrol, 2008, 83: 145-150.

    • 21

      Nasui M, Mos R B, Petrisor Jr T, et al. Synthesis, crystal structure and thermal decomposition of a new copper propionate [Cu(CH3CH2COO)2]·2H2O[J]. J Anal Appl Pyrol, 2011, 92: 439-444.

    • 22

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(12): 1702-1706.

    • 23

      Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Japan, 1965, 38(11): 1881-1886.

李亚南

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:lyn2003080094@126.com

作者简介:李亚南(1984-),男,副研究员,主要从事含能材料合成及性能研究。e‑mail:lyn2003080094@126.com

胡建建

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

陈涛

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

张义迎

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王彬

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

常佩

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王伯周

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image001.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image002.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image003.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image004.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image005.png
EK/kJ·mol-1log(AK/s-1)rKEO/kJ·mol-1rO
166.4516.530.9996166.540.9996
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image006.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image007.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image008.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image010.png
html/hncl/CJEM2018344/media/c90d01b3-3437-4b1d-97c7-ed08c96dd0e1-image009.png

Scheme 1 The synthetic route of DADNP

Scheme 2 The reaction mechanism of N‑amination

图1 DADNP的质谱谱图

Fig.1 Mass spectrum of DADNP

Scheme 3 Predicted cleavage route of DADNP

图2 不同升温速率下DADNP的DSC曲线

Fig.2 DSC curves of DADNP at different heating rates

表1 两种方法计算的 DADNP的热分解动力学参数

Table 1 Thermal decomposition kinetic parameters of DADNP

图3 DADNP的DSC和TG曲线

Fig.3 DSC and TG curves of DADNP

图4 室温条件下的DADNP红外谱图

Fig.4 The IR spectrum of DADNP at room temperature

图 5 不同温度下DADNP凝聚相产物的红外光谱图

Fig.5 The IR spectrum of the condensed products of DADNP at different temperatures

图6 DADNP热分解气相产物质谱数据

Fig.6 MS data of thermal decomposition gas products of DADNP

Scheme 4 The proposed decomposition process of DADNP under heating condition

image /

无注解

无注解

无注解

无注解

无注解

EK and EO are apparent activation energy obtained using Kissinger′s method and Ozawa′s method. AK is pre‑exponential constant. rK and rO are linear correlation coefficient obtained using Kissinger's method and Ozawa′s method.

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Singh R P, Gao H X, Meshri D T, et al. Nitrogen‑rich heterocycles[J]. Struct Bond, 2007, 125: 35-83.

    • 2

      Klapötke T M. New nitrogen‑rich high explosives[J]. Struct Bond, 2007, 125: 85-121.

    • 3

      Hou K H, Ma C M, Liu Z L. Synthesis, characterization and theoretical study of 2‑azido‑4‑nitroimidazole based energetic salts[J]. Chin Chem Lett, 2014, 25(3): 438-440.

    • 4

      Wang Y L, Zhao F Q, Ji Y P, et al. Synthesis and thermal behaviors of 4‑amino‑3,5‑dinitro‑1H‑pyrazole[J]. J Anal Appl Pyrol, 2012, 98: 231-235.

    • 5

      Klapötke T M, Piercey D G. 1,1′‑Azobis(tetrazole): a highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorg Chem, 2011, 50(7): 2732-2734.

    • 6

      Li Y N, Zhang Z Z, Zhou Y S, et al. Study on the synthesis, structure characterization and thermal performance of 3,4‑disubstituted furoxano derivatives[J]. Acta Chimica Sinic, 2011, 69(6): 701-708.

    • 7

      Li Y C, Cai Q, Li S H, et al. 1,1′‑Azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. J Am Chem Soc, 2010,132(35): 12172-12173.

    • 8

      Tang Y X, Yang H W, Wu B, et al. Synthesis and characterization of a stable, catenated N11 energetic salt[J]. Angew Chem Int Ed, 2013, 52(1): 1-4.

    • 9

      Li Y N, Zhang Z Z, Ge Z X, et al. Study of furoxan derivatives for energetic applications[J]. Chin J Chem, 2013, 31(4): 520-524.

    • 10

      Thottempudi V, Gao H X, Shreeve J M. Trinitromethyl‑substituted 5‑nitro‑ or 3‑azo‑1,2,4‑triazoles: synthesis, characterization, and energetic properties[J]. J Am Chem Soc, 2011, 133(16): 6464-6471.

    • 11

      Philip F P, Gregory S L, Alexander R M, et al. A review of energetic materials synthesis[J]. Thermochimi Acta, 2002, 384(1): 187-204.

    • 12

      Vasilii M V, Lgor L D, Svyatoslav A S. N‑amination of pyrazoles: a general approach[J]. Mendeleev Commun, 1993, 31(4): 111.

    • 13

      Li Y N, Tang T, Lian P, et al. Synthesis, thermal performance and quantum chemistry study on 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole (DADNP)[J]. Chin J Org Chem, 2012, 32(3): 580-588.

    • 14

      Li Y N, Wang B Z, Shu Y J, et al. Synthesis and property of 1,4‑diamino‑3,6‑dinitropyrazolo[4,3‑c]pyrazole and its derivatives[J]. Cent Eur J Energ Mater, 2016, 13(2): 321-331.

    • 15

      Li Y N, Shu Y J, Wang B Z, et al. Synthesis, structure and properties of neutral energetic materials based on N‑functionalization of 3,6‑dinitropyrazolo[4,3‑c]pyrazole[J]. RSC Adv, 2016, 6(88): 84760-84768.

    • 16

      Yin P, Zhang J H, Mitchell L A, et al. 3,6‑Dinitropyrazolo[4,3‑c]pyrazole‑based multipurpose energetic materials through versatile N‑functionalization strategies[J]. Angew Chem Int Ed, 2016, 55(41): 12895-12897.

    • 17

      Han D L, Wang T F, Lin Z K, et al. Promoting effects of polyacrylamide on ignition and combustion of Al/H2O based fuels: experimental studies of polyacrylamide aqueous solution flash pyrolysis[J]. J Anal Appl Pyrol, 2010, 87: 56-64.

    • 18

      Wu S H, Chi J H, Huang C C, et al. Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC[J]. J Therm Anal Calorim, 2010, 102(2): 563-568.

    • 19

      An T, Zhao F Q, Wang Q, et al. Preparation, characterization and thermal decomposition mechanism of Guanidinium aztetrazolate(GUZT)[J]. J Anal Appl Pyrol, 2013, 104: 405-411.

    • 20

      Ma H X, Song J R, Hu R Z, et al. Non‑isothermal decomposition kinetics, thermal behavior and computational detonation properties on 4‑amino‑1,2,4‑triazol‑5‑one(ATO)[J]. J Anal Appl Pyrol, 2008, 83: 145-150.

    • 21

      Nasui M, Mos R B, Petrisor Jr T, et al. Synthesis, crystal structure and thermal decomposition of a new copper propionate [Cu(CH3CH2COO)2]·2H2O[J]. J Anal Appl Pyrol, 2011, 92: 439-444.

    • 22

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(12): 1702-1706.

    • 23

      Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Japan, 1965, 38(11): 1881-1886.