CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
AmosR J. On a viscoplastic characterisation of solid propellant and the prediction of grain failure on pressurization cold[R]. AIAA 2001‑3719, 2001.
参考文献 2
DouglassH W, CollinsJ H, NoelJ S, et al. Solid propellant grain structural integrity analysis[R]. NASA SP‑8073, 1972.
参考文献 3
刘中兵, 周艳青, 张兵. 固体发动机低温点火条件下药柱结构完整性分析[J]. 固体火箭技术, 2015, 38(3): 351-355.
LIUZhong‑bing, ZHOUYan‑qing, ZHANGBing. Structural integrity analysis on grains of solid rocket motor at low temperature ignition[J]. Journal of Solid Rocket Technology, 2015, 38(3): 351-355.
参考文献 4
JeremicR. Some aspects of time‑temperature superposition principle applied for predicting mechanical properties of solid rocket propellants[J]. Propellants, Explosive, Pyrotechnics, 1999, 24(4): 221-223.
参考文献 5
LepieA H. Two devices for high speed tensile testing[C]// 14th Meeting of the Joint Army‑Navy‑NASA‑Air Force (JANNAF) Structures and Mechanical Behavior Working Group, Maryland 1977.
参考文献 6
王哲君, 强洪夫, 王广, 等. 固体推进剂力学性能和本构模型的研究进展[J]. 含能材料, 2016, 24(4): 403-416.
WANGZhe‑jun, QIANGHong‑fu, WANGGuang, et al. Review on the mechanical properties and constitutive models of solid propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(4): 403-416.
参考文献 7
ZalewskiR, WolszakiewiczT. Analysis of uniaxial tensile tests for homogeneous solid propellants under various loading conditions[J]. Central European Journal of Energetic Materials, 2011, 8(4): 223-231.
参考文献 8
ZhangL, ZhiS, ShenZ. Research on tensile mechanical properties and damage mechanism of composite solid propellants[J]. Propellants, Explosives, Pyrotechnics. 2018, 43(3), 234-240.
参考文献 9
ZhouD, LiuX, SuiX, et al. Effect of pre‑strain during ageing on the maximum elongation of composite solid propellants and its modelling[J]. Polymer Testing, 2016, 50: 200-207.
参考文献 10
DuncanE J S, MargetsonJ. A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(2): 94-104.
参考文献 11
李辉, 许进升, 周长省, 等. HTPB推进剂温度相关性失效准则[J]. 含能材料, 2018, 26(9): 732-738.
LIHui, XUJin‑sheng, ZHOUChang‑sheng, et al. The failure criterion related to temperature for HTPB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 732-738.
参考文献 12
强洪夫. 固体火箭发动机药柱结构完整性数值仿真与实验研究[D]. 西安: 西安交通大学, 1998.
QIANGHong‑fu. Numerical analysis and experimental researches on solid rocket motor grain structure integrity[D]. Xi′an: Xi′an Jiaotong University, 1998.
参考文献 13
RenP, HouX, HeG, et al. Comparative research of tensile and compressive modulus of composite solid propellant for solid rocket motor[J]. Journal of Astronautics, 2010, 31(10): 2354-2359.
参考文献 14
SunC, XuJ, ChenX, ZhengJ, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double‑base propellant[J]. Mechanics of Materials, 2015, 89: 35-46.
参考文献 15
BalzerJ E, SiviourC R, WalleyS M, et al. Behaviour of ammonium perchlorate‑based propellants and a polymer‑bonded explosive under impact loading[J]. Proceeding of the Royal Society of London, 2004, 460(2043): 781-806.
参考文献 16
贾永刚, 张为华, 张炜. 固体推进剂双向拉伸试件优化设计及试验[J]. 推进技术, 2011, 32(5): 737-740.
JIAYong‑gang, ZHANWei‑hua, ZHANGWei. Optimal design and examination study of biaxial tensile specimens for solid propellant[J]. Journal of Propulsion Technology, 2011, 32(5): 737-740.
参考文献 17
强洪夫, 王广, 张炜, 等. 固体发动机推进剂/粘结界面失效机理、模拟表征和优化设计[R]. 973‑61338, 2005-2010.
参考文献 18
WangZ, QiangH, WANGG. Experimental investigation on high strain rate tensile behaviors of HTPB propellant at low temperatures[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(6): 814-820.
参考文献 19
WangZ, QiangH, WangT, et al. A thermovisco‑hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time‑Dependent Materials, 2018, 22(3): 291-314.
参考文献 20
WangZ, QiangH, WANGG, et al. A new test method to obtain biaxial tensile behaviors of solid propellant at high strain rates[J]. Iranian Polymer Journal, 2016, 25(6): 515-524.
参考文献 21
强洪夫, 王哲君, 王广, 等. HTPB推进剂低温动态准双轴拉伸力学性能研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议,西安,2016.
QIANGHong‑fu, WANGZhe‑jun, WANGGuang, et al. Quasi‑biaxial tensile mechanical properties of HTPB propellant at low temperature under dynamic loading[C]//The 2nd Joint Conference on Aerospace Power and 38th Aerospace Powerplant Techical Information Society Technical Conference, Xi′an, 2016.
参考文献 22
刘畅, 强洪夫, 王哲君, 等. 低温动态加载下老化HTPB推进剂强度准则研究[J]. 推进技术, 2018, 39(11): 2581-2587.
LIUChang, QIANGHong‑fu, WANGZhe‑jun, et al. Strength criterion of aged HTPB propellant at low temperature under dynamic loading[J]. Journal of Propulsion Technology, 2018, 39(11): 2581-2587.
参考文献 23
Method for determining the tensile properties of solid rocket propellants[M]. CPIA Publish SPIA, 1957: 8.
参考文献 24
赖建伟. 固体推进剂药柱低温力学性能与结构完整性研究[D]. 西安: 火箭军工程大学, 2013.
LAIJian‑wei. Research on mechanical properties and structural integrity of solid propellant grain at low temperature[D]. Xi′an: Xi′an Hi‑Tech Institute, 2013.
参考文献 25
张晓军, 常新龙, 赖建伟, 等. HTPB 推进剂低温拉伸/压缩力学性能对比[J]. 固体火箭技术, 2013, 36(6): 771-774.
ZHANGXiao‑jun, CHANGXin‑long, LAIJian‑wei, et al. Comparative research of tensile and compressive mechanical properties of HTPB propellant at low temperature[J]. Journal of Solid Rocket Technology, 2013, 36(6): 771-774.
参考文献 26
张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙: 国防科学技术大学, 2009.
ZHANGXing‑gao. Study on the aging properties and storage life prediction of HTPB propellant[D]. Changsha: National University of Defense Technology, 2009.
参考文献 27
Nevie`reR. An extension of the time‑temperature superposition principle to non‑linear viscoelastic solids[J]. International Journal of Solids and Structures, 2006, 43(17): 5295-5306.
参考文献 28
侯林法. 复合固体推进剂[M]. 北京: 中国宇航出版社, 2009: 382-383.
HOULin‑fa. Composite solid propellant[M]. Beijing: China Astronautic Publishing House, 2009: 382-383.
目录 contents

    摘要

    基于三组元端羟基聚丁二烯(HTPB)复合固体推进剂在不同热加速老化时间(0,32,74,98 d)和不同加载温度(-50,-40, -30,-20,25 ℃)以及不同应变率(0.40,4.00,14.29,42.86,63 s-1)条件下的单轴和准双轴拉伸力学性能实验以及细观损伤观测实验,分析了加载条件对推进剂初始弹性模量,强度和最大伸长率的影响规律,确定了单轴和准双轴拉伸加载下推进剂的失效判据。结果表明:动态单轴加载下推进剂易因拉伸应力作用而失效,且热老化后推进剂抵抗破坏的能力降低,拉伸时的最大伸长率可选为失效判据。其次,拉压强度比更能反映推进剂的动态单轴拉压差异性,室温和低温条件下,其数值分别接近于0.4和0.2~0.3。动态准双轴拉伸加载下,推进剂的最大伸长率较单轴加载时明显降低,降低的幅度随热老化时间增长而增大,且温度越低,降低越明显。未老化推进剂在准双轴拉伸加载下的最大伸长率约为单轴拉伸条件下数值的60%~85%,而老化后约为40%~60%。低温高应变率条件下,最大伸长率不受应力状态和应变率变化的影响。动态双轴拉伸条件下的最大伸长率可选为相应加载下推进剂的失效判据以及点火建压条件下战术导弹固体火箭发动机(SRM)药柱结构完整性分析的判据,其数值可结合主曲线和老化模型确定。

    Abstract

    Based on uniaxial and quasi‑biaxial tensile tests and microscopic damage observation experiments of three‑component Hydroxyl‑Terminated Polybutadience (HTPB) composite solid propellant at different thermal accelerated aging time (0, 32, 74,98 d), temperatures (-50, -40, -30, -20, 25 ℃) and strain rates (0.40, 4.00, 14.29, 42.86, 63 s-1), the effects of loading conditions on the initial elastic modulus, strength and the corresponding strain have been analyzed. Moreover, failure criteria of the propellant under the tests have been determined. It has been indicated that HTPB propellant fails more easily due to tensile stress under dynamic uniaxial loading, and the thermal aging can further reduce this capability. Thus the strain at maximum tensile stress can be considered as the uniaxial failure criterion. In addition, tensile‑compressive strength ratio can better reflect the different properties of the propellants under dynamic uniaxial loading. This value is 0.4 and 0.2-0.3 at room temperature and low temperatures, respectively. The strain at maximum tensile stress of HTPB propellant under quasi‑biaxial tension is significantly lower than that in uniaxial tension. Furthermore, the extent of reduction increases with extended aging time and decreased temperature. The proportion for unaged and aged propellants is 60%-85% and 40%-60%, respectively. Finally, this strain is independent of stress state and strain rate at the lower temperature and higher strain rates. Thus the strain at maximum tensile stress under dynamic biaxial tension can be considered as the failure criterion of HTPB propellant. It can also be used to analyze the structure integrity of propellant grains for tactical missiles during ignition of solid rocket motor (SRM). Moreover, its value can be determined with the master curves and aging models.

  • 1 引 言

    在固体火箭发动机(SRM)服役的全寿命周期内,外部载荷会使推进剂药柱内部产生应力和应变,如果超过其力学性能的允许范围,可能会引起药柱裂纹的形成和扩展,从而导致药柱结构完整性的破坏,进而影响SRM的内弹道性[1,2]。随着军事任务多样化需求的不断提高以及高性能导弹武器研制的持续推进,大多数战术导弹被要求在低温下能正常工作,点火压力和低温环境载荷的叠加使得SRM药柱的结构完整性问题变得尤为突[3]。Jeremic[4,5]的研究表明,1~100 s-1应变率内低温环境下固体推进剂的失效判据,对分析真实低温点火条件下战术导弹SRM药柱的结构完整性以及确保SRM的正常工作具有重要的意义。

    固体推进剂是典型的颗粒增强复合材料,其变形特性和失效情况明显受到外界温度、加载应变率以及应力(或应变)状态的影[6]。通过开展准静态(应变率<1 s-1)定应变率单轴拉伸实验,Zalewski[7,8,9]获得了固体推进剂力学极限特性随温度、应变率、老化时间以及预应变等因素的变化关系,并确定了最大伸长率为失效判据。在上述实验结果的基础上,Duncan[10,11]采用累积损伤理论进一步定量分析了加载失效前推进剂的损伤变化。通过开展准静态定应变率单轴拉压实验,强洪夫[12,13]获得了固体推进剂的单轴拉压强度比,并分析了应力状态和应变率对推进剂实验件失效模式的影响。基于分离式Hopkinson压杆(SHPB)技术,Sun[14,15]开展了单轴高应变率(>100 s-1)条件下固体推进剂的压缩实验,重点分析了应变率对屈服应力和屈服应变的影响以及实验件失效的内在机理。通过设计新构型实验件和实验夹具,贾永刚[16,17]开展了室温准静态定应变率条件下固体推进剂的双轴拉伸力学性能实验,分析了实验条件下推进剂的失效模式,发现了推进剂的双向弱化效应。近年来,采用新型单轴高性能试验机、新设计的实验夹具以及多构型实验件(标准哑铃型实验件、圆柱型压缩实验件和板条实验件),王哲君[18,19,20,21,22]首次开展了低温1~100 s-1定应变率范围内热加速老化前后三组元复合固体推进剂的单轴拉压和准双轴拉伸力学行为实验,并通过对实验结果进行讨论验证了实验方法的可行性,但并未对推进剂的失效判据进行系统分析。

    综上所述,由于受限于常规实验装置的测试原理,目前国内外针对动态加载下,尤其是低温1~100 s-1应变率内固体推进剂的失效判据研究并不充分。其次,仅简单采用一维单轴拉压实验获得的结果分析固体推进剂的失效行为和评判固体推进剂药柱的结构完整性,数据不够充分,甚至带来较大偏差。但受限于当前实验装置的测试原理,很难直接开展动态加载下材料的双轴力学性能实验。为此,本研究以典型战术导弹SRM用固体颗粒(AP/Al)填充质量分数88%的三组元端羟基聚丁二烯(HTPB)复合固体推进剂为研究对象,在王哲君[18,19,20,21,22]前期研究基础上,拟采用方差分析、数据拟合以及宏观力学性能和细观损伤分析相结合等方法,确定低温1~100 s-1应变率内单轴和双轴拉伸加载下复合固体推进剂的失效判据,为开展真实低温点火条件下战术导弹SRM药柱的结构完整性分析和装药结构设计提供数据支撑。

  • 2 单轴失效判据

  • 2.1 单轴力学性能实验及参数确定

    HTPB推进剂的定应变率单轴拉伸实验条件为:4个热加速老化时间(0,32,74,98 d)、5个温度(-50, -40,-30,-20,25 ℃)和4组应变率(0.40,4.00,14.29,42.86 s-1)。HTPB推进剂的定应变率单轴压缩实验条件为:5个温度(-50,-40,-30,-20,25 ℃)和4组应变率(0.40,4.00,14.29,63 s-1)。根据国内GJB 770B-2005标准(测试方法413)以及国外JANAF标[23],直接从标准哑铃型实验件的单轴拉伸应力‑应变曲线上确定HTPB推进剂的初始弹性模量Eut,最大拉伸应力(即最大抗拉强度或单轴拉伸强度)σumt和最大伸长率εumt。参考国内GJB 770B-2005标准(测试方法415.1)以及赖建伟[24,25]的研究,通过作图[6,24,25],从圆柱型实验件的单轴压缩应力-应变曲线上确定HTPB推进剂的初始弹性模量Euc和压缩强度σuc

  • 2.2 应力状态影响分析

    分别获得-50,-40,-30,-20,25 ℃以及0.40,4.00,14.29 s-1条件下未老化HTPB推进剂的单轴拉压模量比(Eut/Euc)和拉压强度比(σumt/σuc),数值如表1所示。

    表1 未老化HTPB推进剂的单轴拉压力学性能参数比

    Table 1 Uniaxial tensile‑compressive mechanical properties ratio of unaged HTPB propellant under the test condition

    temperature

    / ℃

    Eut/Eucσumt/σuc
    0.40 s-14.00 s-114.29 s-10.40 s-14.00 s-114.29 s-1
    250.99180.98850.97950.38650.38900.3597
    -200.78920.66380.75540.28480.30010.3101
    -300.81710.77590.65230.29570.30070.2627
    -400.79490.78130.62870.28240.30040.2339
    -500.92120.71660.73430.26390.26170.2169

    NOTE: Eut/Euc is tensile‑compressive modulus ratio. σumt/σuc is tensile‑compressive strength ratio.

    由表1可知,推进剂的单轴拉压模量比和拉压强度比均小于1,说明1~100 s-1内单轴加载时HTPB推进剂仍更容易因为拉伸应力作用而发生破坏。同时,推进剂的拉压模量比和拉压强度比均受温度变化的影响。拉压模量比在室温条件下接近于1,而在低温条件下约为0.6~0.8。拉压强度比在室温条件下接近于0.4,而在低温条件下约为0.2~0.3。即低温条件下,HTPB推进剂的单轴压缩强度约为最大抗拉强度的3~5倍。总体上,推进剂的拉压模量比和拉压强度比均随温度降低而减小,即降低温度能够扩大推进剂的拉压力学性能差异性或拉压不对称性。拉压应力状态下HTPB推进剂本身性能的变化以及内部细观结构失效机理的不同,是造成上述单轴力学性能差异性的主要原因。首先,压缩条件下固体填充颗粒对固体推进剂弹性模量的贡献更大,则推进剂的单轴拉压模量比小于1。随温度降低,复合固体推进剂的粘弹性特性减弱,固体填充颗粒对初始弹性模量的贡献增大,则HTPB推进剂的拉压模量比随温度降低而减小。其次,由于压缩应力能够闭合固体推进剂内部的微裂纹或微孔洞,减小推进剂内部的空隙,而拉伸加载有利于微裂纹的扩展。因此,推进剂的单轴拉压强度比小于1。同时,低温单轴压缩加载时,大量固体填充颗粒更容易发生挤压现象,推进剂内部被压实。因此,HTPB推进剂的拉压强度比在低温条件下更低。

    为进一步定量分析温度和应变率对未老化HTPB推进剂拉压力学性能差异性的影响,利用双因素方差分析方法,选取5个温度(-50,-40,-30,-20,25 ℃)和3组应变率(0.40,4.00,14.29 s-1)条件下推进剂的拉压模量比(Eut/Euc)和拉压强度比(σumt/σuc)进行分析。取显著水平为0.05,得到方差分析结果的F值如表2所示。由表2可知,与拉压模量比和拉压强度比相对应的温度F值都要大于应变率的F值,这说明单轴加载条件下HTPB推进剂的拉压力学性能差异性更容易受温度的影响。其次,温度和应变率对单轴拉压强度比的F值都大于Fcrit值,温度对单轴拉压模量比的F值大于Fcrit值,这说明温度和应变率对HTPB推进剂拉压强度比都有比较明显的影响,而只有温度的变化对拉压模量比有比较明显的影响。同时,与拉压强度比相对应的温度和应变率F值都要大于与拉压模量比相对应的F值。因此,单轴加载条件下HTPB推进剂拉压力学性能的差异性更主要地体现在强度上,可选择强度比作为低温1~100 s-1内单轴加载下未老化HTPB推进剂拉压力学性能差异性分析的特征值。

    表2 未老化HTPB推进剂的单轴力学性能参数比的方差分析F

    Table 2 F values of variance analysis on the ratio of uniaxial mechanical parameters for unaged HTPB propellant

    Fcritinfluencing factorsF value for the ratio Eut/EucF value for the ratio σumt/σuc
    3.8378temperature8.431425.1077
    4.4590strain rate4.08055.3466

    NOTE: Fcrit is the critical value for statistics of F.

  • 2.3 热加速老化影响分析

  • 2.3.1 最大伸长率

    低温动态加载下,HTPB推进剂仍更容易因为拉伸应力作用而发生破坏,需重点确定热加速老化后推进剂在低温动态单轴拉伸加载下的失效判据。张兴[26]指出,热加速老化后HTPB复合固体推进剂的单轴拉伸初始弹性模量Eut和最大抗拉强度σumt总体上升高,而最大伸长率εumt降低。因此,本研究选择εumt为对象进行分析。室温和低温-40 ℃不同应变率(0.40,4.00,14.29,42.86 s-1)条件下,热加速老化后HTPB推进剂的最大伸长率随老化时间的变化关系如图1所示,其中热加速老化时间分别为0,32,74,98 d。由该图可知,最大伸长率εumt随热老化时间的增加而不断降低,但随温度的持续降低和应变率的不断升高,老化不再对该参数的变化产生明显影响,其数值最终稳定在10%左右。其次,随温度降低和应变率升高,最大伸长率εumt随热老化时间的变化关系变得更复杂。室温条件下(图1a),该参数与热老化时间之间均满足线性关系。但低温-40 ℃条件下(图1b),除在低应变率0.40 s-1和最高应变率42.86 s-1加载时以外,该参数随热老化时间的变化关系满足非线性特性,且在热加速老化32 d时降低速率最大。

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image001.png

    a. 25 ℃

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image002.png

    b. -40 ℃

    图1 HTPB推进剂的最大伸长率和热老化时间关系

    Fig.1 The dependence of the maximum strain of HTPB propellant on the thermal aging time

    上述变化规律与实验条件下HTPB推进剂内部细观结构的失效机理密切相关。一方面,热加速老化时,推进剂基体粘合剂网络结构的氧化交联占主导地位;另一方面,热加速老化后推进剂的细观损伤程度较未老化时增大,如图2所示。该图为老化前后推进剂在低温不同应变率条件下的单轴拉伸断面电镜扫面图片,由该图可知,未老化推进剂在低温低应变率加载时,其细观损伤形式主要是少量AP颗粒断裂(图2a),随应变率升高,推进剂内部AP颗粒断裂数量增大(图2b)。而老化后HTPB推进剂在低温低应变率条件下的细观损伤形式不仅存在AP颗粒断裂,还包括填充颗粒发生的“脱湿”现象(图2c所示)。上述两方面的机理作用均使得最大伸长率随热老化时间的增长而降低。此外,随应变率升高,热老化后HTPB推进剂在低温条件下的细观损伤形式仅包括AP颗粒断裂(图2d所示),损伤形式发生改变的临界应变率为4.00~14.29 s-1。因此,低温条件下加载时,推进剂最大伸长率的降低速率在该应变率阶段较大,与热老化时间之间的变化关系呈非线性。最后,随温度持续降低和应变率不断升高,推进剂内部的AP颗粒几乎全部发生断裂,其细观损伤程度非常高,则应变率和热老化时间几乎不对推进剂最大伸长率的变化产生影响。由于低温动态加载下最大伸长率仍满足随热老化时间增长而不断下降的规律,且最大伸长率随温度、应变率和热加速老化时间的变化能反映推进剂内部细观损伤机理和损伤程度的变化。因此,可将最大伸长率定义为分析低温动态单轴加载下HTPB推进剂失效的判据。

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image003.png

    a. -40 ℃, 0.40 s-1, 0 d b. -40 ℃, 14.29 s-1, 0 d

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image004.png

    c. -40 ℃, 0.40 s-1, 98 d d. -40 ℃, 14.29 s-1, 98 d

    图2 HTPB推进剂的拉伸断面SEM图(×200)

    Fig.2 The SEM images of tensile fracture surfaces for HTPB propellant (×200)

  • 2.3.2 主曲线

    基于时温等效原理(TTSP)可获得固体推进剂等粘弹性材料的力学性能主曲线,进而对较大加载范围内材料的力学性能进行预[27]。采用低温动态单轴拉伸实验获得的数据,基于TTSP建立的不同热老化时间后HTPB推进剂的最大伸长率主曲线如图3所示。由于研究低温动态加载下推进剂的失效判据,因此,以-40 ℃为参考温度T0。不同热老化时间条件下,移位因子lgαT和最大伸长率εumt随温度和应变率变化如表3所示,基于表3可对较宽加载范围内推进剂的失效情况进行分析。此外,由表3可知,老化后HTPB推进剂的单轴拉伸最大伸长率移位因子随温度变化关系从线性转变为指数形式的非线性,而最大伸长率主曲线在老化前后均可以用非线性的Gauss函数形式进行拟合描述。

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image005.png

    a. 98 d

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image006.png

    b. different thermal aging time

    图3 单轴拉伸加载下老化后HTPB推进剂的最大伸长率主曲线

    Fig.3 Master curves of the strain at maximum tensile stress for aged HTPB propellant in uniaxial tension

    表3 单轴拉伸加载下老化后HTPB推进剂的最大伸长率主曲线关系式

    Table 3 The equations for master curves of the strain at the maximum tensile stress for aged HTPB propellant in uniaxial tension

    mechanical parametersaging time / dfitted relationregression coefficient
    logarithmic shift factor lgαT0lgαT=-0.04378T+10.17730.9974
    32lgαT=71.8461exp(-T/96.5130)-6.34930.9944
    74lgαT=64.1641exp(-T/100.6740)-6.31870.9979
    98lgαT=49.6382exp(-T/121.6423)-7.33500.9996

    strain at

    maximum tensile

    stress εumt

    0εumt=-13.4464+14.0193exp{-2×[0.03568lg(αTε˙)+0.06216]2}0.8449
    32εumt=-13.3220+19.6124exp{-2×[0.03304lg(αTε˙)+0.06473]2}0.8699
    74εumt=-9.5093+10.0298exp{-2×[0.03817lg(αTε˙)+0.07593]2}0.8844
    98εumt=-9.0256+9.5273exp{-2×[0.04083lg(αTε˙)+0.08491]2}0.8714
  • 3 双轴失效判据

  • 3.1 准双轴拉伸力学性能实验及参数确定

    采用新型单轴高性能试验机和板条实验件开展HTPB推进剂准双轴拉伸实验条件为:4个热加速老化时间(0,32,74,98 d)、3个温度(-50,-30,25 ℃)和4组应变率(0.40,4.00,14.29,42.86 s-1)。基于国内GJB 770B-2005标准(测试方法413)定义单轴拉伸条件下固体推进剂力学性能参数的方法,直接从准双轴拉伸加载的应力-应变曲线上确定沿试验机拉伸方向(竖直方向)的HTPB推进剂的最大拉伸应力(或最大抗拉强度)σbmt和最大伸长率εbmt

  • 3.2 应力状态影响分析

    热老化前后HTPB推进剂在准双轴和单轴拉伸加载下的典型力学性能参数比如表4所示。由表4可知,不同加载下HTPB推进剂的准双轴和单轴拉伸强度比σbmt/σumt均大于1,且该比值随温度降低总体上呈升高趋势,但应变率变化对其影响较弱。而最大伸长率比εbmt/εumt均小于1,且未老化时该参数随应变率升高而总体上呈升高趋势,但老化后该参数随应变率升高而呈下降趋势,温度变化对该参数的影响较复杂。其次,随热老化时间增长,强度比σbmt/σumt变化不大,仅在14.29 s-1应变率条件下升高较为明显。而最大伸长率比εbmt/εumt随热老化时间增长而降低,且温度越低,降低越明显。最终,随温度的持续降低(-50 ℃)和应变率(14.29 s-1)的不断升高,推进剂的最大伸长率不再受应力状态的影响,而近似为一恒定值。上述应力状态对推进剂力学性能的影响,一方面是由于双轴拉伸时推进剂中的大分子链同时受两个方向的约束,沿一个方向发生分子链之间滑移变形的难度增大。因此,需要比单轴拉伸更大的应力作用才能发生破坏,这在很大程度上导致双轴拉伸时推进剂的最大拉伸应力较单轴拉伸时有所提高,而最大伸长率降低。另一方面是由于推进剂细观结构的损伤程度在双轴拉伸条件下与单轴拉伸时不同,但随温度的不断降低和应变率的持续升高,推进剂细观结构的损伤程度相当严重,应力状态的影响不明显。这些特性表明,准双轴拉伸条件下老化前后的推进剂均易因为伸长率的降低而发生失效,则双轴拉伸条件下固体推进剂的最大伸长率可选为开展点火建压条件下药柱结构完整性分析时的失效判据。此外,准双轴拉伸条件下未老化HTPB推进剂的最大伸长率约为单轴拉伸条件下相应数值的60%~85%,而老化后约为40%~60%,该比例关系有助于基于固体推进剂的单轴拉伸实验结果近似推断其在双轴拉伸条件下的力学性能。

    表4 老化前后HTPB推进剂的准双轴和单轴拉伸力学性能参数比

    Table 4 Ratio of mechanical parameters for HTPB propellant before and after aging in quasi‑biaxial and uniaxial tension

    aging time / dtemperature / ℃σbmt/σumtεbmt/εumt
    0.40 s-14.00 s-114.29 s-142.86 s-10.40 s-14.00 s-114.29 s-142.86 s-1
    0251.00611.00691.00751.02100.69230.78570.86210.8571
    -301.02171.02741.02541.01000.64000.63830.61360.7500
    -501.04551.04111.03461.09550.72500.76391.00001.0000
    74251.01641.01451.1156-0.58640.47800.4129-
    -301.00841.03391.1396-0.47500.47210.4200-

    NOTE: σbmt/σumt is the strength ratio. εbmt/εumt is the ratio of the strain at maximum tensile stress.

  • 3.3 热加速老化影响分析

    热加速老化后HTPB推进剂在准双轴拉伸加载下的最大伸长率εbmt随老化时间的变化关系如图4所示。由图4可知,随加载温度和应变率发生变化,εbmt与热老化时间之间的关系也发生变化。室温条件下,随应变率升高,εbmt与热老化时间之间从线性关系转变为非线性关系。低温条件下,两者之间总体上满足非线性关系。当温度不断降低(-50 ℃)和应变率持续升高(14.29 s-1)时,热老化基本上不再对推进剂最大伸长率的变化产生影响,εbmt最终稳定在9%左右。

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image007.png

    a. 25 ℃

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image008.png

    b. -30 ℃

    html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image009.png

    c. -50 ℃

    图4 准双轴拉伸时HTPB推进剂的最大伸长率随老化时间的变化关系

    Fig.4 The dependences of the strain at maximum tensile stress for HTPB propellant on the aging time in quasi‑biaxial tension

    对比图1和图4可知,准双轴拉伸加载下HTPB推进剂的最大伸长率随热老化时间的变化关系与单轴拉伸时有所区别,其变化规律相对更加简单。参考文献[28],准双轴拉伸加载下,最大伸长率与热老化时间之间的线性关系和非线性关系可分别采用下述模型进行描述:

    P=P0+K×ta
    (1)
    P=P0+Kexp(-ta/β)
    (2)

    式中,P为选定的推进剂老化性能评定参数在老化后某一时刻的值;P0为老化性能评定参数在初始时刻的值;Kβ均为与温度、应变率有关的性能参数变化速度常数,K单位为d-1ta为热加速老化时间,d。不同加载温度和应变率条件下拟合获得的模型参数值如表5所示,计算过程中,均采用Levenberg‑Marquardt优化算法。

    表5 准双轴拉伸时HTPB推进剂的老化模型参数值

    Table 5 Values of aging model parameters for HTPB propellant in quasi‑biaxial tension

    model parameters25 ℃-30 ℃-50 ℃
    0.40 s-14.00 s-114.29 s-10.40 s-14.00 s-114.29 s-10.40 s-14.00 s-1
    P00.38574-0.071880.16210.18870.16030.14980.16150.1120
    K-0.001540.47330.32790.13050.12970.10960.11350.09765
    β-184.052843.837141.014350.471444.914618.041447.3545

    热加速老化前后三组元HTPB推进剂在准双轴拉伸加载下的最大伸长率主曲线已在文献[24]中进行了分析,其变化规律与单轴拉伸时保持一致,不再阐述。结合获得的主曲线和表5中的数据,可对不同温度、应变率和热加速老化时间条件下准双轴拉伸时推进剂的最大伸长率εbmt进行预测,进而对推进剂的失效情况进行评判,并分析低温点火建压条件下长期贮存后战术导弹SRM药柱的结构完整性。

  • 4 结 论

    结合低温1~100 s-1定应变率范围内三组元HTPB复合固体推进剂的力学性能实验,分析了温度、应变率、热老化时间和应力状态对推进剂初始弹性模量、强度和伸长率的影响,确定了单轴和准双轴拉伸加载下推进剂的失效判据,得到如下结论:

    (1)单轴拉压强度比更能反映推进剂的动态单轴拉压差异性,且受温度影响比较明显。室温条件下,其数值接近于0.4,低温条件下,其数值为0.2~0.3,即动态单轴加载时推进剂易因拉伸应力作用而失效。

    (2)动态单轴加载下,热老化后推进剂抵抗破坏的能力降低,可将拉伸时的最大伸长率选择为失效判据。该参数随热老化时间的增加而不断降低,且变化关系较复杂,但随温度的持续降低和应变率的不断升高,老化不再对该参数的变化产生明显影响,最终稳定在10%左右。

    (3)动态准双轴拉伸加载下,推进剂的强度较单轴拉伸时提高,而最大伸长率明显降低。其次,最大伸长率降低的幅度随热老化时间增长而增大,且加载温度越低,降低越明显。未老化HTPB推进剂在准双轴拉伸加载下的最大伸长率约为单轴拉伸条件下相应数值的60%~85%,而老化后约为40%~60%。最终,随温度持续降低和应变率不断升高,推进剂的最大伸长率不再受应力状态的影响,而近似为恒定值。动态双轴拉伸条件下的最大伸长率可选为相应加载下推进剂的失效判据以及点火建压条件下战术导弹SRM药柱结构完整性分析的判据,其数值可结合主曲线和老化模型确定。

    (责编:张 琪)

  • 参考文献

    • 1

      Amos R J. On a viscoplastic characterisation of solid propellant and the prediction of grain failure on pressurization cold[R]. AIAA 2001‑3719, 2001.

    • 2

      Douglass H W, Collins J H, Noel J S, et al. Solid propellant grain structural integrity analysis[R]. NASA SP‑8073, 1972.

    • 3

      刘中兵, 周艳青, 张兵. 固体发动机低温点火条件下药柱结构完整性分析[J]. 固体火箭技术, 2015, 38(3): 351-355.

      LIU Zhong‑bing, ZHOU Yan‑qing, ZHANG Bing. Structural integrity analysis on grains of solid rocket motor at low temperature ignition[J]. Journal of Solid Rocket Technology, 2015, 38(3): 351-355.

    • 4

      Jeremic R. Some aspects of time‑temperature superposition principle applied for predicting mechanical properties of solid rocket propellants[J]. Propellants, Explosive, Pyrotechnics, 1999, 24(4): 221-223.

    • 5

      Lepie A H. Two devices for high speed tensile testing[C]// 14th Meeting of the Joint Army‑Navy‑NASA‑Air Force (JANNAF) Structures and Mechanical Behavior Working Group, Maryland 1977.

    • 6

      王哲君, 强洪夫, 王广, 等. 固体推进剂力学性能和本构模型的研究进展[J]. 含能材料, 2016, 24(4): 403-416.

      WANG Zhe‑jun, QIANG Hong‑fu, WANG Guang, et al. Review on the mechanical properties and constitutive models of solid propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(4): 403-416.

    • 7

      Zalewski R, Wolszakiewicz T. Analysis of uniaxial tensile tests for homogeneous solid propellants under various loading conditions[J]. Central European Journal of Energetic Materials, 2011, 8(4): 223-231.

    • 8

      Zhang L, Zhi S, Shen Z. Research on tensile mechanical properties and damage mechanism of composite solid propellants[J]. Propellants, Explosives, Pyrotechnics. 2018, 43(3), 234-240.

    • 9

      Zhou D, Liu X, Sui X, et al. Effect of pre‑strain during ageing on the maximum elongation of composite solid propellants and its modelling[J]. Polymer Testing, 2016, 50: 200-207.

    • 10

      Duncan E J S, Margetson J. A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(2): 94-104.

    • 11

      李辉, 许进升, 周长省, 等. HTPB推进剂温度相关性失效准则[J]. 含能材料, 2018, 26(9): 732-738.

      LI Hui, XU Jin‑sheng, ZHOU Chang‑sheng, et al. The failure criterion related to temperature for HTPB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 732-738.

    • 12

      强洪夫. 固体火箭发动机药柱结构完整性数值仿真与实验研究[D]. 西安: 西安交通大学, 1998.

      QIANG Hong‑fu. Numerical analysis and experimental researches on solid rocket motor grain structure integrity[D]. Xi′an: Xi′an Jiaotong University, 1998.

    • 13

      Ren P, Hou X, He G, et al. Comparative research of tensile and compressive modulus of composite solid propellant for solid rocket motor[J]. Journal of Astronautics, 2010, 31(10): 2354-2359.

    • 14

      Sun C, Xu J, Chen X, Zheng J, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double‑base propellant[J]. Mechanics of Materials, 2015, 89: 35-46.

    • 15

      Balzer J E, Siviour C R, Walley S M, et al. Behaviour of ammonium perchlorate‑based propellants and a polymer‑bonded explosive under impact loading[J]. Proceeding of the Royal Society of London, 2004, 460(2043): 781-806.

    • 16

      贾永刚, 张为华, 张炜. 固体推进剂双向拉伸试件优化设计及试验[J]. 推进技术, 2011, 32(5): 737-740.

      JIA Yong‑gang, ZHAN Wei‑hua, ZHANG Wei. Optimal design and examination study of biaxial tensile specimens for solid propellant[J]. Journal of Propulsion Technology, 2011, 32(5): 737-740.

    • 17

      强洪夫, 王广, 张炜, 等. 固体发动机推进剂/粘结界面失效机理、模拟表征和优化设计[R]. 973‑61338, 2005-2010.

    • 18

      Wang Z, Qiang H, WANG G. Experimental investigation on high strain rate tensile behaviors of HTPB propellant at low temperatures[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(6): 814-820.

    • 19

      Wang Z, Qiang H, Wang T, et al. A thermovisco‑hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time‑Dependent Materials, 2018, 22(3): 291-314.

    • 20

      Wang Z, Qiang H, WANG G, et al. A new test method to obtain biaxial tensile behaviors of solid propellant at high strain rates[J]. Iranian Polymer Journal, 2016, 25(6): 515-524.

    • 21

      强洪夫, 王哲君, 王广, 等. HTPB推进剂低温动态准双轴拉伸力学性能研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议,西安,2016.

      QIANG Hong‑fu, WANG Zhe‑jun, WANG Guang, et al. Quasi‑biaxial tensile mechanical properties of HTPB propellant at low temperature under dynamic loading[C]//The 2nd Joint Conference on Aerospace Power and 38th Aerospace Powerplant Techical Information Society Technical Conference, Xi′an, 2016.

    • 22

      刘畅, 强洪夫, 王哲君, 等. 低温动态加载下老化HTPB推进剂强度准则研究[J]. 推进技术, 2018, 39(11): 2581-2587.

      LIU Chang, QIANG Hong‑fu, WANG Zhe‑jun, et al. Strength criterion of aged HTPB propellant at low temperature under dynamic loading[J]. Journal of Propulsion Technology, 2018, 39(11): 2581-2587.

    • 23

      Method for determining the tensile properties of solid rocket propellants[M]. CPIA Publish SPIA, 1957: 8.

    • 24

      赖建伟. 固体推进剂药柱低温力学性能与结构完整性研究[D]. 西安: 火箭军工程大学, 2013.

      LAI Jian‑wei. Research on mechanical properties and structural integrity of solid propellant grain at low temperature[D]. Xi′an: Xi′an Hi‑Tech Institute, 2013.

    • 25

      张晓军, 常新龙, 赖建伟, 等. HTPB 推进剂低温拉伸/压缩力学性能对比[J]. 固体火箭技术, 2013, 36(6): 771-774.

      ZHANG Xiao‑jun, CHANG Xin‑long, LAI Jian‑wei, et al. Comparative research of tensile and compressive mechanical properties of HTPB propellant at low temperature[J]. Journal of Solid Rocket Technology, 2013, 36(6): 771-774.

    • 26

      张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙: 国防科学技术大学, 2009.

      ZHANG Xing‑gao. Study on the aging properties and storage life prediction of HTPB propellant[D]. Changsha: National University of Defense Technology, 2009.

    • 27

      Nevie`re R. An extension of the time‑temperature superposition principle to non‑linear viscoelastic solids[J]. International Journal of Solids and Structures, 2006, 43(17): 5295-5306.

    • 28

      侯林法. 复合固体推进剂[M]. 北京: 中国宇航出版社, 2009: 382-383.

      HOU Lin‑fa. Composite solid propellant[M]. Beijing: China Astronautic Publishing House, 2009: 382-383.

强洪夫

机 构:火箭军工程大学,陕西 西安 710025

Affiliation:Xi′an Hi‑Tech Institute, Xi′an 710025, China

邮 箱:Qiang@263.net

作者简介:强洪夫(1965-),男,博士,教授,主要从事固体火箭发动机药柱结构完整性分析与失效机理的研究。e‑mail:Qiang@263.net

王哲君

机 构:火箭军工程大学,陕西 西安 710025

Affiliation:Xi′an Hi‑Tech Institute, Xi′an 710025, China

角 色:通讯作者

Role:Corresponding author

邮 箱:qiulongzaitian@126.com

作者简介:王哲君(1988-),男,博士,讲师,主要从事固体火箭发动机药柱结构完整性分析与失效机理的研究。e‑mail:qiulongzaitian@126.com

王广

机 构:火箭军工程大学,陕西 西安 710025

Affiliation:Xi′an Hi‑Tech Institute, Xi′an 710025, China

耿标

机 构:火箭军工程大学,陕西 西安 710025

Affiliation:Xi′an Hi‑Tech Institute, Xi′an 710025, China

temperature

/ ℃

Eut/Eucσumt/σuc
0.40 s-14.00 s-114.29 s-10.40 s-14.00 s-114.29 s-1
250.99180.98850.97950.38650.38900.3597
-200.78920.66380.75540.28480.30010.3101
-300.81710.77590.65230.29570.30070.2627
-400.79490.78130.62870.28240.30040.2339
-500.92120.71660.73430.26390.26170.2169
Fcritinfluencing factorsF value for the ratio Eut/EucF value for the ratio σumt/σuc
3.8378temperature8.431425.1077
4.4590strain rate4.08055.3466
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image001.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image002.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image003.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image004.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image005.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image006.png
mechanical parametersaging time / dfitted relationregression coefficient
logarithmic shift factor lgαT0lgαT=-0.04378T+10.17730.9974
32lgαT=71.8461exp(-T/96.5130)-6.34930.9944
74lgαT=64.1641exp(-T/100.6740)-6.31870.9979
98lgαT=49.6382exp(-T/121.6423)-7.33500.9996

strain at

maximum tensile

stress εumt

0εumt=-13.4464+14.0193exp{-2×[0.03568lg(αTε˙)+0.06216]2}0.8449
32εumt=-13.3220+19.6124exp{-2×[0.03304lg(αTε˙)+0.06473]2}0.8699
74εumt=-9.5093+10.0298exp{-2×[0.03817lg(αTε˙)+0.07593]2}0.8844
98εumt=-9.0256+9.5273exp{-2×[0.04083lg(αTε˙)+0.08491]2}0.8714
aging time / dtemperature / ℃σbmt/σumtεbmt/εumt
0.40 s-14.00 s-114.29 s-142.86 s-10.40 s-14.00 s-114.29 s-142.86 s-1
0251.00611.00691.00751.02100.69230.78570.86210.8571
-301.02171.02741.02541.01000.64000.63830.61360.7500
-501.04551.04111.03461.09550.72500.76391.00001.0000
74251.01641.01451.1156-0.58640.47800.4129-
-301.00841.03391.1396-0.47500.47210.4200-
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image007.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image008.png
html/hncl/CJEM2018340/media/55459ce5-8b57-401c-ac08-b91fde66bfb4-image009.png
model parameters25 ℃-30 ℃-50 ℃
0.40 s-14.00 s-114.29 s-10.40 s-14.00 s-114.29 s-10.40 s-14.00 s-1
P00.38574-0.071880.16210.18870.16030.14980.16150.1120
K-0.001540.47330.32790.13050.12970.10960.11350.09765
β-184.052843.837141.014350.471444.914618.041447.3545

表1 未老化HTPB推进剂的单轴拉压力学性能参数比

Table 1 Uniaxial tensile‑compressive mechanical properties ratio of unaged HTPB propellant under the test condition

表2 未老化HTPB推进剂的单轴力学性能参数比的方差分析F

Table 2 F values of variance analysis on the ratio of uniaxial mechanical parameters for unaged HTPB propellant

图1 HTPB推进剂的最大伸长率和热老化时间关系 -- a. 25 ℃

Fig.1 The dependence of the maximum strain of HTPB propellant on the thermal aging time -- a. 25 ℃

图1 HTPB推进剂的最大伸长率和热老化时间关系 -- b. -40 ℃

Fig.1 The dependence of the maximum strain of HTPB propellant on the thermal aging time -- b. -40 ℃

图2 HTPB推进剂的拉伸断面SEM图(×200) -- a. -40 ℃, 0.40 s-1, 0 d b. -40 ℃, 14.29 s-1, 0 d

Fig.2 The SEM images of tensile fracture surfaces for HTPB propellant (×200) -- a. -40 ℃, 0.40 s-1, 0 d b. -40 ℃, 14.29 s-1, 0 d

图2 HTPB推进剂的拉伸断面SEM图(×200) -- c. -40 ℃, 0.40 s-1, 98 d d. -40 ℃, 14.29 s-1, 98 d

Fig.2 The SEM images of tensile fracture surfaces for HTPB propellant (×200) -- c. -40 ℃, 0.40 s-1, 98 d d. -40 ℃, 14.29 s-1, 98 d

图3 单轴拉伸加载下老化后HTPB推进剂的最大伸长率主曲线 -- a. 98 d

Fig.3 Master curves of the strain at maximum tensile stress for aged HTPB propellant in uniaxial tension -- a. 98 d

图3 单轴拉伸加载下老化后HTPB推进剂的最大伸长率主曲线 -- b. different thermal aging time

Fig.3 Master curves of the strain at maximum tensile stress for aged HTPB propellant in uniaxial tension -- b. different thermal aging time

表3 单轴拉伸加载下老化后HTPB推进剂的最大伸长率主曲线关系式

Table 3 The equations for master curves of the strain at the maximum tensile stress for aged HTPB propellant in uniaxial tension

表4 老化前后HTPB推进剂的准双轴和单轴拉伸力学性能参数比

Table 4 Ratio of mechanical parameters for HTPB propellant before and after aging in quasi‑biaxial and uniaxial tension

图4 准双轴拉伸时HTPB推进剂的最大伸长率随老化时间的变化关系 -- a. 25 ℃

Fig.4 The dependences of the strain at maximum tensile stress for HTPB propellant on the aging time in quasi‑biaxial tension -- a. 25 ℃

图4 准双轴拉伸时HTPB推进剂的最大伸长率随老化时间的变化关系 -- b. -30 ℃

Fig.4 The dependences of the strain at maximum tensile stress for HTPB propellant on the aging time in quasi‑biaxial tension -- b. -30 ℃

图4 准双轴拉伸时HTPB推进剂的最大伸长率随老化时间的变化关系 -- c. -50 ℃

Fig.4 The dependences of the strain at maximum tensile stress for HTPB propellant on the aging time in quasi‑biaxial tension -- c. -50 ℃

表5 准双轴拉伸时HTPB推进剂的老化模型参数值

Table 5 Values of aging model parameters for HTPB propellant in quasi‑biaxial tension

image /

Eut/Euc is tensile‑compressive modulus ratio. σumt/σuc is tensile‑compressive strength ratio.

Fcrit is the critical value for statistics of F.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

σbmt/σumt is the strength ratio. εbmt/εumt is the ratio of the strain at maximum tensile stress.

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Amos R J. On a viscoplastic characterisation of solid propellant and the prediction of grain failure on pressurization cold[R]. AIAA 2001‑3719, 2001.

    • 2

      Douglass H W, Collins J H, Noel J S, et al. Solid propellant grain structural integrity analysis[R]. NASA SP‑8073, 1972.

    • 3

      刘中兵, 周艳青, 张兵. 固体发动机低温点火条件下药柱结构完整性分析[J]. 固体火箭技术, 2015, 38(3): 351-355.

      LIU Zhong‑bing, ZHOU Yan‑qing, ZHANG Bing. Structural integrity analysis on grains of solid rocket motor at low temperature ignition[J]. Journal of Solid Rocket Technology, 2015, 38(3): 351-355.

    • 4

      Jeremic R. Some aspects of time‑temperature superposition principle applied for predicting mechanical properties of solid rocket propellants[J]. Propellants, Explosive, Pyrotechnics, 1999, 24(4): 221-223.

    • 5

      Lepie A H. Two devices for high speed tensile testing[C]// 14th Meeting of the Joint Army‑Navy‑NASA‑Air Force (JANNAF) Structures and Mechanical Behavior Working Group, Maryland 1977.

    • 6

      王哲君, 强洪夫, 王广, 等. 固体推进剂力学性能和本构模型的研究进展[J]. 含能材料, 2016, 24(4): 403-416.

      WANG Zhe‑jun, QIANG Hong‑fu, WANG Guang, et al. Review on the mechanical properties and constitutive models of solid propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(4): 403-416.

    • 7

      Zalewski R, Wolszakiewicz T. Analysis of uniaxial tensile tests for homogeneous solid propellants under various loading conditions[J]. Central European Journal of Energetic Materials, 2011, 8(4): 223-231.

    • 8

      Zhang L, Zhi S, Shen Z. Research on tensile mechanical properties and damage mechanism of composite solid propellants[J]. Propellants, Explosives, Pyrotechnics. 2018, 43(3), 234-240.

    • 9

      Zhou D, Liu X, Sui X, et al. Effect of pre‑strain during ageing on the maximum elongation of composite solid propellants and its modelling[J]. Polymer Testing, 2016, 50: 200-207.

    • 10

      Duncan E J S, Margetson J. A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach[J]. Propellants, Explosives, Pyrotechnics, 1998, 23(2): 94-104.

    • 11

      李辉, 许进升, 周长省, 等. HTPB推进剂温度相关性失效准则[J]. 含能材料, 2018, 26(9): 732-738.

      LI Hui, XU Jin‑sheng, ZHOU Chang‑sheng, et al. The failure criterion related to temperature for HTPB propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 732-738.

    • 12

      强洪夫. 固体火箭发动机药柱结构完整性数值仿真与实验研究[D]. 西安: 西安交通大学, 1998.

      QIANG Hong‑fu. Numerical analysis and experimental researches on solid rocket motor grain structure integrity[D]. Xi′an: Xi′an Jiaotong University, 1998.

    • 13

      Ren P, Hou X, He G, et al. Comparative research of tensile and compressive modulus of composite solid propellant for solid rocket motor[J]. Journal of Astronautics, 2010, 31(10): 2354-2359.

    • 14

      Sun C, Xu J, Chen X, Zheng J, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double‑base propellant[J]. Mechanics of Materials, 2015, 89: 35-46.

    • 15

      Balzer J E, Siviour C R, Walley S M, et al. Behaviour of ammonium perchlorate‑based propellants and a polymer‑bonded explosive under impact loading[J]. Proceeding of the Royal Society of London, 2004, 460(2043): 781-806.

    • 16

      贾永刚, 张为华, 张炜. 固体推进剂双向拉伸试件优化设计及试验[J]. 推进技术, 2011, 32(5): 737-740.

      JIA Yong‑gang, ZHAN Wei‑hua, ZHANG Wei. Optimal design and examination study of biaxial tensile specimens for solid propellant[J]. Journal of Propulsion Technology, 2011, 32(5): 737-740.

    • 17

      强洪夫, 王广, 张炜, 等. 固体发动机推进剂/粘结界面失效机理、模拟表征和优化设计[R]. 973‑61338, 2005-2010.

    • 18

      Wang Z, Qiang H, WANG G. Experimental investigation on high strain rate tensile behaviors of HTPB propellant at low temperatures[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(6): 814-820.

    • 19

      Wang Z, Qiang H, Wang T, et al. A thermovisco‑hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time‑Dependent Materials, 2018, 22(3): 291-314.

    • 20

      Wang Z, Qiang H, WANG G, et al. A new test method to obtain biaxial tensile behaviors of solid propellant at high strain rates[J]. Iranian Polymer Journal, 2016, 25(6): 515-524.

    • 21

      强洪夫, 王哲君, 王广, 等. HTPB推进剂低温动态准双轴拉伸力学性能研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议,西安,2016.

      QIANG Hong‑fu, WANG Zhe‑jun, WANG Guang, et al. Quasi‑biaxial tensile mechanical properties of HTPB propellant at low temperature under dynamic loading[C]//The 2nd Joint Conference on Aerospace Power and 38th Aerospace Powerplant Techical Information Society Technical Conference, Xi′an, 2016.

    • 22

      刘畅, 强洪夫, 王哲君, 等. 低温动态加载下老化HTPB推进剂强度准则研究[J]. 推进技术, 2018, 39(11): 2581-2587.

      LIU Chang, QIANG Hong‑fu, WANG Zhe‑jun, et al. Strength criterion of aged HTPB propellant at low temperature under dynamic loading[J]. Journal of Propulsion Technology, 2018, 39(11): 2581-2587.

    • 23

      Method for determining the tensile properties of solid rocket propellants[M]. CPIA Publish SPIA, 1957: 8.

    • 24

      赖建伟. 固体推进剂药柱低温力学性能与结构完整性研究[D]. 西安: 火箭军工程大学, 2013.

      LAI Jian‑wei. Research on mechanical properties and structural integrity of solid propellant grain at low temperature[D]. Xi′an: Xi′an Hi‑Tech Institute, 2013.

    • 25

      张晓军, 常新龙, 赖建伟, 等. HTPB 推进剂低温拉伸/压缩力学性能对比[J]. 固体火箭技术, 2013, 36(6): 771-774.

      ZHANG Xiao‑jun, CHANG Xin‑long, LAI Jian‑wei, et al. Comparative research of tensile and compressive mechanical properties of HTPB propellant at low temperature[J]. Journal of Solid Rocket Technology, 2013, 36(6): 771-774.

    • 26

      张兴高. HTPB推进剂贮存老化特性及寿命预估研究[D]. 长沙: 国防科学技术大学, 2009.

      ZHANG Xing‑gao. Study on the aging properties and storage life prediction of HTPB propellant[D]. Changsha: National University of Defense Technology, 2009.

    • 27

      Nevie`re R. An extension of the time‑temperature superposition principle to non‑linear viscoelastic solids[J]. International Journal of Solids and Structures, 2006, 43(17): 5295-5306.

    • 28

      侯林法. 复合固体推进剂[M]. 北京: 中国宇航出版社, 2009: 382-383.

      HOU Lin‑fa. Composite solid propellant[M]. Beijing: China Astronautic Publishing House, 2009: 382-383.