CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BdzilJ B, StewartD S. The dynamics of detonation in explosive system DSD [J]. Annual Review of Fluid Mechanics, 2007, 39: 263-92.
参考文献 2
BdzilJ B, StewartD S. Modeling two‑dimensional detonation with detonation shock dynamics[J]. Physics of Fluids A, 1989, 1(7):1261-1267.
参考文献 3
CampbellA W. Diameter effect and failure diameter of a TATB‑based explosive[J]. Propellants, Explosives, Pyrotechnics, 1984, 9: 183-187.
参考文献 4
HillL G, BdzilJ B, AslamT D. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range[C]//Proceedings of 11th International Detonation Symposium, Snowmass, CO, 1998:1029-1037.
参考文献 5
HillL G, AslamT D. PBX 9502 front curvature rate stick data: repeatability and the effects of temperature and material variation[C]//Proceedings of 13th International Detonation Symposium, Norfolk, VA, 2006, 175(3): 311-341.
参考文献 6
HillL G, AslamT D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations[C]//Proceedings of 14th International Detonation Symposium, Coeurd′Alene, ID,2010, 52(3): 779-788.
参考文献 7
谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究[J]. 爆炸与冲击, 2003, 23(4): 300-304.
TANDuo‑wang, FANGQing, ZHANGGuang‑sheng, et al. Experimental study on the diameter effect for JB‑9014 rate sticks[J]. Explosion and Shock Waves, 2003,23(4):300-304.
参考文献 8
谭多望, 方青. 常温下钝感炸药爆轰波传播的曲率效应研究[J]. 含能材料, 2005, 13(1): 13-16.
TANDuo‑wang, FANGQing. Curvature effect for insensitive explosive at normal atmospheric temperature[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(1):13-16.
参考文献 9
谭多望, 方青, 张光升, 等. 常温下JB‑9014钝感炸药DSD参数研究[J]. 高压物理学报, 2009, 23(3): 161-166.
TANDuo‑wang, FANGQing, ZhANGGuang‑sheng, et al. Detonation shock dynamics calibration of JB‑9014 explosive at ambient temperature[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 161-166.
参考文献 10
邹立勇, 谭多望, 文尙刚, 等. 低温下小尺度钝感炸药非理想爆轰实验研究[J]. 爆炸与冲击, 2007, 27(4): 325-330.
ZOULi‑yong, TANDuo‑wang, WENShang‑gang, et al. Experimental study on the nonideal detonation for JB‑9014 rate sticks at -30 ℃[J]. Explosion and Shock Waves, 2007, 27(4): 325-330.
参考文献 11
郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究[J].含能材料, 2017, 25(2): 138-143.
GUOLiu‑wei, LIUYu‑si, WANGBin, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 138-143.
参考文献 12
BdzilJ B, AslamT D, HennigerR J. Detonation front models: theories and methods[R]. LA‑14274, 2006.
参考文献 13
周明,孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社,1999: 18-31.
ZHOUMing, SUNShu‑dong. Genetic algorithms: theory and applications[M]. Beijing: National Defense Industry Press, 1999: 18-31.
目录 contents

    摘要

    为了研究宽温域环境对钝感炸药爆轰波波阵面曲率效应的影响,采用高速扫描照相技术及电探针测速技术获取了-55,11 ℃及70 ℃环境下JB‑9014炸药三种直径(10,15,30 mm)药柱的拟定态爆轰波波形及波速。结果表明,同一温度下,小直径药柱拟定态爆轰波波速随直径呈上凸型曲线增长,而大直径药柱则呈上凹形曲线增长趋势;同一药柱直径下,JB‑9014炸药拟定态爆轰波波速随环境温度的升高呈线性降低趋势,降低斜率与药柱直径相关。当采用多项式对JB‑9014炸药爆轰波波速随药柱直径及环境温度的变化规律进行拟合时,拟合结果与实验数据吻合较好。三种直径JB‑9014炸药的拟定态爆轰波波阵面形状随环境温度的升高逐渐变得平坦。当采用遗传算法对三种直径药柱的实验结果进行拟合时,获得了JB‑9014炸药在宽温域环境下的曲率效应Dn(κ)关系参数。在当地曲率κ<0.16时,Dn(κ)关系曲线随温度的升高而降低,而κ>0.26的结果则相反。当采用爆轰冲击动力学(Detonation Shock Dynamics,DSD)方法对三种直径炸药的爆轰波非理想传播过程进行了计算时,计算结果与实验值吻合较好。

    Abstract

    To study the influence of wide temperature range on the detonation wave front curvature rate for insensitive explosives, pseudo‑steady‑state detonation wave velocities and wave front shapes were obtained for JB‑9014 with three different grain diameters(10,15,30 mm)at the temperature -55, 11 ℃ and 70 ℃ by using high speed streak camera technique and electric pins velocimetry. Results show that at the same temperature, the pseudo‑steady‑state detonation wave velocity is concave down for small‑diameter grain but it is concave up for large‑diameter grain. At the same grain diameter, the velocity of pseudo‑steady‑state detonation wave velocities of JB‑9014 decreases linearly as the ambient temperature increases and the decrease of slope is related to the diameter of the grain. When the variation of detonation wave velocity of JB‑9014 with grain diameter and ambient temperature is fitted by polynomial, the fitting results are in good agreement with the experimental data. For JB‑9014 with three kinds of grain diameters, the pseudo‑steady‑state detonation wave front shape becomes flatter with the increase of the ambient temperature. When the experimental results of three kinds of grain diameters are fitted by genetic arithmetic method, the Dn(κ) parameters of JB‑9014 over a wide temperature range are obtained. When the local curvature is less than 0.16, the Dn(κ) relation decrease with the increase of temperature, while the result is the opposite when the local curvature is greater than 0.26. When the detonation shock dynamics (DSD) method is used to calculate the non‑ideal propagation process of detonation wave of grains with three kinds of diameters, the calculated results are in good agreement with the experimental values.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F019.png

  • 1 引 言

    曲率效应实验(front curvature rate stick experiment)作为爆轰冲击动力学(Detonation Shock Dynamics,DSD[1,2]研究爆轰波非理想传播行为的必需实验,一直是国内外爆轰物理研究的热点之一。钝感炸药因其爆轰反应区较宽,爆轰波的传播行为易受环境温度的影响,国外相关学者对此进行了大量的实验研究。A.W. Campbell[3]对PBX‑9502(95%三氨基三硝基苯(TATB)+5%Kel‑F800)炸药在-55,24 ℃及75 ℃下的曲率效应进行了研究,获取了不同温度下的失效直径及拟定态爆轰波波速随炸药直径的变化规律,指出钝感炸药PBX‑9502的拟定态波速随炸药直径的增大呈现加速增长趋势。L.G. Hill[4]对PBX‑9502炸药在-55,25 ℃及75 ℃下的曲率效应开展了实验研究,获取了炸药拟定态爆轰波波速及波阵面形状。实验表明,环境温度与炸药直径共同影响PBX‑9502的爆轰波波阵面形状,低温-55 ℃时,爆轰波拟定态波速随炸药直径基本呈现线性变化,而25 ℃及75 ℃时,则呈现明显的抛物线特征。L.G. Hill[5,6]对PBX‑9502炸药的曲率效应实验进行了汇总分析,指出炸药批次及材料性质对PBX‑9502炸药的曲率效应有着明显的影响,并建立了爆轰波Dn(κ)关系随炸药密度及温度变化的经验公式,在爆轰波长程绕射行为上得到了很好的应用。

    由于钝感炸药爆轰性能受炸药生产工艺的影响显著,国外研究结果无法直接应用到国内钝感炸药的爆轰性能上。国内相关研究人员对采用国内生产工艺的钝感炸药爆轰波波阵面曲率效应也开展了一定的研究。谭多望[7,8,9]对国产钝感炸药JB‑9014的常温曲率效应进行了实验研究,获取了拟定态爆轰波波阵面形状及波速。邹立勇[10]开展了JB‑9014炸药在低温-30 ℃的曲率效应实验,指出爆轰波低温拟定态波速高于常温结果,波阵面形状也与常温结果差异较大。郭刘伟[11]对JB‑9014炸药在高温60 ℃的曲率效应开展了实验研究,与常温结[7,8,9]进行对比,获取了高温环境对JB‑9014炸药爆轰波波阵面曲率效应的影响特性。上述研究采用的实验技术及炸药参数不尽相同,涉及的温度范围不够宽泛,无法较好地获取环境温度对钝感炸药爆轰波波阵面曲率效应的影响规律。本研究将采用同一实验方法对具有相同初始参数的JB‑9014炸药在-55~70 ℃环境温度下的爆轰波波阵面曲率效应开展实验研究,以期获取宽温域环境对JB‑9014炸药爆轰波波阵面曲率效应的影响规律。

  • 2 实 验

    曲率效应实验装置示意图见图1。实验装置由雷管、传爆药柱(96%黑索今(RDX))、主药柱(JB‑9014)、电探针阵列及光学扫描窗口等组成。爆轰波在主药柱中传播足够距离后(大于6倍药柱直径),呈现拟定态传播状态,在主药柱末端一定长度上以不接触炸药的方式对称布置30路电探针(side A+side B)以测量爆轰波达到各位置的时间。电探针位置固定后,采用影像仪对电探针的空间位置进行原位测量。爆轰波到达主药柱末端端面时,采用高速扫描相机通过光学窗口记录爆轰波波形。实验中主药柱半径R包括三种尺寸:5,7.5 mm及15 mm。实验中待测主药柱的初始密度均为1.894 g·cm-3

    图1
                            曲率效应实验装置示意图

    图1 曲率效应实验装置示意图

    Fig.1 Schematic diagram of curvature rate stick apparatus

    实验布局示意图见图2。曲率效应实验件放置于温度箱中,箱体一侧预留玻璃光学窗口,实验时,高压氙灯释放脉冲光线照射主药柱末端面,反射光线经透镜、反光镜进入高速扫描相机,相机底片根据感光程度记录爆轰波出药柱端面的时间过程。高速扫描相机的扫描速度为12 mm·μs-1。温度箱采用进、出气循环系统,促使温度箱内温度均匀,经测,温度箱内试件所处区域的温度极差<1 ℃。光学窗口采用自加热设计以解决低温-55 ℃时的窗口结霜问题。实验中的加载温度分别为-55,11 ℃及70 ℃,其中11 ℃为室温实测值。高、低温加载曲线如图3所示,保温时间均为180 min。

    图2
                            曲率效应实验布局示意图

    图2 曲率效应实验布局示意图

    Fig.2 Schematic diagram of curvature rate stick experiment set up

    html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image003.png

    a. hot shot

    html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image004.png

    b. cold shot

    图3 典型高、低温加载曲线

    Fig.3 Typical high and low temperature loading curves

  • 3 结果及分析

  • 3.1 拟定态波速

    采用最小二乘法,将双侧电探针阵列测到的爆轰波到达时间及各电探针间距进行处理,如图4所示。由图4可知,每发实验中电探针距离‑时间测试结果一致性较好,拟合过程中未有明显偏离拟合曲线的数据点。单侧电探针阵列距离‑时间的拟合曲线斜率即为该侧爆轰波波速的测量值。

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F007.png

    a. side A

    html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image006.png

    b. side B

    图4 电探针距离‑时间测试结果

    Fig.4 Distance‑time results obtained by electric pins

    -55,11 ℃及70 ℃环境温度下三种直径JB‑9014炸药爆轰波波速对比见图5。其中,D0为拟定态爆轰波波速实验测量值,DCJ为爆轰波CJ点波速计算值,详细计算见3.3。由图5可知,在药柱直径较小时,爆轰波波速随炸药直径呈上凸曲线增大,但当药柱直径大于某临界值时,爆轰波波速随炸药直径呈上凹曲线增大,曲线的变化参数与温度相关。该结论与L.G. Hill给出的PBX‑9502相关结[5,6]一致。以各温度的DCJ值为参考,对图5中的数据进行无量纲化处理,并采用多项式(1)进行归一化拟合,所得曲线与实验数据吻合很好,对比见图6。若忽略公式(1)中T的二阶小量,则该公式预测的同一药柱直径下JB‑9014炸药爆轰波波速随环境温度的升高呈线性递减趋势,递减斜率与药柱直径相关,这与目前的实验结果相一致,见图7。故公式(1)在一定程度上可以用来预测JB‑9014炸药拟定态爆轰波波速随炸药直径及环境温度的变化。

    图5
                            宽温域环境JB‑9014炸药的稳态爆轰波波速

    图5 宽温域环境JB‑9014炸药的稳态爆轰波波速

    Fig.5 The steady‑state detonation wave velocity of JB‑9014 over a wide temperature range

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F021.png

    a. 70 ℃

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F022.png

    b. 11 ℃

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F023.png

    c. -55 ℃

    图6 宽温域环境JB‑9014炸药爆轰波波速预测曲线与实验结果对比

    Fig.6 Comparison of the predicted curves and the experimental data of the detonation wave velocity for JB‑9014 over a wide temperature range

    D0DCJ=1-(0.85+2.3×10-4T+9.7×10-6T2)1R+6.5+0.5×10-2T+1.5×10-4T21R2-18.7+1.2×10-2T+5.1×10-4T21R3
    (1)

    式中,T为环境温度,℃;R为药柱半径,mm。

    图7
                            不同药柱直径下JB‑9014炸药爆轰波波速随环境温度的变化

    图7 不同药柱直径下JB‑9014炸药爆轰波波速随环境温度的变化

    Fig.7 Changes of the detonation wave velocity of JB‑9014 with environment temperature under various grain diameters

    随着炸药直径的增大,侧向稀疏波在炸药径向对爆轰波反应区的影响范围减小,炸药中心部位未受稀疏波影响的区域增大,用于驱动波阵面前进的反应区内有效能量提高,故爆轰波波速提高。当炸药直径大于一定值时,未受侧向稀疏波影响的炸药部位对受侧向稀疏波的炸药部位的侧向引爆效果增强,可能导致侧向稀疏波对爆轰波反应区的影响度加速递减,爆轰波波速随炸药直径呈加速增长趋势,故而出现图5中爆轰波波速随炸药直径的增大呈上凸增长且当直径大于一定值时呈上凹增长的结果。随着环境温度的升高,炸药的密度降低,单位体积内的能量释放率降低,故而爆轰波的传播速度降低,即如图7所示,同一直径炸药的爆轰波波速随环境温度的升高而降低。

  • 3.2 拟定态波阵面形状

    采用高速扫描照相技术获取的典型爆轰波波阵面形状如图8所示。由图8可知,爆轰波波阵面界面清晰,全波形记录完整,波阵面的对称性良好。对波形底片进行高精度扫描,并通过灰度梯度的计算获取波阵面的形状数据。采用多项[4]级数z(r)=i=1nanln[cos(ηπ2rR)]i对波阵面数据进行拟合,得到不同直径JB‑9014炸药在-55,11 ℃及70 ℃环境温度下的爆轰波波阵面形状,如图9所示,其中z(r)为波阵面曲线;r为径向坐标;anη为拟合参数;R为药柱半径,mm。

    图8
                            高速扫描照相技术获取的典型波阵面形状

    图8 高速扫描照相技术获取的典型波阵面形状

    Fig.8 Typical shape of the detonation wave front obtained by high speed streak camera technique

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F012.png

    a. zr

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F013.png

    b. tr

    图9 宽温域环境下JB‑9014炸药的爆轰波波阵面形状

    Fig.9 The detonation wave front curves of JB‑9014 over a wide temperature range

    结合各状态下的拟定态爆轰波波速,图9a中的z(r)曲线可转变为t(r)曲线(图9b)。由图9可知,三种直径炸药的爆轰波波阵面形状随环境温度的变化规律一致,即:相同直径炸药的爆轰波波阵面边界点与中心点之间的时间差Δt随着环境温度的升高而减小,波阵面形状更为平坦,该结果可能与钝感炸药的反应区宽度随环境温度的升高而减小有关。且爆轰波波阵面的Δt随着环境温度的升高而改变的幅度与药柱直径相关,在本研究实验范围内,炸药直径越大,爆轰波的Δt随环境温度的改变幅度越小,这可能是由于保温时间不足以让大直径炸药内的温度达到均衡所致。

    波阵面边界角φe(边界点处波阵面法向与边界切向之间的夹[2])是采用DSD模型对爆轰波传播进行计算的必需参数,目前只能通过曲率效应实验获取。由于边界角的测量较为困难,国外同行通常采用同一边界角对爆轰波传播进行计算。本研究中采用多种措施保持炸药边界的原始性,以获取爆轰波波阵面边界处的全信息波形,在照相底片的原始图像上距波阵面边界点约0.06 mm的范围内,对边界角进行计算,计算结果见表1。由表1可见,边界角不仅与炸药直径相关,同时也受环境温度的影响。在目前的实验范围内,直径10 mm的炸药药柱爆轰波波阵面边界角随环境温度的变化尤其明显,药柱直径增大,波阵面边界角对环境温度的敏感性下降。

    表1 宽温域环境JB‑9014炸药爆轰波波阵面边界角实验值

    Table 1 The experimental data of edge angle of detonation wave front for JB‑9014 over a wide temperature range

    R / mmT / ℃φe /(°)
    5-5555
    1135
    7027
    7.5-5530
    1131
    7031
    15-5539
    1133
    7030
  • 3.3 Dn(κ)参数计算

    Dn(κ)关系参数是采用DSD模型对爆轰波传播过程进行计算的关键参数之一。目前适应性较好的Dn(κ)经验关系式为Bdzil[12]于2006年提出,其关系式如下:

    DnDCJ=1+A(C1-κ)α-C1α-Bκ1+C2κ+C3κ21+C4κ+C5κ2
    (2)

    式中,ABC1~C5α均为拟合参数;Dn为波阵面法向速度,mm·μs-1DCJ为爆轰波CJ点速度,mm·μs-1κ为波阵面当地总曲率,mm-1。采用遗传算[13]对三种直径JB‑9014炸药的宽温域曲率效应实验结果进行多代计算,获得适应度较好的Dn(κ)关系参数见表2,其中φe为边界角的拟合值。

    表2 JB‑9014炸药宽温域曲率效应Dn(κ)关系参数拟合值

    Table 2 The fitting values of Dn(κ) relation parameters for JB‑9014 over a wide temperature range

    T / ℃DCJ / mm·μs-1φe/(°)ABC1C2C3C4C5α
    -558.003565.58598.41356.65123.85196.1794211.84558.760.1213
    117.955336.04469.65696.13704.06311.8392242.22862.200.12243
    707.906292.20928.65986.21136.94870.94966229.43632.590.090762

    表2中的Dn(κ)关系参数耦合入爆轰波传播DSD计算程序中,设定爆轰波初始波形为平面波,对三种直径炸药在-55,11 ℃及70 ℃环境温度下的爆轰波非理想传播过程进行计算。计算获得的拟定态爆轰波波阵面形状见图10。由图10可知,除药柱直径为10 mm的炸药边界区域外(<10%直径),采用表2Dn(κ)关系参数计算得到的拟定态爆轰波形状与实验结果吻合较好。表3为JB‑9014炸药拟定态爆轰波波速的DSD计算结果与实验结果对比,由表3可见,在各环境温度下,直径10 mm的波速计算值与实验值差别稍大,直径15 mm及30 mm的结果吻合度很好。其原因可能为:DSD计算架构的适用前提是爆轰波波阵面的曲率半径远大于爆轰波反应区宽[1,2],而直径10 mm炸药的爆轰波波阵面的曲率半径较小,上述前提在直径10 mm炸药中的兼容度不高。表2中-55 ℃下的边界角拟合值与直径10 mm药柱实验值较为接近,但采用该参数计算的直径10 mm药柱拟定态爆轰波波速与实验值仍差别较大,这可能是DSD计算中边界角参数对波阵面形状计算的贡献更大,而对爆轰波波速计算的贡献度较小造成的。

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F015.png

    a. -55 ℃

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F016.png

    b. 11 ℃

    html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F017.png

    c. 70 ℃

    图10 JB‑9014炸药DSD计算波形与实验结果对比

    Fig.10 Comparisons of detonation wave front shape between experimental results and DSD simulation ones for JB‑9014

    表3 JB‑9014炸药拟定态爆轰波波速计算结果与实验对比

    Table 3 Comparison of the calculated results and the experimental ones of pseudo‑steady‑state detonation wave velocity of JB‑9014

    T / ℃R / mmexperimental data / mm·μs-1calculated data / mm·μs-1

    difference

    / mm·μs-1

    -5557.4987.582+0.084
    7.57.6577.658+0.001
    157.7337.7330
    1157.4827.560+0.078
    7.57.6217.618-0.003
    157.6907.683-0.007
    7057.4647.552+0.088
    7.57.5967.597+0.001
    157.6417.656+0.015

    NOTE: Difference equals calculated data minus experimental data.

    表2中的计算值代入公式(2)中,得到三种环境温度下JB‑9014炸药爆轰波的Dn(κ)关系曲线,如图11所示。由图11可见,在小曲率范围内(κ<0.16),温度越高,Dn(κ)曲线越低,且单调变化;在大曲率范围内(κ>0.26),温度越高,Dn(κ)曲线越高,同样呈现单调变化趋势;在0.16<κ<0.26内,Dn(κ)曲线随温度的变化处于上述两个阶段的过渡阶段。这可能与温度效应和稀疏波的影响效应在炸药内部径向不同部位处的耦合作用不同相关,即在炸药边界区域(对应大曲率),稀疏波的影响效应占主导地位,在炸药中心区域(对应小曲率),温度效应占主导地位,炸药径向的中部区域处于过渡带。

    图11
                            JB‑9014炸药爆轰波波阵面Dn(κ)关系曲线

    图11 JB‑9014炸药爆轰波波阵面Dn(κ)关系曲线

    Fig.11 The Dn(κ) relation curves of JB‑9014 over a wide temperature range

  • 4 结 论

    (1)同直径药柱的拟定态爆轰波波速随环境温度的升高呈线性降低,降低斜率随炸药直径的增大呈渐近趋势。

    (2)同直径药柱的拟定态爆轰波波阵面形状随环境温度的升高逐渐变得平坦,波阵面边界点与中心点之间的时间差受环境温度与炸药直径共同影响。

    (3)爆轰波波阵面边界角受药柱直径和环境温度的共同影响,直径10 mm药柱爆轰波波阵面边界角随环境温度的变化尤其明显,药柱直径增大,波阵面边界角对环境温度的敏感性下降。

    (4)在当地曲率κ<0.16时,JB‑9014炸药爆轰波Dn(κ)关系曲线随温度的升高而降低,而κ>0.26的结果则发生翻转,0.16<κ<0.26时,Dn(κ)关系曲线随温度的变化处于过渡态。

  • 参考文献

    • 1

      Bdzil J B, Stewart D S. The dynamics of detonation in explosive system DSD [J]. Annual Review of Fluid Mechanics, 2007, 39: 263-92.

    • 2

      Bdzil J B, Stewart D S. Modeling two‑dimensional detonation with detonation shock dynamics[J]. Physics of Fluids A, 1989, 1(7):1261-1267.

    • 3

      Campbell A W. Diameter effect and failure diameter of a TATB‑based explosive[J]. Propellants, Explosives, Pyrotechnics, 1984, 9: 183-187.

    • 4

      Hill L G, Bdzil J B, Aslam T D. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range[C]//Proceedings of 11th International Detonation Symposium, Snowmass, CO, 1998:1029-1037.

    • 5

      Hill L G, Aslam T D. PBX 9502 front curvature rate stick data: repeatability and the effects of temperature and material variation[C]//Proceedings of 13th International Detonation Symposium, Norfolk, VA, 2006, 175(3): 311-341.

    • 6

      Hill L G, Aslam T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations[C]//Proceedings of 14th International Detonation Symposium, Coeurd′Alene, ID,2010, 52(3): 779-788.

    • 7

      谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究[J]. 爆炸与冲击, 2003, 23(4): 300-304.

      TAN Duo‑wang, FANG Qing, ZHANG Guang‑sheng, et al. Experimental study on the diameter effect for JB‑9014 rate sticks[J]. Explosion and Shock Waves, 2003,23(4):300-304.

    • 8

      谭多望, 方青. 常温下钝感炸药爆轰波传播的曲率效应研究[J]. 含能材料, 2005, 13(1): 13-16.

      TAN Duo‑wang, FANG Qing. Curvature effect for insensitive explosive at normal atmospheric temperature[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(1):13-16.

    • 9

      谭多望, 方青, 张光升, 等. 常温下JB‑9014钝感炸药DSD参数研究[J]. 高压物理学报, 2009, 23(3): 161-166.

      TAN Duo‑wang, FANG Qing, ZhANG Guang‑sheng, et al. Detonation shock dynamics calibration of JB‑9014 explosive at ambient temperature[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 161-166.

    • 10

      邹立勇, 谭多望, 文尙刚, 等. 低温下小尺度钝感炸药非理想爆轰实验研究[J]. 爆炸与冲击, 2007, 27(4): 325-330.

      ZOU Li‑yong, TAN Duo‑wang, WEN Shang‑gang, et al. Experimental study on the nonideal detonation for JB‑9014 rate sticks at -30 ℃[J]. Explosion and Shock Waves, 2007, 27(4): 325-330.

    • 11

      郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究[J].含能材料, 2017, 25(2): 138-143.

      GUO Liu‑wei, LIU Yu‑si, WANG Bin, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 138-143.

    • 12

      Bdzil J B, Aslam T D, Henniger R J. Detonation front models: theories and methods[R]. LA‑14274, 2006.

    • 13

      周明,孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社,1999: 18-31.

      ZHOU Ming, SUN Shu‑dong. Genetic algorithms: theory and applications[M]. Beijing: National Defense Industry Press, 1999: 18-31.

郭刘伟

机 构:中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999

Affiliation:National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

邮 箱:guoliuwei1@163.com

作者简介:郭刘伟(1983-),男,副研究员,主要从事爆轰物理研究。e‑mail:guoliuwei1@163.com

刘宇思

机 构:中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999

Affiliation:National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

黄宇

机 构:中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999

Affiliation:National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

张旭

机 构:中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999

Affiliation:National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

郑贤旭

机 构:中国工程物理研究院流体物理研究所 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999

Affiliation:National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China

html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image001.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image002.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image003.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image004.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F007.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image006.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image019.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F021.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F022.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F023.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F009.png
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image008.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F012.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F013.png
R / mmT / ℃φe /(°)
5-5555
1135
7027
7.5-5530
1131
7031
15-5539
1133
7030
T / ℃DCJ / mm·μs-1φe/(°)ABC1C2C3C4C5α
-558.003565.58598.41356.65123.85196.1794211.84558.760.1213
117.955336.04469.65696.13704.06311.8392242.22862.200.12243
707.906292.20928.65986.21136.94870.94966229.43632.590.090762
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F015.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F016.png
html/hncl/CJEM2018323/alternativeImage/587354d0-b9d9-419c-a223-d3d6b4501042-F017.png
T / ℃R / mmexperimental data / mm·μs-1calculated data / mm·μs-1

difference

/ mm·μs-1

-5557.4987.582+0.084
7.57.6577.658+0.001
157.7337.7330
1157.4827.560+0.078
7.57.6217.618-0.003
157.6907.683-0.007
7057.4647.552+0.088
7.57.5967.597+0.001
157.6417.656+0.015
html/hncl/CJEM2018323/media/587354d0-b9d9-419c-a223-d3d6b4501042-image014.png

图1 曲率效应实验装置示意图

Fig.1 Schematic diagram of curvature rate stick apparatus

图2 曲率效应实验布局示意图

Fig.2 Schematic diagram of curvature rate stick experiment set up

图3 典型高、低温加载曲线 -- a. hot shot

Fig.3 Typical high and low temperature loading curves -- a. hot shot

图3 典型高、低温加载曲线 -- b. cold shot

Fig.3 Typical high and low temperature loading curves -- b. cold shot

图4 电探针距离‑时间测试结果 -- a. side A

Fig.4 Distance‑time results obtained by electric pins -- a. side A

图4 电探针距离‑时间测试结果 -- b. side B

Fig.4 Distance‑time results obtained by electric pins -- b. side B

图5 宽温域环境JB‑9014炸药的稳态爆轰波波速

Fig.5 The steady‑state detonation wave velocity of JB‑9014 over a wide temperature range

图6 宽温域环境JB‑9014炸药爆轰波波速预测曲线与实验结果对比 -- a. 70 ℃

Fig.6 Comparison of the predicted curves and the experimental data of the detonation wave velocity for JB‑9014 over a wide temperature range -- a. 70 ℃

图6 宽温域环境JB‑9014炸药爆轰波波速预测曲线与实验结果对比 -- b. 11 ℃

Fig.6 Comparison of the predicted curves and the experimental data of the detonation wave velocity for JB‑9014 over a wide temperature range -- b. 11 ℃

图6 宽温域环境JB‑9014炸药爆轰波波速预测曲线与实验结果对比 -- c. -55 ℃

Fig.6 Comparison of the predicted curves and the experimental data of the detonation wave velocity for JB‑9014 over a wide temperature range -- c. -55 ℃

图7 不同药柱直径下JB‑9014炸药爆轰波波速随环境温度的变化

Fig.7 Changes of the detonation wave velocity of JB‑9014 with environment temperature under various grain diameters

图8 高速扫描照相技术获取的典型波阵面形状

Fig.8 Typical shape of the detonation wave front obtained by high speed streak camera technique

图9 宽温域环境下JB‑9014炸药的爆轰波波阵面形状 -- a. zr

Fig.9 The detonation wave front curves of JB‑9014 over a wide temperature range -- a. zr

图9 宽温域环境下JB‑9014炸药的爆轰波波阵面形状 -- b. tr

Fig.9 The detonation wave front curves of JB‑9014 over a wide temperature range -- b. tr

表1 宽温域环境JB‑9014炸药爆轰波波阵面边界角实验值

Table 1 The experimental data of edge angle of detonation wave front for JB‑9014 over a wide temperature range

表2 JB‑9014炸药宽温域曲率效应Dn(κ)关系参数拟合值

Table 2 The fitting values of Dn(κ) relation parameters for JB‑9014 over a wide temperature range

图10 JB‑9014炸药DSD计算波形与实验结果对比 -- a. -55 ℃

Fig.10 Comparisons of detonation wave front shape between experimental results and DSD simulation ones for JB‑9014 -- a. -55 ℃

图10 JB‑9014炸药DSD计算波形与实验结果对比 -- b. 11 ℃

Fig.10 Comparisons of detonation wave front shape between experimental results and DSD simulation ones for JB‑9014 -- b. 11 ℃

图10 JB‑9014炸药DSD计算波形与实验结果对比 -- c. 70 ℃

Fig.10 Comparisons of detonation wave front shape between experimental results and DSD simulation ones for JB‑9014 -- c. 70 ℃

表3 JB‑9014炸药拟定态爆轰波波速计算结果与实验对比

Table 3 Comparison of the calculated results and the experimental ones of pseudo‑steady‑state detonation wave velocity of JB‑9014

图11 JB‑9014炸药爆轰波波阵面Dn(κ)关系曲线

Fig.11 The Dn(κ) relation curves of JB‑9014 over a wide temperature range

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

Difference equals calculated data minus experimental data.

无注解

  • 参考文献

    • 1

      Bdzil J B, Stewart D S. The dynamics of detonation in explosive system DSD [J]. Annual Review of Fluid Mechanics, 2007, 39: 263-92.

    • 2

      Bdzil J B, Stewart D S. Modeling two‑dimensional detonation with detonation shock dynamics[J]. Physics of Fluids A, 1989, 1(7):1261-1267.

    • 3

      Campbell A W. Diameter effect and failure diameter of a TATB‑based explosive[J]. Propellants, Explosives, Pyrotechnics, 1984, 9: 183-187.

    • 4

      Hill L G, Bdzil J B, Aslam T D. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range[C]//Proceedings of 11th International Detonation Symposium, Snowmass, CO, 1998:1029-1037.

    • 5

      Hill L G, Aslam T D. PBX 9502 front curvature rate stick data: repeatability and the effects of temperature and material variation[C]//Proceedings of 13th International Detonation Symposium, Norfolk, VA, 2006, 175(3): 311-341.

    • 6

      Hill L G, Aslam T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations[C]//Proceedings of 14th International Detonation Symposium, Coeurd′Alene, ID,2010, 52(3): 779-788.

    • 7

      谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究[J]. 爆炸与冲击, 2003, 23(4): 300-304.

      TAN Duo‑wang, FANG Qing, ZHANG Guang‑sheng, et al. Experimental study on the diameter effect for JB‑9014 rate sticks[J]. Explosion and Shock Waves, 2003,23(4):300-304.

    • 8

      谭多望, 方青. 常温下钝感炸药爆轰波传播的曲率效应研究[J]. 含能材料, 2005, 13(1): 13-16.

      TAN Duo‑wang, FANG Qing. Curvature effect for insensitive explosive at normal atmospheric temperature[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(1):13-16.

    • 9

      谭多望, 方青, 张光升, 等. 常温下JB‑9014钝感炸药DSD参数研究[J]. 高压物理学报, 2009, 23(3): 161-166.

      TAN Duo‑wang, FANG Qing, ZhANG Guang‑sheng, et al. Detonation shock dynamics calibration of JB‑9014 explosive at ambient temperature[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 161-166.

    • 10

      邹立勇, 谭多望, 文尙刚, 等. 低温下小尺度钝感炸药非理想爆轰实验研究[J]. 爆炸与冲击, 2007, 27(4): 325-330.

      ZOU Li‑yong, TAN Duo‑wang, WEN Shang‑gang, et al. Experimental study on the nonideal detonation for JB‑9014 rate sticks at -30 ℃[J]. Explosion and Shock Waves, 2007, 27(4): 325-330.

    • 11

      郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究[J].含能材料, 2017, 25(2): 138-143.

      GUO Liu‑wei, LIU Yu‑si, WANG Bin, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 138-143.

    • 12

      Bdzil J B, Aslam T D, Henniger R J. Detonation front models: theories and methods[R]. LA‑14274, 2006.

    • 13

      周明,孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社,1999: 18-31.

      ZHOU Ming, SUN Shu‑dong. Genetic algorithms: theory and applications[M]. Beijing: National Defense Industry Press, 1999: 18-31.