CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
田均均, 张庆华, 李金山. 含能分子合成最新进展[J]. 含能材料, 2016, 24(1):1-9.
TIANJun‑jun, ZHANGQing‑hua, LIJin‑shan. Recent advances in energetic molecule synthesis[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1):1-9.
参考文献 2
ZengX, LiN, JiaoQ. Carbon‑free energetic materials: computational study on nitro‑substituted BN‑cage molecules with high heat of detonation and stability[J]. Rsc Advances, 2018, 8(26):14654-14662.
参考文献 3
LalS, RajkumarS, TareA, et al. Nitro‑substituted bishomocubanes: synthesis, characterization, and application as energetic materials[J]. Chemistry‑An Asian Journal, 2015, 9(12):3533-3541.
参考文献 4
LingY, RenX, LaiW, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.
参考文献 5
WuQ, ZhuW, XiaoH. Computer‑aided design of two novel and super‑high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane[J]. Rsc Advances, 2013, 4(8):3789-3797.
参考文献 6
ZhangQ, ShreeveJ M. Metal‑organic frameworks as high explosives: a new concept for energetic materials.[J]. Angewandte Chemie International Edition, 2014, 53(10):2540-2542.
参考文献 7
TianM, ChiW J, LiQ S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.
参考文献 8
RoknabadiA G, KeshavarzM H, EsmailpourK, et al. High performance nitroazacubane energetic compounds: structural, thermochemical and detonation characteristics[J]. Chemistryselect, 2016, 1(21):6735-6740.
参考文献 9
MoxnesJ F. The crystal density of nitrogen cubane and other polynitrogen species[J]. Journal of Molecular Modeling, 2017, 23(10):284.
参考文献 10
ChalmersB A, XingH, HoustonS, et al. Validating Eaton's hypothesis: cubane as a benzene bioisostere.[J]. Angewandte Chemie, 2016, 55(11):3580-3585.
参考文献 11
DoedensR J, EatonP E, FleischerE B. The bent bonds of cubane[J]. European Journal of Organic Chemistry, 2017, 2017(18):2627-2630.
参考文献 12
BoudonV, LamyM, DugueboyéF, et al. Synthesis, high‑resolution infrared spectroscopy and vibrational structure of cubane, C8H8[J]. Journal of Physical Chemistry A, 2016, 120(25):4418-4428.
参考文献 13
BiegasiewiczK F, GriffithsJ R, SavageG P, et al. Cubane: 50 years later.[J]. Chemical Reviews, 2015, 115(14):6719-6745.
参考文献 14
EatonP E, ColeT W. The cubane system[J]. Journal of the American Chemical Society, 1964, 86(5): 962-964.
参考文献 15
ZhangM X, EatonP E, GilardiR. Hepta‑ and octanitrocubanes[J]. Angewandte Chemie International Edition, 2000, 39(2):401-404.
参考文献 16
LukinK A, LiJ C, EatonP E, et al. Synthesis and chemistry of 1,3,5,7‑tetranitrocubane including measurement of its acidity, formation of o‑nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane[J]. Journal of the American Chemical Society, 1997, 119(41):9591-9602.
参考文献 17
TianM, ChiW J, LiQ S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.
参考文献 18
ChabanV V, PrezhdoO V. Energy storage in cubane derivatives and their real‑time decomposition: computational molecular dynamics and thermodynamics[J]. Acs Energy Letters, 2016, 1(1):189-194.
参考文献 19
EatonP E, GilardiR L, ZhangM X. Polynitrocubanes: advanced high‑density, high‑energy materials[J]. Advanced Materials, 2010, 12(15):1143-1148.
参考文献 20
吴琼, 谈玲华, 杭祖圣, 等. 笼型含能晶体八硝基立方烷在高压下的分解和聚合机理的DFT‑D研究[J]. 结构化学, 2017, 36(8):1232-1242.
WUQiong, TANLing‑hua, HANGZu‑sheng, et al. Insights into the decomposition and polymerization of cage energetic crystal octanitrocubane under high pressure: A DFT‑D study[J]. Chinese Journal of Structural Chemistry, 2017, 36(8):1232-1242.
参考文献 21
SchmittA R J, BottaroJ C, EatonP E. Synthesis of cubane based high energy materials[J]. Proceedings of Spie, 1988, 872(5):30-37.
参考文献 22
AnneseC, D'AccoltiL, FuscoC, et al. Oxyfunctionalization of non‑natural targets by dioxiranes. 6. On the selective hydroxylation of cubane[J]. Organic Letters, 2009, 11(16):3574-3577.
参考文献 23
MeijereA D, RedlichS, FrankD, et al. Octacyclopropylcubane and some of its isomers[J]. Angewandte Chemie International Edition, 2007, 46(24):4574-4576.
参考文献 24
NielsenA T. Caged polynitramine compound: US 5693794A[P], 1997-12-02.
参考文献 25
于永忠, 管晓培. 六硝基六氮杂异伍兹烷的合成研究[J]. 含能材料, 1999, 7(1):1-4.
YUYong‑zhong, GUANXiao‑pei. Studies on the synthesis of hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 1999,7(1):1-4.
参考文献 26
McbainA, VuppuluriV, GunduzI E, et al. Laser ignition of CL‑20 (hexanitrohexaazaisowurtzitane) cocrystals[J]. Combustion & Flame, 2018, 188:104-115.
参考文献 27
NedelkoV V, ChukanovN V, RaevskiiA V, et al. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2015, 25(5):255-259.
参考文献 28
宋振伟, 严启龙, 李笑江, 等. 溶剂中ε‑CL‑20的晶型变化[J]. 含能材料, 2010, 18(6):648-653.
SONGZhen‑wei, YANQi‑long, LIXiao‑jiang, et al. Crystal transition of ε‑CL‑20 in different solvent[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010,18(6):648-653.
参考文献 29
ViswanathD S, GhoshT K, BodduV M. Hexanitrohexaazaisowurtzitane (HNIW, CL‑20)[M]// Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. 2018.
参考文献 30
Fotouhi‑FarF, BashiriH, HamadanianM. Study of deactivation of Pd(OH)2/C catalyst in reductive debenzylation of hexabenzylhexaazaisowurtzitane[J]. Propellants, Explosives,Pyrotechnics, 2016, 42(2):213-219.
参考文献 31
李新乐, 孙成辉, 赵信岐, 等. 六烯丙基六氮杂异伍兹烷的合成[J]. 含能材料, 2007, 15(5):490-491,514.
LIXin‑le, SUNCheng‑hui, ZHAOXin‑qi, et al. Synthesis of Hexaallylhexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(5):490-491,514.
参考文献 32
FotouhifarF, BashiriH, HamadanianM, et al. Increment of activity of Pd(OH)2/C catalyst in order to improve the yield of high performance 2,4,6,8,10,12‑hexanitrohexaazaisowurtzitane (HNIW)[J]. Inorganic and Nano‑Metal Chemistry, 2017, 47(11): 1489-1494.
参考文献 33
RajanR, RavindranT R, VenkatesanV, et al. New high pressure phases of energetic material TEX: evidence from Raman spectroscopy, X‑ray diffraction, and first‑principles calculations[J]. Journal of Physical Chemistry A, 2018, 122(30):6236-6242.
参考文献 34
许健, 陆明. 杂多酸催化TEX的合成工艺改进[J]. 含能材料, 2015, 23(2):125-129.
XUJian, LUMing. Synthesis Improvement of TEX catalyzed with heteropolyacid[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2):125-129.
参考文献 35
DeshmukhM B, BorseA U, MahulikarP P, et al. An improved and scalable synthesis of insensitive high explosive 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazaisowurtzitane (TEX)[J]. Organic Process Research & Development, 2016, 20(7):1363-1369.
参考文献 36
RamakrishnanV T, VedachalamM, BoyerJ H. 4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,903,11]dodecane[J]. Journal of Energetic Materials, 1990, 31(3):479-480.
参考文献 37
KochE C. TEX‑4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,9.03,11]‑dodecane‑review of a promising high density insensitive energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3):374-387.
参考文献 38
NielsenA T, ChristianS L, MooreD W, et al. Synthesis of 3,5,12‑triazawurtzitanes (3,5,12‑triazatetracyclo[5.3.1.12,6.04,9]dodecanes)[J]. Journal of Organic Chemistry, 1987, 52(9):1656-1662.
参考文献 39
魏真, 李加荣, 张奇, 等. 金刚烷类高能量密度燃料研究进展[J]. 含能材料, 2014, 22(2):170-176.
WENZhen, LIJia‑rong, ZHANGQi, et al. Review on diamondoids as high energetic density fuels[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2):170-176.
参考文献 40
刘田英, 曹端林, 王艳红, 等. 卤代金刚烷衍生物的合成研究进展[J]. 含能材料, 2017, 25(1):76-85.
LIUTian‑ying, CAODuan‑lin, WANGYan‑hong, et al. Review on synthesis of halogenated adamantane derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1):76-85.
参考文献 41
杜耀, 王艳红, 李雅津, 等. 多硝基金刚烷的合成及其理论研究进展[J]. 化学推进剂与高分子材料, 2014, 12(2):57-63.
DUYao, WANGYan‑hong, LIYa‑jin, et al. Progress in synthesis and theory research of polynitroadamantanes[J]. Chemical Propellants & Polymeric Materials, 2014, 12(2):57-63.
参考文献 42
LingY, RenX, LaiW, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.
参考文献 43
ZhangJ, HouT J, LingY F, et al. An efficient process for the synthesis of gem‑dinitro compounds under high steric hindrance by nitrosation and oxidation of secondary nitroalkanes[J]. Tetrahedron Letters, 2018, 59(30): 2880-2883.
参考文献 44
LingY, ZhangP, SunL, et al. Efficient synthesis of 2,2,4,4,6,6‑hexanitroadamantane under mild conditions[J]. Synthesis, 2015, 46(6):2225-2233.
参考文献 45
NielsenA T, ChafinA P, ChristianS L, et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54(39):11793-11812.
参考文献 46
SollottG P, GilbertE E. 1,4,6,9‑Tetranitrodiamantane: US4535193[P]. 1985.
参考文献 47
CichraD A, AdolphH G. Nitrolysis of dialkyl tert‑butylamines[J]. Journal of Organic Chemistry, 2002, 47(12):2474-2476.
参考文献 48
FessnerW D, PrinzbachH, D3‑trishomocubanetrione synthesis and optical resolution[J]. Tetrahedron, 1986, 42(6):1797-1803.
参考文献 49
LevandovskyI A, SharapaD I, CherenkovaO A, et al. The chemistry of D3‑trishomocubane[J]. Russian Chemical Reviews, 2010, 79(11):1005-1026.
参考文献 50
MarchandA P, ReddyD S. Synthesis of 5,5,9,9‑tetranitropentacyclo[5.3.0.02,6.03,10.04,8]decane[J]. Journal of Organic Chemistry, 1984, 49(21):4078-4080.
参考文献 51
SchäferJ, SzeimiesG. Reaction of 1,6‑dihalopentacyclo[5.2.0.0.2,6.03,9.05,8]nonanes with tert‑butyllithium: is 1,6‑dehydrohomocubane involved as a reactive intermediate?[J]. Tetrahedron Letters, 1990, 31(16):2263-2264.
参考文献 52
GuanX, SuZ, YuY, Synthesis of the pentacyclo[4.3.0.02,5.03,8.04,7]nonane‑2,4‑bis(trinitroethyl ester)[C]// Proc. 17th International Pyrotechnics Seminar (Combined with 2rd Beijing International Symposium on Pyrotechnics and Explosives), Beijing Institute Technical Press, Beijing, China, 1991: 224.
参考文献 53
LiS, WangY, QiC, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie, 2013, 125(52):14031-14035.
参考文献 54
LiS H, PangS P, LiX T, et al. Synthesis of new tetrazene (N─NN─N)‑linked bi(1,2,4‑triazole)[J]. Chinese Chemical Letters, 2007, 18(10): 1176-1178.
参考文献 55
WuB D, LiY, WangS W, et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high‐nitrogen material (65.60%)[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(3-4):450-455.
参考文献 56
BushuyevO S, PetersonG R, BrownP, et al. Metal‑organic frameworks (MOFs) as safer, structurally reinforced energetics[J]. Chemistry‑A European Journal, 2013, 19(5):1706-1711.
参考文献 57
ChenS L, YangZ R, WangB J, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61(8):1123-1128.
目录 contents

    摘要

    笼状结构因其高对称性、高环张力和致密的堆积密度成为理想的含能化合物骨架,是含能材料研究领域的热点。综述了以单质型含能化合物和金属络合物型含能化合物分类的已报道的笼状骨架含能化合物。其中,笼状骨架的单质含能化合物重点归纳了立方烷、伍兹烷、金刚烷等体系,典型化合物八硝基立方烷和六硝基六氮杂异伍兹烷已成为能量水平最高的单质含能化合物;笼状骨架的金属络合物型含能化合物重点介绍具有三维网络笼状空间的结构,该类化合物通过紧凑的排列方式形成了致密的网络结构,利用包裹方式将其它组分融入笼状结构中。指出,笼状骨架的单质含能化合物进一步的研究方向应以解决制备路线过长,成本过高的问题,为应用研究提供基础;笼状骨架的金属络合物型含能化合物研究处于起步阶段,种类较少是主要问题,但该类化合物普遍制备简易,成本较低且能量水平较高,应作为笼状骨架含能化合物下一步发展的重点方向。

    Abstract

    Cage‑like structure has become an ideal skeleton of energetic compounds due to its high symmetry, high ring tension and dense bulk density, which is a hot spot in the research field of energetic materials. In this paper, the reported cage‑like skeleton energetic compounds were reviewed by classifying elementary energetic compounds and metal complex‑type energetic compounds. Among them, the elementary energetic compounds of cage‑like skeleton are mainly summarized as cubane‑like, wurtzitane‑like, adamantine‑like structures and other systems, typical compounds as octanitrocycloalkane and hexanitrohexaazaisowurtzitane have become the elementary energetic compound with the highest energy level. Metal complex type energetic compounds with cage‑like skeletons focus on structures with three‑dimensional network cage‑like spaces. These compounds form dense network structures by compact arrangement way, and the other components are incorporated into the cage‑like structure by wrapping way. It is pointed out that the further research direction of elementary energetic compounds with cage‑like skeleton should focus on solving the problems of long preparation routes and high cost, providing a basis for application research. The research on the metal complex‑type energetic compounds with cage‑like skeletons is still in the initial stage and the limited species have become the major problem, but these compounds are generally simple to prepare, low in cost and higher in energy level, which should be the key direction for the future development of cage‑like skeleton energetic compounds.

  • 1 引 言

    笼状骨架含能化合物是指化合物本身呈现三维空间结构,且主体结构的内部空间呈现笼形封闭构造的含能化合[1,2]。笼状骨架结构种类丰富,目前笼状骨架含能化合物分为两类:(1)笼状骨架的单质含能化合[3,4,5];(2)笼状骨架的金属络合物型含能化合[6]。传统笼状骨架含能化合物主要指单质含能化合物,由于笼状体系通常蕴含显著环张力,且空间对称性及致密性高,因而该类单质含能化合物较之其他骨架类型的单质含能化合物往往具有更为优异的爆轰特[7];近年来,伴随着含能金属络合物研究的不断深入,研发出了部分具有笼状骨架的特殊金属含能络合物,该类结构化合物目前种类较少,但相关性能表现突出,成为含能材料研究领域的新热点。

    为了推动新型笼状骨架结构在含能材料中的应用,从单质含能化合物和络合物型金属含能化合物两方面结构进行分类,归纳了笼状骨架含能化合物的结构与合成方法,总结了笼状骨架含能化合物的研究进展并对不同笼状骨架含能化合物进行了梳理,侧重对笼状骨架的构建方法进行综述,重点介绍了近年来部分性能突出的新型含能化合物的研发,为笼状骨架含能化合物的设计制备提供借鉴。

  • 2 笼状骨架的单质含能化合物

  • 2.1 立方烷类笼状骨架单质含能化合物

    作为结构最小的笼状骨架单质含能化合物,立方烷骨架曾一度被认为是无法通过合成手段实现的结[8,9]。立方烷骨架的sp3化学键成90o的夹角,远远偏离正常状态下的109o28',环系本身蕴含巨大的张力,导致立方烷骨架的合成一直是包括含能材料合成在内的整个合成化学领域的热[10,11,12,13]

    立方烷结构紧凑的空间构型与巨大的张力体系使其成为理想的含能材料骨架。Eaton[14]首次以光激发条件下的[2+2]环加成与Favorskii重排作为关键反应实现了立方烷笼状结构的构建,为立方烷类笼状骨架含能化合物的合成奠定了基础。立方烷类骨架的含能化合物主要指硝基立方烷,尤其是八硝基立方烷(ONC),一直是含能材料研究希望重点突破的对象,但直至2000年才首次由Eaton[15]完成了ONC的合成。研究结果表明,由于需要实现立方烷骨架上碳氢键的官能团化非常困难,因此如何有效将碳氢键转化为可含能衍生化的基团是实现硝基立方烷制备的关键。Eaton[16]利用邻位导向基团的配位作用,将碳金属化试剂与邻位碳氢键充分接近,从而实现了碳氢键向碳金属键的有效转化,结合Curtius重排与氨基氧化策略,最终完成了各类硝基立方烷结构的制备(Scheme 1)。

    Scheme 1 Synthesis of octanitrocubane[14,15,16]

    ONC性能的理论研究一直是含能材料研究领域的热点,多数研究认为ONC密度与爆轰性能均将超越现有含能化合物。ONC的理论计算密度介于1.9~2.2 g·cm-³[17,18],但目前ONC实测晶体密度为1.979 g·cm-³。对比ONC的理论计算密度值,该实测密度值更接近计算所得的较低数[15],鉴于ONC可能存在更高密度的晶型,因此后期仍有可能通过晶型研究获得更大的晶体密度。ONC的理论爆速值达到10100 m·s-1,爆压值达到50.0 GPa,超越目前在用含能化合[19,20]。但ONC合成路线过长,单位重量制备成本超过黄金价值,因此如何有效简化合成步骤,降低制备成本,成为目前ONC研究的重点。

    在研究ONC合成的同时,部分基于立方烷体系的硝酸酯合成也获得了进[21]。通过强氧化条件可以将立方烷氧化至二羟基立方[22],二羟基立方烷通过五氧化二氮硝化可以形成硝酸酯结构;但由于缺乏将更多的碳氢键进一步官能团化为碳氧键或碳氮键的途径,目前硝酸酯基立方烷化合物的合成仅停留在对位二硝酸酯的水平(Scheme 2)。

    Scheme 2 Synthesis of 1,4‑dinitroxycubane[22]

    Meijere[23]突破性地利用1,2‑双环丙基乙炔的二聚反应实现了立方烷骨架的构建(Scheme 3),证实了炔烃二聚在立方烷骨架构建中的可能性,为立方烷类笼状骨架含能化合物的合成提供了新的思路。

    Scheme 3 Preparative accesses to octacyclopropylcubane[23]

  • 2.2 伍兹烷类笼状骨架单质含能化合物

    立方烷类笼状骨架含能化合物以全碳立方烷骨架为主,而伍兹烷类笼状骨架含能化合物则以氮杂伍兹烷骨架为主,依据空间排列结构的差异,伍兹烷骨架分为正伍兹烷和异伍兹烷两类,且又以异伍兹烷骨架的含能化合物研究最为成熟。

    将伍兹烷骨架应用于含能材料研究的思路由来已久,美国海军国家实验[24]及北京理工大[25]等单位几乎同时展开了相关合成研究。最早开展的氮杂伍兹烷骨架构建研究是关于六氮杂正伍兹烷的,Nielsen等在其研究中最早提出将乙二醛与苄胺进行缩合制备六苄基六氮杂正伍兹烷,但后续的所有类似研究均表明,该策略最终都仅能获得另一种空间组成的结构,即六苄基六氮杂异伍兹烷结[26,27]。六硝基六氮杂异伍兹烷(CL‑20)是在六氮杂异伍兹烷骨架基础上获得的高能结构,包含α‑、β‑、γ‑及ε‑晶型,其中以ε‑CL‑20的结晶密度最大,最为实用,密度达到2.04 g·cm-3,爆速9.4 km·s-1,爆压42.0 GPa[28,29]。从六苄基六氮杂异伍兹烷向CL‑20的转化需要经过脱苄基和氮硝化两类转化,由于目前加氢脱苄的成本较高,因此多年来利用其它路线合成CL‑20的研究不[30,31,32],如利用烯丙基替换苄基,但利用缩合方式获得异伍兹烷骨架的方式最为便捷,同时总体效率尚未有突破传统CL‑20合成方法的报道(Scheme 4)。

    Scheme 4 Synthesis of hexanitrohexaazaisowurtzitane[30,31,32]

    除氮杂异伍兹烷外,将氧原子引入所形成的氮氧杂异伍兹烷骨架是伍兹烷类笼状骨架含能化合物研究的另一重点方向,其代表性化合物为4,10‑二硝基‑4,10‑二氮杂‑2,6,8,12‑四氧杂四环十二烷(TEX[33]。TEX合成以1,4‑二甲酰基‑2,3,5,6‑四羟基哌嗪(DFTHP)为关键中间体,通过缩合反应形成笼状骨架并硝[34,35]Scheme 5)。TEX晶体密度为1.99 g·cm-3,理论爆速8170 m·s-1, 爆压31.4 GPa,具有较好的能量密度水[36]。除TEX型骨架结构外,还有一些其它氮氧含量的异伍兹烷骨架含能化合物,但多数合成报道不详且缺乏有关性能研究,应用前景有[37]

    Scheme 5 Synthesis of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,9.03,11]‑dodecane[34]

    在异伍兹烷骨架获得广泛应用的同时,正伍兹烷骨架的合成也一直是含能材料研究的重点方向。尽管六氮杂正伍兹烷骨架合成尚未获得突破,但3,5,12‑三氮杂正伍兹烷结构已经通过合成获得。利用间三苯甲酸为原料通过氧化还原反应获得具有顺式构型的1,3,5‑三醛基环己烷,进一步通过特定的一级胺缩合,可以获得3,5,12‑三氮杂正伍兹烷骨架。该研究表[38],通过缩合方式合成多氮杂正伍兹烷骨架是有可能实现的(Scheme 6)。

    Scheme 6 Preparative accesses to 3,5,12‑trisubstituted‑3,5,12‑triazawurtzitanes[38]

    目前异伍兹烷类笼状骨架含能化合物研究较为成熟,其中CL‑20已成为经典三代含能材料,但仍需要进一步开展降感及低成本研究以尽快推进该化合物的应用。而正伍兹烷骨架的构建仍属于空白,从异伍兹烷体系研究可以预见,六氮杂正伍兹烷含能化合物可能拥有类似的高性能水平,所以如何通过合适的缩合反应实现六氮杂正伍兹烷骨架的有效构建应作为该类化合物研究的重点。

  • 2.3 金刚烷类笼状骨架单质含能化合物

    金刚烷类骨架由三个呈现椅式构型六元环组合形成高度对称的笼状结构,该类骨架化合物通常堆积紧密,适宜作为含能材料的骨架。金刚烷本身密度达到1.07 g·cm-3,燃烧热约为-6027.7 kJ·mol-1,因而作为一类高体积热值的液体燃料被广泛应用于军事及航天科学领[39,40]。在金刚烷骨架基础上进行含能衍生化引入硝基等基团,将显著提升化合物的密度及能量水平,具有一定研究和应用价[41]

    与立方烷体系相似,在金刚烷体系中尽可能引入硝基等含能基团成为金刚烷类笼状骨架含能化合物研究的主要难点。金刚烷中四个端点位置的碳氢键活性较高,可以利用卤代反应形成碳卤键经进一步转化为碳氨基结构,通过氧化等途径可以形成硝基金刚烷;(Scheme 7a)或者将碳卤键转化为碳氧键并进一步硝化为硝酸酯基金刚烷(Scheme 7b)。此外,构建羰基金刚烷结构,利用羰基部分的硝化反应,可以较为顺利地获得多种具有偕二硝基含能基团的金刚烷化合物。迄今为止全碳金刚烷骨架化合物中硝基引入仍较为困难,如何将更多的硝基通过有效的途径与全碳金刚烷骨架结合获得爆轰性能更加优异的化合物是目前全碳骨架金刚烷类含能化合物研究的主要任[42,43,44]

    Nielsen[45]在平面环己烷结构的基础上采用取代反应的方式实现了笼状氮杂金刚烷骨架的构建,氮杂金刚烷较之全碳结构的金刚烷体系,骨架合成难度更大且多需要通过缩合或取代反应的方式获得笼状骨架,由于不利的熵效应,该立体骨架合成转化率较低(Scheme 8a)。此外,Sollet[46]利用金刚烷骨架的衍生物,通过对活性碳氢键位置的卤代反应,将卤素引入骨架当中并在后续转化中形成了硝基(Scheme 8b)。

  • 2.4 其他种类笼状骨架单质含能化合物

    Adolph[47]采用叔丁胺,甲醛与硝基甲烷进行缩合反应,构建了具有笼状结构的骨架,通过100%的纯硝酸对叔丁胺进行硝解,获得了1,3,5,7‑四硝基‑3,7‑二氮杂二环[3.3.1]壬烷(Scheme 9)。

    Scheme 9 Synthesis of 1,3,5,7‑Tetranitro‑3,7‑diazabicyclo[3.3.1]nonane[47]

    Scheme 7 a Synthesis of tetranitro‑substituted adamantane derivatives[42,43]

    Scheme 7 b Other studies of synthesis on tetranitro‑substituted adamantane derivatives[44]

    Scheme 8 a Synthesis of other energetic adamantane derivatives by Nielsen group[45]

    Fessner[48]利用Diels‑Alder反应获得的产物进行2+2环加成反应构建了笼状骨架,通过锂卤交换脱除卤素,利用氧化还原转化实现三羰基结构的构建,将酮羰基结构转换为肟结构并进一步硝化为偕二硝基结构,完成六硝基取代的笼状含能化合物的合成。该类笼状骨架目前成功引入硝基数目最多达到六个,其它基于相似骨架的含能体系所含硝基数目均低于该数目,限制了该型含能化合物研究的发[49]Scheme 10)。

    Scheme 8 b Synthesis of other energetic adamantane derivatives by Sollet group[46]

    Scheme 10 Synthesis of l,3,5,7‑Tetranitro‑3,7‑diazabicyclo[3.3.1]nonane[48]

    Marchand[50]在偕二硝基含能衍生化研究中,首先通过光激发2+2环加成反应实现类立方烷笼状骨架的构建,之后将羰基结构转化为肟结构并进行硝化形成偕二硝基(Scheme 11a)。与该研究类似的方法还出现在在硝仿基含能衍生化研究中,通过光激发的2+2环加成反应可实现类立方烷笼状骨架的构建,之后利用Favorskii重排反应进一步形成双羧基结构,将羧基与硝仿基进行链接形成具有笼状结构的硝仿类含能化合[51,52]Scheme 11b)。

    Scheme 11 a Synthesis of 5,5,9,9‑tetranitropentacyclo[5.3.0.02,6.03,10.04,8]decane (a)[50]

    Scheme 11 b Synthesis of pentacyclo[4.3.0.03,8.04,7]nonane‑2,4‑bis(trinitroethyl ester)[51,52]

  • 3 笼状骨架的金属络合物型含能化合物

    金属络合物型含能化合物是近年来含能材料研究的重点方向。由于笼状骨架金属络合物对配体与金属中心在空间排列及作用方式有特定要求,因此传统含能金属络合物多以含能配体与金属中心的简单配位为主,鲜有具有笼状构造的金属含能络合物。

    庞思平[53,54]利用富氮杂环与金属硝酸盐形成了特殊的具有三维笼状排列的金属络合物型含能化合物。相比之前已经发展起来的一[55]、二[56]结构的含能金属络合物,目前一维及二维结构的金属含能络合物由于感度高是潜在的起爆药结构,三维笼状结构有效的降低了化合物的感度,撞击感度22~30 J,摩擦感度均为0%,因而具有更为优异的应用特性。庞思平等的此项研究中,利用高度富氮的杂环结构作为配体同时起到了链接作用,与银离子及金属铜进行络合,实现了从一维、二维结构的含能金属络合物向具有网络状三维空间结构的含能金属络合物的转化,同时将硝酸根离子包裹至笼状结构当中,获得了无卤素、低感度和具有良好爆轰性能的含能体系[Cu(atrz)3(NO3)2]n和[Ag(atrz)1.5(NO3)]nScheme 12)。

    Scheme 12 Synthesis of 3D Energetic Metal‑Organic Framework[54]

    陈小明[57]进一步发展了一类具有良好应用前景的新型钙钛矿类笼状骨架含能化合物(DAP)。与[Cu(atrz)3(NO3)2]n和[Ag(atrz)1.5(NO3)]n体系的笼状骨架构造方式不同,该型化合物利用作为氧化组分的高氯酸根阴离子和Na+K+,Rb+或NH4+等离子形成笼状结构,将作为燃料组分的还原性有机阳离子H2DABCO2+包裹在紧密堆积的钙钛矿笼状结构中,使该类化合物具有优异的爆轰特性,密度2.02 g·cm-3,爆速9306 m·s-1,爆压48.3 GPa,撞击感度17 J,摩擦感度36 N,可比肩RDX和HMX的爆轰性能且有更高的稳定性;其中无金属组分的分子钙钛矿含能化合物的理论性能接近CL‑20且比冲达到约344 s。该DAP类化合物制备简易,爆轰性能优异且热分解温度均超过300 ℃,在耐热炸药等领域亦有较强的潜在应用价值(Scheme 13)。

    Scheme 13 Synthesis of molecular perovskite high‑energetic materials[57]

  • 4 结 论

    由于笼状结构具有高对称性、高环张力和致密的堆积密度等优势,因而构建笼状骨架成为提升含能化合物能量密度水平的重要途径。笼状骨架含能化合物可根据化合物组成分为单质型含能化合物和金属络合物型含能化合物。其中单质型笼状骨架含能化合物研究较为广泛,已发展了ONC、CL‑20等高性能结构;金属络合物型笼状骨架含能化合物的研究起步较晚,但其较高的能量水平和简易的制备途径使其成为高性能含能化合物发展的重要方向。可以预见,笼状骨架含能化合物进一步的发展趋势应集中在以下几个方面:

    (1) 迄今为止,ONC已经表现出优异的爆轰性能,应尽快实现其高效制备并开展应用研究,需要尽快解决制备路线过长、成本过高的问题,发展光催化或金属催化条件下的炔烃聚合反应是可能的实现途径;此外应尝试解决加氢脱苄操作成本较高的问题,研究更为有效的苄基脱除方法同时采用共晶制备或包覆等方式解决CL‑20感度较高的问题。

    (2) 目前,可应用于单质型含能化合物的笼状骨架种类依然较少,发展新的笼状骨架应用于单质型笼状骨架含能化合物,寻找制备更为简单、性能更为优异的含能化合物仍是含能材料研究领域的长期目标。其中多硝基多氮杂正伍兹烷、多硝基金刚烷等结构应作为重点研究方向。

    (3) 三维空间结构的金属络合物型材料的研究已经揭示出金属络合物结构在发展高性能笼状骨架含能化合物中的优势。目前钙钛矿类含能材料性能水平较高,制备方法简易,具有良好的应用前景,对该类型化合物的特性进行全面研究,尤其是应用特性的研究,是金属络合物型笼状骨架含能材料目前的重点方向。同时,进一步深入发掘不同种类的金属络合物型笼状骨架含能化合物,将该领域研究继续扩展,应是含能材料研究的优先发展方向。

    (责编:王艳秀)

  • 参考文献

    • 1

      田均均, 张庆华, 李金山. 含能分子合成最新进展[J]. 含能材料, 2016, 24(1):1-9.

      TIAN Jun‑jun, ZHANG Qing‑hua, LI Jin‑shan. Recent advances in energetic molecule synthesis[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1):1-9.

    • 2

      Zeng X, Li N, Jiao Q. Carbon‑free energetic materials: computational study on nitro‑substituted BN‑cage molecules with high heat of detonation and stability[J]. Rsc Advances, 2018, 8(26):14654-14662.

    • 3

      Lal S, Rajkumar S, Tare A, et al. Nitro‑substituted bishomocubanes: synthesis, characterization, and application as energetic materials[J]. Chemistry‑An Asian Journal, 2015, 9(12):3533-3541.

    • 4

      Ling Y, Ren X, Lai W, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.

    • 5

      Wu Q, Zhu W, Xiao H. Computer‑aided design of two novel and super‑high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane[J]. Rsc Advances, 2013, 4(8):3789-3797.

    • 6

      Zhang Q, Shreeve J M. Metal‑organic frameworks as high explosives: a new concept for energetic materials.[J]. Angewandte Chemie International Edition, 2014, 53(10):2540-2542.

    • 7

      Tian M, Chi W J, Li Q S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.

    • 8

      Roknabadi A G, Keshavarz M H, Esmailpour K, et al. High performance nitroazacubane energetic compounds: structural, thermochemical and detonation characteristics[J]. Chemistryselect, 2016, 1(21):6735-6740.

    • 9

      Moxnes J F. The crystal density of nitrogen cubane and other polynitrogen species[J]. Journal of Molecular Modeling, 2017, 23(10):284.

    • 10

      Chalmers B A, Xing H, Houston S, et al. Validating Eaton's hypothesis: cubane as a benzene bioisostere.[J]. Angewandte Chemie, 2016, 55(11):3580-3585.

    • 11

      Doedens R J, Eaton P E, Fleischer E B. The bent bonds of cubane[J]. European Journal of Organic Chemistry, 2017, 2017(18):2627-2630.

    • 12

      Boudon V, Lamy M, Dugueboyé F, et al. Synthesis, high‑resolution infrared spectroscopy and vibrational structure of cubane, C8H8[J]. Journal of Physical Chemistry A, 2016, 120(25):4418-4428.

    • 13

      Biegasiewicz K F, Griffiths J R, Savage G P, et al. Cubane: 50 years later.[J]. Chemical Reviews, 2015, 115(14):6719-6745.

    • 14

      Eaton P E, Cole T W. The cubane system[J]. Journal of the American Chemical Society, 1964, 86(5): 962-964.

    • 15

      Zhang M X, Eaton P E, Gilardi R. Hepta‑ and octanitrocubanes[J]. Angewandte Chemie International Edition, 2000, 39(2):401-404.

    • 16

      Lukin K A, Li J C, Eaton P E, et al. Synthesis and chemistry of 1,3,5,7‑tetranitrocubane including measurement of its acidity, formation of o‑nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane[J]. Journal of the American Chemical Society, 1997, 119(41):9591-9602.

    • 17

      Tian M, Chi W J, Li Q S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.

    • 18

      Chaban V V, Prezhdo O V. Energy storage in cubane derivatives and their real‑time decomposition: computational molecular dynamics and thermodynamics[J]. Acs Energy Letters, 2016, 1(1):189-194.

    • 19

      Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes: advanced high‑density, high‑energy materials[J]. Advanced Materials, 2010, 12(15):1143-1148.

    • 20

      吴琼, 谈玲华, 杭祖圣, 等. 笼型含能晶体八硝基立方烷在高压下的分解和聚合机理的DFT‑D研究[J]. 结构化学, 2017, 36(8):1232-1242.

      WU Qiong, TAN Ling‑hua, HANG Zu‑sheng, et al. Insights into the decomposition and polymerization of cage energetic crystal octanitrocubane under high pressure: A DFT‑D study[J]. Chinese Journal of Structural Chemistry, 2017, 36(8):1232-1242.

    • 21

      Schmitt A R J, Bottaro J C, Eaton P E. Synthesis of cubane based high energy materials[J]. Proceedings of Spie, 1988, 872(5):30-37.

    • 22

      Annese C, D'Accolti L, Fusco C, et al. Oxyfunctionalization of non‑natural targets by dioxiranes. 6. On the selective hydroxylation of cubane[J]. Organic Letters, 2009, 11(16):3574-3577.

    • 23

      Meijere A D, Redlich S, Frank D, et al. Octacyclopropylcubane and some of its isomers[J]. Angewandte Chemie International Edition, 2007, 46(24):4574-4576.

    • 24

      Nielsen A T. Caged polynitramine compound: US 5693794A[P], 1997-12-02.

    • 25

      于永忠, 管晓培. 六硝基六氮杂异伍兹烷的合成研究[J]. 含能材料, 1999, 7(1):1-4.

      YU Yong‑zhong, GUAN Xiao‑pei. Studies on the synthesis of hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 1999,7(1):1-4.

    • 26

      Mcbain A, Vuppuluri V, Gunduz I E, et al. Laser ignition of CL‑20 (hexanitrohexaazaisowurtzitane) cocrystals[J]. Combustion & Flame, 2018, 188:104-115.

    • 27

      Nedelko V V, Chukanov N V, Raevskii A V, et al. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2015, 25(5):255-259.

    • 28

      宋振伟, 严启龙, 李笑江, 等. 溶剂中ε‑CL‑20的晶型变化[J]. 含能材料, 2010, 18(6):648-653.

      SONG Zhen‑wei, YAN Qi‑long, LI Xiao‑jiang, et al. Crystal transition of ε‑CL‑20 in different solvent[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010,18(6):648-653.

    • 29

      Viswanath D S, Ghosh T K, Boddu V M. Hexanitrohexaazaisowurtzitane (HNIW, CL‑20)

      [M]// Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. 2018.

    • 30

      Fotouhi‑Far F, Bashiri H, Hamadanian M. Study of deactivation of Pd(OH)2/C catalyst in reductive debenzylation of hexabenzylhexaazaisowurtzitane[J]. Propellants, Explosives,Pyrotechnics, 2016, 42(2):213-219.

    • 31

      李新乐, 孙成辉, 赵信岐, 等. 六烯丙基六氮杂异伍兹烷的合成[J]. 含能材料, 2007, 15(5):490-491,514.

      LI Xin‑le, SUN Cheng‑hui, ZHAO Xin‑qi, et al. Synthesis of Hexaallylhexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(5):490-491,514.

    • 32

      Fotouhifar F, Bashiri H, Hamadanian M, et al. Increment of activity of Pd(OH)2/C catalyst in order to improve the yield of high performance 2,4,6,8,10,12‑hexanitrohexaazaisowurtzitane (HNIW)[J]. Inorganic and Nano‑Metal Chemistry, 2017, 47(11): 1489-1494.

    • 33

      Rajan R, Ravindran T R, Venkatesan V, et al. New high pressure phases of energetic material TEX: evidence from Raman spectroscopy, X‑ray diffraction, and first‑principles calculations[J]. Journal of Physical Chemistry A, 2018, 122(30):6236-6242.

    • 34

      许健, 陆明. 杂多酸催化TEX的合成工艺改进[J]. 含能材料, 2015, 23(2):125-129.

      XU Jian, LU Ming. Synthesis Improvement of TEX catalyzed with heteropolyacid[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2):125-129.

    • 35

      Deshmukh M B, Borse A U, Mahulikar P P, et al. An improved and scalable synthesis of insensitive high explosive 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazaisowurtzitane (TEX)[J]. Organic Process Research & Development, 2016, 20(7):1363-1369.

    • 36

      Ramakrishnan V T, Vedachalam M, Boyer J H. 4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,903,11]dodecane[J]. Journal of Energetic Materials, 1990, 31(3):479-480.

    • 37

      Koch E C. TEX‑4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,9.03,11]‑dodecane‑review of a promising high density insensitive energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3):374-387.

    • 38

      Nielsen A T, Christian S L, Moore D W, et al. Synthesis of 3,5,12‑triazawurtzitanes (3,5,12‑triazatetracyclo[5.3.1.12,6.04,9]dodecanes)[J]. Journal of Organic Chemistry, 1987, 52(9):1656-1662.

    • 39

      魏真, 李加荣, 张奇, 等. 金刚烷类高能量密度燃料研究进展[J]. 含能材料, 2014, 22(2):170-176.

      WEN Zhen, LI Jia‑rong, ZHANG Qi, et al. Review on diamondoids as high energetic density fuels[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2):170-176.

    • 40

      刘田英, 曹端林, 王艳红, 等. 卤代金刚烷衍生物的合成研究进展[J]. 含能材料, 2017, 25(1):76-85.

      LIU Tian‑ying, CAO Duan‑lin, WANG Yan‑hong, et al. Review on synthesis of halogenated adamantane derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1):76-85.

    • 41

      杜耀, 王艳红, 李雅津, 等. 多硝基金刚烷的合成及其理论研究进展[J]. 化学推进剂与高分子材料, 2014, 12(2):57-63.

      DU Yao, WANG Yan‑hong, LI Ya‑jin, et al. Progress in synthesis and theory research of polynitroadamantanes[J]. Chemical Propellants & Polymeric Materials, 2014, 12(2):57-63.

    • 42

      Ling Y, Ren X, Lai W, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.

    • 43

      Zhang J, Hou T J, Ling Y F, et al. An efficient process for the synthesis of gem‑dinitro compounds under high steric hindrance by nitrosation and oxidation of secondary nitroalkanes[J]. Tetrahedron Letters, 2018, 59(30): 2880-2883.

    • 44

      Ling Y, Zhang P, Sun L, et al. Efficient synthesis of 2,2,4,4,6,6‑hexanitroadamantane under mild conditions[J]. Synthesis, 2015, 46(6):2225-2233.

    • 45

      Nielsen A T, Chafin A P, Christian S L, et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54(39):11793-11812.

    • 46

      Sollott G P, Gilbert E E. 1,4,6,9‑Tetranitrodiamantane: US4535193[P]. 1985.

    • 47

      Cichra D A, Adolph H G. Nitrolysis of dialkyl tert‑butylamines[J]. Journal of Organic Chemistry, 2002, 47(12):2474-2476.

    • 48

      Fessner W D, Prinzbach H, D3‑trishomocubanetrione synthesis and optical resolution[J]. Tetrahedron, 1986, 42(6):1797-1803.

    • 49

      Levandovsky I A, Sharapa D I, Cherenkova O A, et al. The chemistry of D3‑trishomocubane[J]. Russian Chemical Reviews, 2010, 79(11):1005-1026.

    • 50

      Marchand A P, Reddy D S. Synthesis of 5,5,9,9‑tetranitropentacyclo[5.3.0.02,6.03,10.04,8]decane[J]. Journal of Organic Chemistry, 1984, 49(21):4078-4080.

    • 51

      Schäfer J, Szeimies G. Reaction of 1,6‑dihalopentacyclo[5.2.0.0.2,6.03,9.05,8]nonanes with tert‑butyllithium: is 1,6‑dehydrohomocubane involved as a reactive intermediate?[J]. Tetrahedron Letters, 1990, 31(16):2263-2264.

    • 52

      Guan X, Su Z, Yu Y, Synthesis of the pentacyclo[4.3.0.02,5.03,8.04,7]nonane‑2,4‑bis(trinitroethyl ester)[C]// Proc. 17th International Pyrotechnics Seminar (Combined with 2rd Beijing International Symposium on Pyrotechnics and Explosives), Beijing Institute Technical Press, Beijing, China, 1991: 224.

    • 53

      Li S, Wang Y, Qi C, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie, 2013, 125(52):14031-14035.

    • 54

      Li S H, Pang S P, Li X T, et al. Synthesis of new tetrazene (N─NN─N)‑linked bi(1,2,4‑triazole)[J]. Chinese Chemical Letters, 2007, 18(10): 1176-1178.

    • 55

      Wu B D, Li Y, Wang S W, et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high‐nitrogen material (65.60%)[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(3-4):450-455.

    • 56

      Bushuyev O S, Peterson G R, Brown P, et al. Metal‑organic frameworks (MOFs) as safer, structurally reinforced energetics[J]. Chemistry‑A European Journal, 2013, 19(5):1706-1711.

    • 57

      Chen S L, Yang Z R, Wang B J, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61(8):1123-1128.

周静

机 构:

1. 西安近代化学研究所, 陕西 西安 710065

2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065

Affiliation:

1. Xi′an Modern Chemistry Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

邮 箱:zhoujing19872006@163.com

作者简介:周静(1987-),女,工程师,主要从事含能材料性能与制备研究。e‑mail:zhoujing19872006@163.com

张俊林

机 构:

1. 西安近代化学研究所, 陕西 西安 710065

2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065

Affiliation:

1. Xi′an Modern Chemistry Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

丁黎

机 构:

1. 西安近代化学研究所, 陕西 西安 710065

2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065

Affiliation:

1. Xi′an Modern Chemistry Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

毕福强

机 构:

1. 西安近代化学研究所, 陕西 西安 710065

2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065

Affiliation:

1. Xi′an Modern Chemistry Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

王伯周

机 构:

1. 西安近代化学研究所, 陕西 西安 710065

2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065

Affiliation:

1. Xi′an Modern Chemistry Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

角 色:通讯作者

Role:Corresponding author

邮 箱:wbz600@163.com

作者简介:王伯周(1967-),男,研究员,主要从事含能材料合成研究。e‑mail:wbz600@163.com

html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image001.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image002.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image003.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image004.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image005.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image006.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image007.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image011.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image010.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image014.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image015.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image012.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image013.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image016.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image008.png
html/hncl/CJEM2018302/media/7cdfd82e-e3c1-49b2-8a25-582ecef4a221-image009.png

Scheme 1 Synthesis of octanitrocubane[14,15,16]

Scheme 2 Synthesis of 1,4‑dinitroxycubane[22]

Scheme 3 Preparative accesses to octacyclopropylcubane[23]

Scheme 4 Synthesis of hexanitrohexaazaisowurtzitane[30,31,32]

Scheme 5 Synthesis of 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,9.03,11]‑dodecane[34]

Scheme 6 Preparative accesses to 3,5,12‑trisubstituted‑3,5,12‑triazawurtzitanes[38]

Scheme 9 Synthesis of 1,3,5,7‑Tetranitro‑3,7‑diazabicyclo[3.3.1]nonane[47]

Scheme 7 a Synthesis of tetranitro‑substituted adamantane derivatives[42,43]

Scheme 7 b Other studies of synthesis on tetranitro‑substituted adamantane derivatives[44]

Scheme 8 a Synthesis of other energetic adamantane derivatives by Nielsen group[45]

Scheme 8 b Synthesis of other energetic adamantane derivatives by Sollet group[46]

Scheme 10 Synthesis of l,3,5,7‑Tetranitro‑3,7‑diazabicyclo[3.3.1]nonane[48]

Scheme 11 a Synthesis of 5,5,9,9‑tetranitropentacyclo[5.3.0.02,6.03,10.04,8]decane (a)[50]

Scheme 11 b Synthesis of pentacyclo[4.3.0.03,8.04,7]nonane‑2,4‑bis(trinitroethyl ester)[51,52]

Scheme 12 Synthesis of 3D Energetic Metal‑Organic Framework[54]

Scheme 13 Synthesis of molecular perovskite high‑energetic materials[57]

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      田均均, 张庆华, 李金山. 含能分子合成最新进展[J]. 含能材料, 2016, 24(1):1-9.

      TIAN Jun‑jun, ZHANG Qing‑hua, LI Jin‑shan. Recent advances in energetic molecule synthesis[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1):1-9.

    • 2

      Zeng X, Li N, Jiao Q. Carbon‑free energetic materials: computational study on nitro‑substituted BN‑cage molecules with high heat of detonation and stability[J]. Rsc Advances, 2018, 8(26):14654-14662.

    • 3

      Lal S, Rajkumar S, Tare A, et al. Nitro‑substituted bishomocubanes: synthesis, characterization, and application as energetic materials[J]. Chemistry‑An Asian Journal, 2015, 9(12):3533-3541.

    • 4

      Ling Y, Ren X, Lai W, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.

    • 5

      Wu Q, Zhu W, Xiao H. Computer‑aided design of two novel and super‑high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane[J]. Rsc Advances, 2013, 4(8):3789-3797.

    • 6

      Zhang Q, Shreeve J M. Metal‑organic frameworks as high explosives: a new concept for energetic materials.[J]. Angewandte Chemie International Edition, 2014, 53(10):2540-2542.

    • 7

      Tian M, Chi W J, Li Q S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.

    • 8

      Roknabadi A G, Keshavarz M H, Esmailpour K, et al. High performance nitroazacubane energetic compounds: structural, thermochemical and detonation characteristics[J]. Chemistryselect, 2016, 1(21):6735-6740.

    • 9

      Moxnes J F. The crystal density of nitrogen cubane and other polynitrogen species[J]. Journal of Molecular Modeling, 2017, 23(10):284.

    • 10

      Chalmers B A, Xing H, Houston S, et al. Validating Eaton's hypothesis: cubane as a benzene bioisostere.[J]. Angewandte Chemie, 2016, 55(11):3580-3585.

    • 11

      Doedens R J, Eaton P E, Fleischer E B. The bent bonds of cubane[J]. European Journal of Organic Chemistry, 2017, 2017(18):2627-2630.

    • 12

      Boudon V, Lamy M, Dugueboyé F, et al. Synthesis, high‑resolution infrared spectroscopy and vibrational structure of cubane, C8H8[J]. Journal of Physical Chemistry A, 2016, 120(25):4418-4428.

    • 13

      Biegasiewicz K F, Griffiths J R, Savage G P, et al. Cubane: 50 years later.[J]. Chemical Reviews, 2015, 115(14):6719-6745.

    • 14

      Eaton P E, Cole T W. The cubane system[J]. Journal of the American Chemical Society, 1964, 86(5): 962-964.

    • 15

      Zhang M X, Eaton P E, Gilardi R. Hepta‑ and octanitrocubanes[J]. Angewandte Chemie International Edition, 2000, 39(2):401-404.

    • 16

      Lukin K A, Li J C, Eaton P E, et al. Synthesis and chemistry of 1,3,5,7‑tetranitrocubane including measurement of its acidity, formation of o‑nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane[J]. Journal of the American Chemical Society, 1997, 119(41):9591-9602.

    • 17

      Tian M, Chi W J, Li Q S, et al. Theoretical design of highly energetic poly‑nitro cage compounds[J]. Rsc Advances, 2016, 6(53):47607-47615.

    • 18

      Chaban V V, Prezhdo O V. Energy storage in cubane derivatives and their real‑time decomposition: computational molecular dynamics and thermodynamics[J]. Acs Energy Letters, 2016, 1(1):189-194.

    • 19

      Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes: advanced high‑density, high‑energy materials[J]. Advanced Materials, 2010, 12(15):1143-1148.

    • 20

      吴琼, 谈玲华, 杭祖圣, 等. 笼型含能晶体八硝基立方烷在高压下的分解和聚合机理的DFT‑D研究[J]. 结构化学, 2017, 36(8):1232-1242.

      WU Qiong, TAN Ling‑hua, HANG Zu‑sheng, et al. Insights into the decomposition and polymerization of cage energetic crystal octanitrocubane under high pressure: A DFT‑D study[J]. Chinese Journal of Structural Chemistry, 2017, 36(8):1232-1242.

    • 21

      Schmitt A R J, Bottaro J C, Eaton P E. Synthesis of cubane based high energy materials[J]. Proceedings of Spie, 1988, 872(5):30-37.

    • 22

      Annese C, D'Accolti L, Fusco C, et al. Oxyfunctionalization of non‑natural targets by dioxiranes. 6. On the selective hydroxylation of cubane[J]. Organic Letters, 2009, 11(16):3574-3577.

    • 23

      Meijere A D, Redlich S, Frank D, et al. Octacyclopropylcubane and some of its isomers[J]. Angewandte Chemie International Edition, 2007, 46(24):4574-4576.

    • 24

      Nielsen A T. Caged polynitramine compound: US 5693794A[P], 1997-12-02.

    • 25

      于永忠, 管晓培. 六硝基六氮杂异伍兹烷的合成研究[J]. 含能材料, 1999, 7(1):1-4.

      YU Yong‑zhong, GUAN Xiao‑pei. Studies on the synthesis of hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 1999,7(1):1-4.

    • 26

      Mcbain A, Vuppuluri V, Gunduz I E, et al. Laser ignition of CL‑20 (hexanitrohexaazaisowurtzitane) cocrystals[J]. Combustion & Flame, 2018, 188:104-115.

    • 27

      Nedelko V V, Chukanov N V, Raevskii A V, et al. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2015, 25(5):255-259.

    • 28

      宋振伟, 严启龙, 李笑江, 等. 溶剂中ε‑CL‑20的晶型变化[J]. 含能材料, 2010, 18(6):648-653.

      SONG Zhen‑wei, YAN Qi‑long, LI Xiao‑jiang, et al. Crystal transition of ε‑CL‑20 in different solvent[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010,18(6):648-653.

    • 29

      Viswanath D S, Ghosh T K, Boddu V M. Hexanitrohexaazaisowurtzitane (HNIW, CL‑20)

      [M]// Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. 2018.

    • 30

      Fotouhi‑Far F, Bashiri H, Hamadanian M. Study of deactivation of Pd(OH)2/C catalyst in reductive debenzylation of hexabenzylhexaazaisowurtzitane[J]. Propellants, Explosives,Pyrotechnics, 2016, 42(2):213-219.

    • 31

      李新乐, 孙成辉, 赵信岐, 等. 六烯丙基六氮杂异伍兹烷的合成[J]. 含能材料, 2007, 15(5):490-491,514.

      LI Xin‑le, SUN Cheng‑hui, ZHAO Xin‑qi, et al. Synthesis of Hexaallylhexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(5):490-491,514.

    • 32

      Fotouhifar F, Bashiri H, Hamadanian M, et al. Increment of activity of Pd(OH)2/C catalyst in order to improve the yield of high performance 2,4,6,8,10,12‑hexanitrohexaazaisowurtzitane (HNIW)[J]. Inorganic and Nano‑Metal Chemistry, 2017, 47(11): 1489-1494.

    • 33

      Rajan R, Ravindran T R, Venkatesan V, et al. New high pressure phases of energetic material TEX: evidence from Raman spectroscopy, X‑ray diffraction, and first‑principles calculations[J]. Journal of Physical Chemistry A, 2018, 122(30):6236-6242.

    • 34

      许健, 陆明. 杂多酸催化TEX的合成工艺改进[J]. 含能材料, 2015, 23(2):125-129.

      XU Jian, LU Ming. Synthesis Improvement of TEX catalyzed with heteropolyacid[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2):125-129.

    • 35

      Deshmukh M B, Borse A U, Mahulikar P P, et al. An improved and scalable synthesis of insensitive high explosive 4,10‑dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazaisowurtzitane (TEX)[J]. Organic Process Research & Development, 2016, 20(7):1363-1369.

    • 36

      Ramakrishnan V T, Vedachalam M, Boyer J H. 4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,903,11]dodecane[J]. Journal of Energetic Materials, 1990, 31(3):479-480.

    • 37

      Koch E C. TEX‑4,10‑Dinitro‑2,6,8,12‑tetraoxa‑4,10‑diazatetracyclo[5.5.0.05,9.03,11]‑dodecane‑review of a promising high density insensitive energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(3):374-387.

    • 38

      Nielsen A T, Christian S L, Moore D W, et al. Synthesis of 3,5,12‑triazawurtzitanes (3,5,12‑triazatetracyclo[5.3.1.12,6.04,9]dodecanes)[J]. Journal of Organic Chemistry, 1987, 52(9):1656-1662.

    • 39

      魏真, 李加荣, 张奇, 等. 金刚烷类高能量密度燃料研究进展[J]. 含能材料, 2014, 22(2):170-176.

      WEN Zhen, LI Jia‑rong, ZHANG Qi, et al. Review on diamondoids as high energetic density fuels[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2):170-176.

    • 40

      刘田英, 曹端林, 王艳红, 等. 卤代金刚烷衍生物的合成研究进展[J]. 含能材料, 2017, 25(1):76-85.

      LIU Tian‑ying, CAO Duan‑lin, WANG Yan‑hong, et al. Review on synthesis of halogenated adamantane derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(1):76-85.

    • 41

      杜耀, 王艳红, 李雅津, 等. 多硝基金刚烷的合成及其理论研究进展[J]. 化学推进剂与高分子材料, 2014, 12(2):57-63.

      DU Yao, WANG Yan‑hong, LI Ya‑jin, et al. Progress in synthesis and theory research of polynitroadamantanes[J]. Chemical Propellants & Polymeric Materials, 2014, 12(2):57-63.

    • 42

      Ling Y, Ren X, Lai W, et al. 4,4,8,8‑Tetranitroadamantane‑2,6‑diyl dinitrate: a high‑density energetic material[J]. European Journal of Organic Chemistry, 2015, 2015(7):1541-1547.

    • 43

      Zhang J, Hou T J, Ling Y F, et al. An efficient process for the synthesis of gem‑dinitro compounds under high steric hindrance by nitrosation and oxidation of secondary nitroalkanes[J]. Tetrahedron Letters, 2018, 59(30): 2880-2883.

    • 44

      Ling Y, Zhang P, Sun L, et al. Efficient synthesis of 2,2,4,4,6,6‑hexanitroadamantane under mild conditions[J]. Synthesis, 2015, 46(6):2225-2233.

    • 45

      Nielsen A T, Chafin A P, Christian S L, et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54(39):11793-11812.

    • 46

      Sollott G P, Gilbert E E. 1,4,6,9‑Tetranitrodiamantane: US4535193[P]. 1985.

    • 47

      Cichra D A, Adolph H G. Nitrolysis of dialkyl tert‑butylamines[J]. Journal of Organic Chemistry, 2002, 47(12):2474-2476.

    • 48

      Fessner W D, Prinzbach H, D3‑trishomocubanetrione synthesis and optical resolution[J]. Tetrahedron, 1986, 42(6):1797-1803.

    • 49

      Levandovsky I A, Sharapa D I, Cherenkova O A, et al. The chemistry of D3‑trishomocubane[J]. Russian Chemical Reviews, 2010, 79(11):1005-1026.

    • 50

      Marchand A P, Reddy D S. Synthesis of 5,5,9,9‑tetranitropentacyclo[5.3.0.02,6.03,10.04,8]decane[J]. Journal of Organic Chemistry, 1984, 49(21):4078-4080.

    • 51

      Schäfer J, Szeimies G. Reaction of 1,6‑dihalopentacyclo[5.2.0.0.2,6.03,9.05,8]nonanes with tert‑butyllithium: is 1,6‑dehydrohomocubane involved as a reactive intermediate?[J]. Tetrahedron Letters, 1990, 31(16):2263-2264.

    • 52

      Guan X, Su Z, Yu Y, Synthesis of the pentacyclo[4.3.0.02,5.03,8.04,7]nonane‑2,4‑bis(trinitroethyl ester)[C]// Proc. 17th International Pyrotechnics Seminar (Combined with 2rd Beijing International Symposium on Pyrotechnics and Explosives), Beijing Institute Technical Press, Beijing, China, 1991: 224.

    • 53

      Li S, Wang Y, Qi C, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie, 2013, 125(52):14031-14035.

    • 54

      Li S H, Pang S P, Li X T, et al. Synthesis of new tetrazene (N─NN─N)‑linked bi(1,2,4‑triazole)[J]. Chinese Chemical Letters, 2007, 18(10): 1176-1178.

    • 55

      Wu B D, Li Y, Wang S W, et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high‐nitrogen material (65.60%)[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(3-4):450-455.

    • 56

      Bushuyev O S, Peterson G R, Brown P, et al. Metal‑organic frameworks (MOFs) as safer, structurally reinforced energetics[J]. Chemistry‑A European Journal, 2013, 19(5):1706-1711.

    • 57

      Chen S L, Yang Z R, Wang B J, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61(8):1123-1128.