CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
HuangH, ZhangT, ZhangJ, et al. A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates[J]. J Hazard Mater, 2010, 179(1-3): 21-27.
参考文献 2
SzimhardtN, WurzenbergerM H H, KlapötkeT M, et al. Highly functional energetic complexes: stability tuning through coordination diversity of isomeric propyl‑linked ditetrazoles[J]. J Mater Chem A, 2018, 6(15): 6565-6577.
参考文献 3
YangQ, SongX, ZhangW, et al. Three new energetic complexes with N,N‑bis (1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton T, 2017, 46(8): 2626-2634.
参考文献 4
WurzenbergerM H H, SzimhardtN, StierstorferJ. Copper(Ⅱ) Chlorate Complexes: The Renaissance of a Forgotten and Misjudged Energetic Anion[J]. J Am Chem Soc, 2018,140(9): 3206-3209.
参考文献 5
WeiT, ZhuW, ZhangX, et al. Molecular design of 1,2,4,5‑tetrazine‑based high‑energy density materials[J]. J Phys Chem A, 2009, 113(33): 9404-9412.
参考文献 6
WuQ, ZhuW H, XiaoH M. A new design strategy for high‑energy low‑sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N‑oxide in one molecule of 1‑amino‑5‑nitrotetrazole‑3 N‑oxide[J]. J Mater Chem A, 2014, 2(32): 13006‑13015.
参考文献 7
YinP, ShreeveJ M. From n‐nitro to n‐nitroamino: preparation of high‑performance energetic materials by introducing nitrogen‑containing Ions[J]. Angew Chem Int Edit, 2015, 127(48): 14721-14725.
参考文献 8
FrischM J, TrucksG W, SchlegelH B, et al. Gaussian 09[CP], Gaussian Inc, Wallingford CT, 2009.
参考文献 9
TaoJ M, PerdewJ P, StarroverovV N, et al. Climbing the density functional ladder: nonempirical meta‑generalized gradient approximation designed for molecules and solids[J]. Phys Rev Lett, 2003, 91(14): 146401.
参考文献 10
KamletM J, JacobsS. Chemistry of detonations. I. a simple method for calculating detonation properties of C—H—N—O explosives[J]. J Chem Phys, 1968, 48(1): 23-35.
参考文献 11
WangY, ZhangJ C, SuH, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. J Phys Chem A, 2014, 118(25): 4575-4581.
参考文献 12
PolitzerP, MartinezJ, MurrayJ S, et al. An electrostatic interaction correction for improved crystal density prediction[J]. Mol Phys, 2009, 107(19): 2095-2101.
参考文献 13
PospíšilM, VávraP, KonchaM C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J]. J Mol Model, 2010, 16(5): 895-901.
参考文献 14
GhuleV D, JadhavP M, PatilR S, et al. Quantum‑chemical studies on hexaazaisowurtzitanes[J]. J Phys Chem A, 2010, 114(1): 498-503.
参考文献 15
TrzcińskiW A, CudziłoS, ChyłekZ, et al. Detonation properties of 1,1‑diamino‑2,2‑dinitroethene (DADNE)[J]. J Hazard Mater, 2008, 157(2-3), 605-612.
参考文献 16
SimpsonR L, UrtiewP A, OrnellasD L, et al. CL‑20 performance exceeds that of HMX and its sensitivity is Moderate[J]. Propellants Explos Pyrotech, 1997, 22(5), 249-255.
参考文献 17
ZhuW H, XiaoH M. First‑principles band gap criterion for impact sensitivity of energetic crystals: a review[J]. Struct Chem, 2010, 21(3): 657-665.
参考文献 18
RiceB M, HareJ J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].J Phys Chem A,106(9):1770-1783.
参考文献 19
MayoS L, OlafsonB D, GoddardW A. Dreiding: a generic force field for molecular simulations[J]. J Phys Chem, 1990, 94(26): 8897-8909.
参考文献 20
WangG X, ShiC H, GongX D, et al. Packing structures and periodic band calculations on DPO (2,5‑dipicryl‑1,3,4‑oxadiazole)[J]. J Hazard Mater, 2009, 169(1-3): 813-818.
参考文献 21
Mendoza‑CortesJ L, AnQ, GoddardIII W A, et al. Prediction of the crystal packing of di‑tetrazine‑tetroxide(DTTO) energetic material[J]. J Comput Chem,2016,37(2): 163-167.
参考文献 22
NaserifarS, ZybinS, YeC C, et al. Prediction of structures and properties of 2,4, 6‑triamino‑1,3,5‑triazine‑1,3,5‑trioxide (MTO) and 2,4,6‑trinitro‑1,3,5‑triazine‑1,3,5‑trioxide (MTO3N) green energetic materials from DFT and ReaxFF molecular modeling[J]. J Mater Chem A,2016,4(4):1264-1276.
目录 contents

    摘要

    基于N,N′‑二硝氨基⁃3,3′⁃二硝基联三唑(DNABT)二齿含能配体和金属元素铜,采用含能小配体NH3和NH2NO2对结构和性能进行调控,设计了三种新型含能富氮金属配合物:Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)。采用密度泛函理论等方法对其分子、电子和晶体结构,及生成热、密度、爆速爆压和撞击感度等性质进行了计算模拟。结果表明,Cu与小配体之间的配位键是结构中比较弱而容易诱发分解的部分。小配体的类别和数量对配合物的结构和不同性能都有显著影响,且对各种性能的影响不同。三种配合物具有高密度(2.07~2.13 g·cm-3)、优良的能量性质(爆速:8.44~9.12 km·s-1,爆压:34.2~40.0 GPa)和可接受的感度(7~22 cm),x=1时,配合物的能量水平优于黑索今且感度与其接近,是潜在的高能量密度化合物。

    Abstract

    Three new nitrogen‑rich energetic complexes Cu(DNABT)(NH3)2‑x(NH2NO2)x(x=0,1,2) were designed by incorporating N,N′‑dinitroamino‑bi(1,2,4‑triazole) (DNABT) with copper, ammonia and nitramine. Their molecular, electronic and crystal structures, heat of formation, density, detonation performance and sensitivity were studied theoretically. The results show that the Cu and DNABT linked coordination bond is weaker than other bonds which possibly trigger the decomposition. The number of ammonia and nitramine ligands have a significant different effect on the structure and properties of the designed complex. All designed complexes possess high density (2.07-2.13 g·cm-3), good energetic performance (detonation velocity: 8.44-9.12 km·s-1, detonation pressure: 34.2-40.0 GPa) and acceptable sensitivity (7-22 cm), especially for the complex with x=1, whose energy is higher than RDXand similar sensitivity to RDX, being a potential high energy density compound.

    Graphic Abstract

    图文摘要

    Three new nitrogen‑rich energetic complexes Cu(DNABT)(NH3)2‑x(NH2NO2)x(x=0,1,2) with high energy and acceptable sensitivity were designed by coupling mixed ligands N,N′‑dinitroamino‑bi(1,2,4‑triazole) (DNABT) and NH3/NH2NO2 with copper.

  • 1 引 言

    富氮金属配合物及其聚合[1,2,3,4]是一种重要的有机金属化合物,近年来,因其具有突出的密度、生成热(HOF)和能量性质,在含能材料的诸多领域如起爆药、高能炸药、固体火箭推进剂、气体发生剂等均有广阔的应用前景,受到了研究人员的广泛关注。含能金属配合物的能量主要取决于其结构中的含能有机功能配体,因此,要获得一个能量水平高,爆速和爆压优于黑索今(RDX)和奥克托今(HMX)的物质,用来构建金属配合物的有机配体必须具备高的爆轰性能。密度、生成热和氧平衡(OB)大体决定了含能化合物的能量水[5,6],目前所使用的有机配体大都含有很高的N含量,因而具有较高的密度和生成热。然而,最终得到的金属配合物的能量水平却很平庸,大部分都劣于RDX和HMX,其中一个重要原因就是其含氧量过低,导致整个体系严重缺氧(OB值为负,且明显低于0),使其在爆轰时,不能完全把C和H等元素完全氧化,大大地降低了所释放出来的热量,并会释放出CO等有毒气体,对能量性质和环境都造成了不利影响。所以用来构建含能金属配合物的有机配体不仅要具备较高的密度和生成热,最好也同时具备较高的氧平衡。N,N′‑二硝氨基⁃3,3′⁃二硝基联三唑(DNABT)是最近合成的一种新型富氮含能化合[7],其密度为1.88 g·cm-3,生成热为591.7 kJ·mol-1,其氧平衡为-4.6%,接近于零,含氧量明显高于目前所用的大多数有机含能配体,有利于在爆轰时更大程度地燃烧,释放更多的能量。因此,DNABT有可能是一个优异的含能配体。

    为此,本研究以DNABT为二齿含能配体,结合金属元素铜,设计了一系列的新型含能富氮金属配合物:Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)[A1:Cu(DNABT)(NH3)2; A2:Cu(DNABT)(NH3)(NH2NO2);A3:Cu(DNABT)(NH2NO2)2]。在结构中加入不同数量的两种小配体(NH3 和NH2NO2)来调控结构和性能:加入小配体NH3减少空间位阻和形成氢键,提高稳定性;加入小配体NH2NO2进一步增加生成热和氧平衡,进而提高爆速和爆压。然后,采用密度泛函理论方法对设计的新型金属配合物的分子结构、电子结构、生成热、氧平衡、爆速、爆压和感度进行了研究,并与RDX和HMX的主要性能进行对比分析,对所设计的新型含能金属配合物进行性能评估。

  • 2 计算方法

    Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)的分子框架见图1

    图1
                            Cu(DNABT)(NH3)2‑x(NH2NO2)x(x=0,1,2)的分子框架

    图1 Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)的分子框架

    Fig.1 Molecular frameworks of Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)

    基于高斯09软[8],采用TPSSTPSS/6‑311G(d,p)方法计算所设计的金属配合物的结构(TPSS:Tao‑Perdew‑Staroverov‑Scuseria[9]。振动频率分析证明所有的几何结构均位于势能面的极小点。采用原子化法来计算金属配合物的生成热:

    ΔaH(0 K)=E(0 K)[aC+bH+cN+dO+eCu]-E(0 K)[CaHbNcOdCue]
    (1)
    ΔfH(0 K)[CaHbNcOdCue]=aΔfH(0 K,C)+bΔfH(0 K,H)+cΔfH(0 K,N)+dΔfH(0 K,O)+eΔfH(0 K,Cu)-ΔaH(0 K)[CaHbNcOdCue]
    (2)
    ΔfH(298 K)[CaHbNcOdCue]=ΔfH(0 K)[CaHbNcOdCue]+ΔcH[CaHbNcOdCue]-[aΔcHC+b2ΔcHH2+c2ΔcHN2+d2ΔcHO2+eΔcHCu]
    (3)
    OB=(d-2a-b2-e)×1600M
    (4)

    式中,a、b、c、de分别是C、H、N、O和Cu的计量系数;E是原子在0 K下总的电子能量,a.u.;ΔaH是在0 K时的原子化能,a.u.;ΔfH是指生成热(HOF),kJ·mol-1ΔcH是指从0到298 K的焓变的校正值,kJ·mol-1;原子与小分子的生成热值取自NIST数据[10]。OB指金属配合物的氧平衡,%;M为化合物的相对分子质量。

    金属配合物的能隙值(Egap)与爆热(ΔHdet)按如下公式计算:

    Egap=E(LUMO)-E(HOMO)
    (5)
    ΔHdet=1.127ΔEdet+0.046,r=0.968
    (6)

    式(5)中,E(LUMO)、E(HOMO)分别指最低未占分子轨道与最高占据分子轨道的能量值,eV。式(6)中,ΔEdet为爆炸能量,kJ·g-1

    运用改进过的Kamlet‑Jacobs公[11]计算金属配合物的爆速(km·s-1)和爆压(GPa):

    D=1.01(NM̅12Q12)12(1+1.30ρ)
    (7)
    p=1.558ρ2NM̅12Q12
    (8)

    式中,固态密度ρ(g·cm-3[12]和撞击感度H50(cm[13]的计算均采用Politzer[12‑13]

    ρ=α(MV(0.001))+β(νσtot2)+γ
    (9)
    H50=aσ+2+bν+c
    (10)
  • 3 结果与讨论

  • 3.1 分子结构

    图2为所设计的三种配合物优化后的分子结构。从图2可以看到,在所设计的配合物中,DNABT是一种二齿配体且其中的三唑环结构维持不变,而结构中有一个包括4个N原子,2个C原子和1个金属Cu原子的新大七元环。由于结构中存在较多的基团,结构相对拥挤而发生分子内排斥作用,导致三种配合物都不是平面分子,尤其是A1和A3,在这两种物质中两种小配体NH3和NH2NO2几乎垂直于DNABT中的三唑环,这种扭曲结构可能对含能化合物的感度性质造成不利影响。表1列出了所设计的配合物的部分键长,从表1可以发现,三种配合物结构中左右两部分中相同类型、相互对应的键具有几乎相同的键长。例如,其中一个三唑环上的N(1)—C(2)、C(2)—N(3)、N(3)—C(4)、C(4)—N(5)和N(1)—N(5)键的键长分别与另一个三唑环对应的键C(6)—N(7)、N(7)—C(8)、C(8)—N(9)、C(6)—N(10)和N(9)—N(10)的键长接近或相等,说明配合物具有一定的结构对称性。配位键Cu(25)—NH2NO2的键长比Cu(25)—NH3长,这可能是由于NH2中的NO2是吸电子基,削弱了NH2NO2与Cu原子之间的配位作用。用NH2NO2代替NH3对DNABT中的C—NO2的键长没有影响,但会使N—NO2的键长呈增加趋势。

    html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F003.png

    a. A1:Cu(DNABT)(NH3)2

    html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F004.png

    b. A2:Cu(DNABT)(NH3)(NH2NO2)

    html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F005.png

    c. A3:Cu(DNABT)(NH2NO2)2

    图2 设计的三种金属配合物的原子编号和优化结构

    Fig.2 Atomic label and optimized structures of designed complexes

    表1 设计的三种配合物的键长

    Table 1 Bond length of designed complexesÅ

    bondA1A2A3
    N(1)—C(2)/C(6)—N(7)1.328/1.3281.326/1.3241.328/1.328
    C(2)—N(3)/N(7)—C(8)1.354/1.3541.354/1.3551.354/1.354
    N(3)—C(4)/C(8)—N(9)1.325/1.3251.324/1.3261.323/1.323
    C(4)—N(5)/C(6)—N(10)1.390/1.3901.386/1.3861.396/1.396
    N(1)—N(5)/N(9)—N(10)1.358/1.3581.360/1.3601.356/1.356
    C(2)—NO2/C(8)—NO21.479/1.4791.480/1.4791.480/1.480
    N(11)—NO2/N(12)—NO21.411/1.4111.419/1.4261.422/1.420
    Cu(25)—N(11)1.9891.9461.965
    Cu(25)—N(12)1.9891.9621.967
    Cu(25)—NH31.982/1.9822.010/
    Cu(25)—NH2NO2/2.1092.008/2.012

    表2为所设计的配合物的几种相对较弱共价键(C—NO2、N—NO2、NH2—NO2)和配位键的键级(BO),通常在同一个物质中,BO值越小,键的强度越低。从表2可以看到,三种共价键的BO值明显大于四个配位键,说明配位键在结构中是比较脆弱和敏感的键,容易受到环境影响而发生断裂。在A1中,金属元素Cu与DNABT中硝氨基上N之间的配位键Cu—N(11)和Cu—N(12)的键级明显比Cu—NH3小,说明前者比后者弱。同样地,A2中Cu—NH2NO2的键级最小,说明其是A2中比较弱的键。在A3中,两种配位键的键级比较接近,强度相当,都有可能发生断裂而诱发分解。

    表2 所设计的三种配合物的键级

    Table 2 Bond orders of designed complexes

    bondA1A2A3
    Cu—N(11)0.1700.2120.180
    Cu—N(12)0.1700.2190.179
    Cu—NH30.2260.203/
    Cu—NH2NO2/0.1360.191
    C—NO20.8980.8920.897
    N—NO21.0401.0381.041
    NH2—NO2/0.9080.940
  • 3.2 爆轰性能

    对于含能化合物而言,同等情况下,生成热或密度越高,爆轰性能越优秀。如六硝基六氮杂异伍兹烷(CL‑20)兼具高生成热和高密[14]。采用上述第2节相应方法计算了三种配合物物的密度、生成热、氧平衡、爆轰热、爆速与爆压,结果见表3。为了与RDX、HMX、CL‑20比较,表3同时给出了RDX、HMX和CL‑20[15,16]的爆轰性能。由表3可知RDX的密度、生成热、爆速和爆压的计算值和实验值比较接近。具有一个NH3小配体和一个NH2NO2小配体的A2的ρ高于其余具有两个NH3小配体(A1)或NH2NO2小配体(A3),这可能是由两个原因造成的:(1)A2的结构平面性明显好于A1和A3,有利于分子堆积;(2)A2中NH3与NH2NO2之间形成分子内氢键从而提高了密度。A3的ρ与A1几乎相当,说明用NH2NO2完全替代所有的NH3无法提高配合物的ρ。三种配合物的密度(ρ=2.07~2.13 g·cm-3)都明显高于RDX和HMX,也略高于CL‑20,这说明其具有良好的密度性质。然后,三种配合物也具备优良的生成热(440.7~582.8 kJ·mol-1),其中A3的HOF甚至比CL‑20要高26.3%。A2的HOF与A1相当,A3则明显高于A1和A2,这与密度性质的顺序相反,说明用一个NH2NO2取代NH3无法提高配合物的HOF,而用NH2NO2完全替代所有的NH3则可以显著提高HOF。

    表3 所设计的配合物的爆轰参数与常规含能材料的对比

    Table 3 Detonation performance of designed complexes

    parameterA1A2A3RDX[15]HMX[15]CL‑20[16]
    ρ / g·cm-32.072.132.081.82(1.79)1.912.04
    HOF / kJ·mol-1441.1440.7582.893(78)105460
    OB / %-14.5-4.94+3.01-21.6-21.6-10.5
    ΔHdet / kJ·g-15.445.866.116.035.536.49
    D / km·s-18.448.869.128.75(8.78)9.109.38
    p / GPa34.238.340.034.5(34.1)39.044.6

    NOTE: The numbers in the parenthesis are the calculated values in this work.

    因为DNABT的含氧量高,OB值较[7],且结构中用两种小配体进行了修饰,所设计的三种配合物也具备较高的氧平衡(-14.5%~3.01%),且均在理想值(OB=0)附近,都较RDX、HMX优越,其中A2与A3比CL‑20更为优良。因此,即便结构中含有会降低爆轰时产生的热量的金属元素,三种配合物依然具有较高的ΔHdet值(5.44~6.11 kJ·g-1),优于HMX,略逊于RDX与CL‑20。三种配合物的OB和ΔHdet值都按照A1、A2和A3的顺序依次提高,这说明在结构中引入NH2NO2小配体有利于提高OB和ΔHdet

    总之,由于所设计的新型金属配合物具备较高的密度、生成热和氧平衡性质,它们皆具备较为优良的爆轰性能。爆速方面,A2的爆速比A1高5.0%,而A3的爆速又比A2高2.9%,这说明引入NH2NO2小配体能明显提高爆速,但这种提高效应随着其数量的增加而削弱。爆压方面,A2的爆压比A1高12.0%,而A3的爆压又比A2高4.4%,这说明引入NH2NO2小配体能显著增加爆压,且这种效应比对爆速的影响更加明显;但与对爆速的影响相类似的是,这种提高效应也随着NH2NO2配体的数量增加而削弱。NH2NO2小配体对爆速爆压的积极影响主要来源于其对密度、生成热,尤其是对氧平衡和爆热的正面贡献。图3对比了所设计的配合物与RDX、HMX及CL‑20的爆速和爆压。从图3可以发现,A1的爆速爆压与RDX相当,A2的爆速爆压明显高于RDX而接近于HMX,A3的爆速爆压则介于HMX和CL‑20之间。又由于RDX、HMX和CL‑20都是具有高能量的化合物的著名代表物,因而本研究所设计的新型金属配合物都具有高能量。

    图3
                            所设计的金属配合物与RDX、HMX及CL‑20的D和p对比

    图3 所设计的金属配合物与RDX、HMX及CL‑20的Dp对比

    Fig.3 A comparison of D and p of designed complexes with RDX, HMX and CL‑20

  • 3.3 撞击感度

    对于含能化合物而言,感度越低,安全性越高。为了对比与预测设计配合物的撞击感度,计算了三种配合物的能隙值(Egap[17]H50[13],为与RDX、HMX比较,给出了两者撞击感度的实验值。能隙值是指最高占据分子轨道和最低未占分子轨道之间的能量差。该值越大,分子越难被激发,电子越难转移,含能化合物的感度越[17]表4为所设计的配合物的EgapH50值。从表4可以发现三种配合物Egap值都较小,说明电子较为容易发生转移,感度比较高,这符合它是含能金属配合物的本性。三种配合物中A2的Egap值最大,说明其比A1和A3要钝感,这与前文中讨论的A2中两个小配体之间可形成氢键从而降低感度,且A1和A3的结构更为拥挤,分子内排斥大从而增加感度相一致。这也说明用一个NH2NO2取代NH3有利于降低感度,而用NH2NO2完全替代所有的NH3则会造成不利影响而显著提高感度。

    表4 所设计的配合物的能隙值和H50

    Table 4 The Egap and H50 values of designed complexes

    A1A2A3RDXHMX
    Egap / eV0.6171.0560.436//
    H50 / cm1522733(26-30)26(26-30)

    NOTE: The numbers in the parenthesis are the experimental values.

    此外,A1、A2和A3的H50值分别预测为15,22 cm和7 cm,H50值越高,感度越低,因此A2的感度最低,A3的感度最高,这与Egap值的顺序一致。表4中列出了RDX和HMX的H50的计算值和实验值,可以发现两者比较接近。整体上,A1的感度与CL‑20(14 cm[16]相当,A2的感度接近于RDX、HMX(26~30 cm[18]。A3的感度则很高,属于非常敏感的含能化合物。整体上,A2的能量高于HMX和RDX,感度接近于HMX和RDX,总体性能较为优异。A1的能量与RDX相当,感度也可接受。这两种物质可作为可能的潜在高能量密度化合物的候选物。因此,DNABT是一种适合用来设计和得到具备高能量与可接受感度的新型金属配合物的高能配体,可进一步用于合成和发展其他新型含能物质如高能有机金属骨架化合物。

  • 3.4 晶体结构

    Dreiding力[19]最大优点在于有很强的晶体结构预测能力,相对于那些为十分有限的体系提供较高精确度的力场,Dreiding能合理地预测大量的体系,包括含有新元素化合类型的体系、以及没有或很少实验数据的体系。例如其已被广泛用来预测包括唑类和嗪类含能材[20,21,22]的晶体结构。因此,本研究基于Dreiding力[20,21,22]和10种常见的空间群,预测了三种新型金属配合物A1、A2和A3可能的晶体结构,表5列出了在不同空间群下的晶胞总能,从表5可以发现,对于A1、A2和A3而言,其分别在P‑1、P212121和CC空间群下具有最低的总能值。一般而言,相同的条件下,最稳定的晶体结构具有最低的能量,因此,可推测A1、A2和A3的晶体结构最可能分别属于P‑1、P212121和CC空间群,这三种空间群在含能化合物中是比较常见的。在此情况下,晶格参数分别为A1:Z=2,a=13.43 Å,b=14.71 Å,c=9.0 Å,α=132.9°,β=47.9°,γ=138.1°;A2:Z=4,a=8.16 Å,b=11.62 Å,c=19.87 Å,α=β=γ=90.0°;A3:Z=4,a=11.07 Å,b=16.24 Å,c=12.31 Å,α=90.0°,β=66.9°,γ=90.0°。

    表5 所设计的配合物在十种可能空间群下的晶胞总能

    Table 5 Total energyof designed complexes in ten possible space groups kJ·mol-1·cell-1

    space groupC2C2/cCCP‑1P21P21/cP212121PbcaPbcnPna21
    A1-73.4-69.3-67.9-85.9-85.2-84.7-84.0-85.8-79.8-81.3
    A2-55.0-52.8-59.6-62.6-60.4-63.7-64.7-60.6-59.0-63.3
    A3-31.9-26.5-33.9-31.8-33.1-33.7-32.5-33.3-32.4-29.9
  • 4 结 论

    (1)设计的三种金属配合物的结构都具有一定的对称性,而Cu与小配体NH3和NH2NO2之间的配位键是易诱发分解的部分。基于较高的氮含量和氧含量,它们都具备很高的密度、生成热值和氧平衡值。引入一个NH2NO2配体能明显提高密度,引入两个却会降低密度,而NH2NO2配体对生成热的影响则正好与此相反。

    (2)三种配合物都具有优良的能量性质,A2的爆轰性能优于RDX而A3的爆轰性能则优于HMX。

    (3)三种配合物的感度差异较大,A2的感度最低并接近于RDX和HMX,A3的感度则非常高,引入一个NH2NO2配体有利于形成分子内氢键从而能降低感度,而引入两个NH2NO2配体会显著增加排斥作用,对感度的影响则正好相反。

    (4)基于DNABT设计的三种新型金属配合物具有良好的能量性质,通过小配体可以有效调控其结构和性质,其中A2的能量水平优于RDX且感度与其接近,具有作为高能量密度化合物的可能性。

    (责编: 张 琪)

  • 参考文献

    • 1

      Huang H, Zhang T, Zhang J, et al. A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates[J]. J Hazard Mater, 2010, 179(1-3): 21-27.

    • 2

      Szimhardt N, Wurzenberger M H H, Klapötke T M, et al. Highly functional energetic complexes: stability tuning through coordination diversity of isomeric propyl‑linked ditetrazoles[J]. J Mater Chem A, 2018, 6(15): 6565-6577.

    • 3

      Yang Q, Song X, Zhang W, et al. Three new energetic complexes with N,N‑bis (1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton T, 2017, 46(8): 2626-2634.

    • 4

      Wurzenberger M H H, Szimhardt N, Stierstorfer J. Copper(Ⅱ) Chlorate Complexes: The Renaissance of a Forgotten and Misjudged Energetic Anion[J]. J Am Chem Soc, 2018,140(9): 3206-3209.

    • 5

      Wei T, Zhu W, Zhang X, et al. Molecular design of 1,2,4,5‑tetrazine‑based high‑energy density materials[J]. J Phys Chem A, 2009, 113(33): 9404-9412.

    • 6

      Wu Q, Zhu W H, Xiao H M. A new design strategy for high‑energy low‑sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N‑oxide in one molecule of 1‑amino‑5‑nitrotetrazole‑3 N‑oxide[J]. J Mater Chem A, 2014, 2(32): 13006‑13015.

    • 7

      Yin P, Shreeve J M. From n‐nitro to n‐nitroamino: preparation of high‑performance energetic materials by introducing nitrogen‑containing Ions[J]. Angew Chem Int Edit, 2015, 127(48): 14721-14725.

    • 8

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP], Gaussian Inc, Wallingford CT, 2009.

    • 9

      Tao J M, Perdew J P, Starroverov V N, et al. Climbing the density functional ladder: nonempirical meta‑generalized gradient approximation designed for molecules and solids[J]. Phys Rev Lett, 2003, 91(14): 146401.

    • 10

      Kamlet M J, Jacobs S. Chemistry of detonations. I. a simple method for calculating detonation properties of C—H—N—O explosives[J]. J Chem Phys, 1968, 48(1): 23-35.

    • 11

      Wang Y, Zhang J C, Su H, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. J Phys Chem A, 2014, 118(25): 4575-4581.

    • 12

      Politzer P, Martinez J, Murray J S, et al. An electrostatic interaction correction for improved crystal density prediction[J]. Mol Phys, 2009, 107(19): 2095-2101.

    • 13

      Pospíšil M, Vávra P, Koncha M C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J]. J Mol Model, 2010, 16(5): 895-901.

    • 14

      Ghule V D, Jadhav P M, Patil R S, et al. Quantum‑chemical studies on hexaazaisowurtzitanes[J]. J Phys Chem A, 2010, 114(1): 498-503.

    • 15

      Trzciński W A, Cudziło S, Chyłek Z, et al. Detonation properties of 1,1‑diamino‑2,2‑dinitroethene (DADNE)[J]. J Hazard Mater, 2008, 157(2-3), 605-612.

    • 16

      Simpson R L, Urtiew P A, Ornellas D L, et al. CL‑20 performance exceeds that of HMX and its sensitivity is Moderate[J]. Propellants Explos Pyrotech, 1997, 22(5), 249-255.

    • 17

      Zhu W H, Xiao H M. First‑principles band gap criterion for impact sensitivity of energetic crystals: a review[J]. Struct Chem, 2010, 21(3): 657-665.

    • 18

      Rice B M, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].J Phys Chem A,106(9):1770-1783.

    • 19

      Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic force field for molecular simulations[J]. J Phys Chem, 1990, 94(26): 8897-8909.

    • 20

      Wang G X, Shi C H, Gong X D, et al. Packing structures and periodic band calculations on DPO (2,5‑dipicryl‑1,3,4‑oxadiazole)[J]. J Hazard Mater, 2009, 169(1-3): 813-818.

    • 21

      Mendoza‑Cortes J L, An Q, Goddard III W A, et al. Prediction of the crystal packing of di‑tetrazine‑tetroxide(DTTO) energetic material[J]. J Comput Chem,2016,37(2): 163-167.

    • 22

      Naserifar S, Zybin S, Ye C C, et al. Prediction of structures and properties of 2,4, 6‑triamino‑1,3,5‑triazine‑1,3,5‑trioxide (MTO) and 2,4,6‑trinitro‑1,3,5‑triazine‑1,3,5‑trioxide (MTO3N) green energetic materials from DFT and ReaxFF molecular modeling[J]. J Mater Chem A,2016,4(4):1264-1276.

吴琼

机 构:

1. 南京工程学院材料科学与工程学院, 江苏 南京 211167

2. 江苏省先进结构材料与应用技术重点实验室, 江苏 南京 211167

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167,China

2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167,China

邮 箱:qwunjit@163.com

作者简介:吴琼(1989-),男,副教授,主要从事含能材料的分子设计与理论研究。e‑mail:qwunjit@163.com

颜高杰

机 构:

1. 南京工程学院材料科学与工程学院, 江苏 南京 211167

2. 江苏省先进结构材料与应用技术重点实验室, 江苏 南京 211167

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167,China

2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167,China

李启迪

机 构:

1. 南京工程学院材料科学与工程学院, 江苏 南京 211167

2. 江苏省先进结构材料与应用技术重点实验室, 江苏 南京 211167

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167,China

2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167,China

张泽武

机 构:

1. 南京工程学院材料科学与工程学院, 江苏 南京 211167

2. 江苏省先进结构材料与应用技术重点实验室, 江苏 南京 211167

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167,China

2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167,China

朱卫华

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering of Nanjing University of Science and Technology,Nanjing 210094, China

html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F001.png
html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F003.png
html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F004.png
html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F005.png
bondA1A2A3
N(1)—C(2)/C(6)—N(7)1.328/1.3281.326/1.3241.328/1.328
C(2)—N(3)/N(7)—C(8)1.354/1.3541.354/1.3551.354/1.354
N(3)—C(4)/C(8)—N(9)1.325/1.3251.324/1.3261.323/1.323
C(4)—N(5)/C(6)—N(10)1.390/1.3901.386/1.3861.396/1.396
N(1)—N(5)/N(9)—N(10)1.358/1.3581.360/1.3601.356/1.356
C(2)—NO2/C(8)—NO21.479/1.4791.480/1.4791.480/1.480
N(11)—NO2/N(12)—NO21.411/1.4111.419/1.4261.422/1.420
Cu(25)—N(11)1.9891.9461.965
Cu(25)—N(12)1.9891.9621.967
Cu(25)—NH31.982/1.9822.010/
Cu(25)—NH2NO2/2.1092.008/2.012
bondA1A2A3
Cu—N(11)0.1700.2120.180
Cu—N(12)0.1700.2190.179
Cu—NH30.2260.203/
Cu—NH2NO2/0.1360.191
C—NO20.8980.8920.897
N—NO21.0401.0381.041
NH2—NO2/0.9080.940
parameterA1A2A3RDX[15]HMX[15]CL‑20[16]
ρ / g·cm-32.072.132.081.82(1.79)1.912.04
HOF / kJ·mol-1441.1440.7582.893(78)105460
OB / %-14.5-4.94+3.01-21.6-21.6-10.5
ΔHdet / kJ·g-15.445.866.116.035.536.49
D / km·s-18.448.869.128.75(8.78)9.109.38
p / GPa34.238.340.034.5(34.1)39.044.6
html/hncl/CJEM2018301/alternativeImage/7072b94d-4621-48bb-b153-39185d720e8c-F006.png
A1A2A3RDXHMX
Egap / eV0.6171.0560.436//
H50 / cm1522733(26-30)26(26-30)
space groupC2C2/cCCP‑1P21P21/cP212121PbcaPbcnPna21
A1-73.4-69.3-67.9-85.9-85.2-84.7-84.0-85.8-79.8-81.3
A2-55.0-52.8-59.6-62.6-60.4-63.7-64.7-60.6-59.0-63.3
A3-31.9-26.5-33.9-31.8-33.1-33.7-32.5-33.3-32.4-29.9

图1 Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)的分子框架

Fig.1 Molecular frameworks of Cu(DNABT)(NH3)2‑x(NH2NO2)xx=0,1,2)

图2 设计的三种金属配合物的原子编号和优化结构 -- a. A1:Cu(DNABT)(NH3)2

Fig.2 Atomic label and optimized structures of designed complexes -- a. A1:Cu(DNABT)(NH3)2

图2 设计的三种金属配合物的原子编号和优化结构 -- b. A2:Cu(DNABT)(NH3)(NH2NO2)

Fig.2 Atomic label and optimized structures of designed complexes -- b. A2:Cu(DNABT)(NH3)(NH2NO2)

图2 设计的三种金属配合物的原子编号和优化结构 -- c. A3:Cu(DNABT)(NH2NO2)2

Fig.2 Atomic label and optimized structures of designed complexes -- c. A3:Cu(DNABT)(NH2NO2)2

表1 设计的三种配合物的键长

Table 1 Bond length of designed complexesÅ

表2 所设计的三种配合物的键级

Table 2 Bond orders of designed complexes

表3 所设计的配合物的爆轰参数与常规含能材料的对比

Table 3 Detonation performance of designed complexes

图3 所设计的金属配合物与RDX、HMX及CL‑20的Dp对比

Fig.3 A comparison of D and p of designed complexes with RDX, HMX and CL‑20

表4 所设计的配合物的能隙值和H50

Table 4 The Egap and H50 values of designed complexes

表5 所设计的配合物在十种可能空间群下的晶胞总能

Table 5 Total energyof designed complexes in ten possible space groups kJ·mol-1·cell-1

image /

无注解

无注解

无注解

无注解

无注解

无注解

The numbers in the parenthesis are the calculated values in this work.

无注解

The numbers in the parenthesis are the experimental values.

无注解

  • 参考文献

    • 1

      Huang H, Zhang T, Zhang J, et al. A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates[J]. J Hazard Mater, 2010, 179(1-3): 21-27.

    • 2

      Szimhardt N, Wurzenberger M H H, Klapötke T M, et al. Highly functional energetic complexes: stability tuning through coordination diversity of isomeric propyl‑linked ditetrazoles[J]. J Mater Chem A, 2018, 6(15): 6565-6577.

    • 3

      Yang Q, Song X, Zhang W, et al. Three new energetic complexes with N,N‑bis (1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton T, 2017, 46(8): 2626-2634.

    • 4

      Wurzenberger M H H, Szimhardt N, Stierstorfer J. Copper(Ⅱ) Chlorate Complexes: The Renaissance of a Forgotten and Misjudged Energetic Anion[J]. J Am Chem Soc, 2018,140(9): 3206-3209.

    • 5

      Wei T, Zhu W, Zhang X, et al. Molecular design of 1,2,4,5‑tetrazine‑based high‑energy density materials[J]. J Phys Chem A, 2009, 113(33): 9404-9412.

    • 6

      Wu Q, Zhu W H, Xiao H M. A new design strategy for high‑energy low‑sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N‑oxide in one molecule of 1‑amino‑5‑nitrotetrazole‑3 N‑oxide[J]. J Mater Chem A, 2014, 2(32): 13006‑13015.

    • 7

      Yin P, Shreeve J M. From n‐nitro to n‐nitroamino: preparation of high‑performance energetic materials by introducing nitrogen‑containing Ions[J]. Angew Chem Int Edit, 2015, 127(48): 14721-14725.

    • 8

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP], Gaussian Inc, Wallingford CT, 2009.

    • 9

      Tao J M, Perdew J P, Starroverov V N, et al. Climbing the density functional ladder: nonempirical meta‑generalized gradient approximation designed for molecules and solids[J]. Phys Rev Lett, 2003, 91(14): 146401.

    • 10

      Kamlet M J, Jacobs S. Chemistry of detonations. I. a simple method for calculating detonation properties of C—H—N—O explosives[J]. J Chem Phys, 1968, 48(1): 23-35.

    • 11

      Wang Y, Zhang J C, Su H, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. J Phys Chem A, 2014, 118(25): 4575-4581.

    • 12

      Politzer P, Martinez J, Murray J S, et al. An electrostatic interaction correction for improved crystal density prediction[J]. Mol Phys, 2009, 107(19): 2095-2101.

    • 13

      Pospíšil M, Vávra P, Koncha M C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J]. J Mol Model, 2010, 16(5): 895-901.

    • 14

      Ghule V D, Jadhav P M, Patil R S, et al. Quantum‑chemical studies on hexaazaisowurtzitanes[J]. J Phys Chem A, 2010, 114(1): 498-503.

    • 15

      Trzciński W A, Cudziło S, Chyłek Z, et al. Detonation properties of 1,1‑diamino‑2,2‑dinitroethene (DADNE)[J]. J Hazard Mater, 2008, 157(2-3), 605-612.

    • 16

      Simpson R L, Urtiew P A, Ornellas D L, et al. CL‑20 performance exceeds that of HMX and its sensitivity is Moderate[J]. Propellants Explos Pyrotech, 1997, 22(5), 249-255.

    • 17

      Zhu W H, Xiao H M. First‑principles band gap criterion for impact sensitivity of energetic crystals: a review[J]. Struct Chem, 2010, 21(3): 657-665.

    • 18

      Rice B M, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].J Phys Chem A,106(9):1770-1783.

    • 19

      Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic force field for molecular simulations[J]. J Phys Chem, 1990, 94(26): 8897-8909.

    • 20

      Wang G X, Shi C H, Gong X D, et al. Packing structures and periodic band calculations on DPO (2,5‑dipicryl‑1,3,4‑oxadiazole)[J]. J Hazard Mater, 2009, 169(1-3): 813-818.

    • 21

      Mendoza‑Cortes J L, An Q, Goddard III W A, et al. Prediction of the crystal packing of di‑tetrazine‑tetroxide(DTTO) energetic material[J]. J Comput Chem,2016,37(2): 163-167.

    • 22

      Naserifar S, Zybin S, Ye C C, et al. Prediction of structures and properties of 2,4, 6‑triamino‑1,3,5‑triazine‑1,3,5‑trioxide (MTO) and 2,4,6‑trinitro‑1,3,5‑triazine‑1,3,5‑trioxide (MTO3N) green energetic materials from DFT and ReaxFF molecular modeling[J]. J Mater Chem A,2016,4(4):1264-1276.