-
1 引 言
高氯酸铵(AP)是当前固体复合推进剂中常用的氧化剂,它的热分解性能直接影响推进剂的点火、燃烧等性能,因此降低它的热分解温度对提高AP基固体推进剂燃烧性能有重要意
义[1,2,3] 。目前,一般采用纳米过渡金属或其氧化物,如铁、钴、锰等[4,5,6] 作为催化剂,来降低AP的热分解温度。但由于纳米催化剂容易团聚而降低催化效率,故相关研究常采用二维或三维多孔材料负载纳米催化剂来解决团聚问题。一般采用两步法来合成纳米复合催化剂:首先采用一定的方法制备纳米催化剂,然后再将其负载到目标材料上[7,8] 。该方法虽然取得了一定的效果,但仍然存在无法大量制备、制备周期长、负载不均匀等缺点,因此需要一种更有效的方法来制备纳米复合催化剂。海藻酸钠(SA)是从褐藻中提取的一种可溶于水的多糖化合物,具有经济、环保等性
能[9] ,其分子结构中的钠离子可以被二价或多价的金属离子所取代生成不溶于水的海藻酸金属盐凝胶,干燥后在隔绝空气条件下可以被碳化,而其分子中的金属离子以纳米尺寸的金属或其氧化物颗粒均匀地负载在碳骨架上,有效防止纳米颗粒的团聚,一步制得复合纳米催化剂。目前该材料在环境、催化合成及材料降解等领域已经广泛应用[10,11] ,但对AP的催化研究鲜有报道[12] 。复合催化剂的催化效果与催化剂的负载量密切相关,多价过渡金属离子交换钠离子越完全,负载量越高,故在制备海藻酸金属盐的过程中,需要过渡金属离子溶液和SA有较好的离子交换能力与较大的接触面积。在众多的过渡金属催化剂中,Mn元素对SA的离子交换和AP的催化均具有较好的效
果[13,14] 同时薄膜可以满足较大的接触面积。为此,本文采用离子交换法制备了海藻酸锰(MA)薄膜,通过煅烧后的电镜、XRD,拉曼曲线和XPS结果表明,生成的纳米Mn3 O4 负载在碳骨架上,该复合催化剂对AP有较好的催化效果。 -
2 实验部分
-
2.1 试剂与仪器
试剂:SA,50%的硝酸锰溶液,均为成都市科龙化工试剂厂;AP,阿拉丁试剂公司;以上试剂均为分析纯。
仪器:UItra55型高分辨冷场发射扫描显微镜(SEM),加速电压10 kV;发射电流10 μA;德国Carl zeissNTS GmbH;Tensor27型傅里叶变换红外光谱仪,在4000~400 c
m-1 以0.5 cm-1 的间隔扫描1%的固体样品,分辨率为4 cm-1 ,德国Bruker公司;X Pert pro型X‑射线衍射仪 ,Gu靶Kα 辐射;光管电压3 kV;电流5 mA;入射狭缝2 mm;步长0.03°,荷兰帕纳科公司;InVia激光拉曼光谱仪,在4000~400 cm-1 以1 cm-1 的间隔扫描固体样品,分辨率为1 cm-1 ,英国Renishaw公司;DSC‑131型差示扫描量热仪,升温速率10 ℃·min-1 ,N2 气氛,流速10 mL·min-1 ,取样量0.7 mg,法国塞塔拉姆公司。EOS 80D单反相机, 日本Canon公司。 -
2.2 制备MA薄膜
MA薄膜的制备过程:50 ℃水浴条件下配置质量浓度为3%的SA水溶液,过滤除去不溶物,此时溶液为无色透明状液体,静置2 h除泡。待溶液冷却至室温后将其以0.1 g·c
m-2 的用量平铺在玻璃板上,置于50 ℃烘箱中干燥8 h,揭下无色透明薄膜待用。将揭下的SA薄膜剪成2.5 cm×2.5 cm的正方形薄片,放入质量浓度为7%的硝酸锰水溶液溶液中进行离子交换,30 min后取出,用蒸馏水超声洗涤1 min,重复3次,干燥,得到淡蓝色透明的MA薄膜。 -
2.3 制备纳米Mn3O4复合催化剂
将之前得到的MA薄膜置于管式炉中,
N2 气氛条件下进行煅烧,具体升温条件为:从30 ℃开始升温,升温速率5 ℃·min-1 ,温度达到400 ℃后保温2 h,降温到30 ℃后取出,得到纳米Mn3 O4 复合催化剂,此时薄膜被碳化成黑色小薄片,取出待用。将得到的纳米M
n3 O4 复合催化剂与AP按质量分数为0.5%、1%、2%、3%和4%的比例进行研磨混合;同时,为对比SA本身对AP分解性能的影响,制备原料SA质量为混合物总质量2%的SA/AP混合物。 -
3 结果与讨论
-
3.1 MA薄膜及纳米Mn3O4复合催化剂形貌
采用单反相机和SEM对SA薄膜、MA薄膜及纳米M
n3 O4 复合催化剂的形貌进行了表征,结果如图1所示。图1a和图1d分别为SA薄膜和MA薄膜的相机形貌图,图1b和图1c为MA薄膜的SEM形貌图,图1e和图1f为纳米Mn3 O4 复合催化剂的SEM形貌图。从图1a和图1d可以看出,所制备的SA薄膜无色透明,MA薄膜淡蓝色透明,二者表面均光滑平整;同时,为研究MA薄膜煅烧后和纳米Mn3 O4 复合催化剂结构的差别,对MA薄膜和纳米Mn3 O4 复合催化剂用SEM放大10倍观察(图1b和图1e),表明MA薄膜(图1b)的厚度约10 μm左右,表面和侧面均光滑平整,纳米Mn3 O4 复合催化剂表面(图1e)同样光滑平整;继续放大到5000倍,可见图1c情况与图1b一致,MA薄膜仍表面光滑,但MA薄膜在400 ℃煅烧后所生成的纳米Mn3 O4 复合催化剂表面(图1f)变得粗糙,明显有颗粒物生成。 -
3.2 MA薄膜及纳米Mn3O4复合催化剂成分
为研究SA中的钠离子是否已经被锰离子取代形成MA,对SA薄膜和离子交换后的薄膜进行了红外分析,如图2所示。从图2中SA曲线可以看出,1596.90 c
m-1 处和1476.07 cm-1 处的两个吸收峰分别为其分子结构中羰基的不对称和对称伸缩振动引起的,而MA曲线中该官能团的吸收峰变为1586.59 cm-1 和1400.28 cm-1 ,这主要是由于摩尔质量较大的锰离子替代钠离子所引起的,该现象与文献[15]一致。同时,在3500~1300 cm-1 波段区原料SA薄膜和离子交换后的薄膜红外光谱图有一定的区别,由宽峰变成尖锐峰,分析认为,该波段的吸收峰主要是由SA分子中的羟基引起的,当锰离子取代钠离子后,羟基上的孤对电子会和锰离子上的空轨道结合形成高分子螯合物,使羟基的伸缩振动发生改变。红外结果表明通过离子交换后SA变成MA,这与文献[16]的结果是一致的。采用XRD对煅前后的MA进行了表征,如图3所示。从图3中可以看出,MA薄膜的XRD曲线没有明显衍射峰,说明其为无定型结构;而当其在400 ℃煅烧生成纳米M
n3 O4 复合催化剂后,在2θ为32.32°、36.09°、44.44°、50.71°和59.84°处出现衍射峰,和Mn3 O4 的标准卡片PDF#24‑0734相对应[17,18] ,说明在加热过程中有Mn3 O4 生成。分析认为,MA薄膜在加热过程中,其分子结构中的羧酸锰原位分解生成了Mn3 O4 纳米颗粒。为进一步确定Mn3 O4 纳米颗粒的负载物成分,采用拉曼光谱仪对煅烧前后的MA进行了表征,如图4。从图4中可以看出,煅烧前MA的拉曼曲线没有明显的峰值,而在400 ℃煅烧后,拉曼光谱分别在1401.31 cm−1 和1591.85 cm−1 处出现两个峰,分别为无序的sp3碳和石墨化sp2碳,此时MA中的C—H键已经全部断裂,分析认为MA碳链已经全部碳化,生成碳骨架结构,这与文献[19]结果一致,该结构能有效防止纳米Mn3 O4 的团聚[20] 。图3 M
n3 O4 标准卡片及MA煅烧前后XRD图Fig.3 XRD patterns of M
n3 O4 standard card and MA before and after calcinations同时,为了进一步研究锰元素的化学环境,在0~1350 eV的范围内对煅烧后的MA薄膜进行了XPS测试,如图5所示。对曲线进行分峰后可以看到C 1s、O 1s、Mn 2p和Mn 3s的曲线,表明纳米M
n3 O4 复合催化剂样品中含有C、O和Mn元素,说明MA经过碳化后结构中仍含有氧元素。此外,图5b显示了Mn 2p分别在653.28 eV和641.68 eV处有两个峰,这些峰分别对应于Mn 2p1/2 和Mn 2p3/2 结合能,图5d在88.88 eV和83.48 eV处分别有两个峰,这些峰对应于Mn 3s结合能,两者说明锰元素为+2和+3价,加热过程中生成的催化剂为纳米Mn3 O4 ,负载在骨架上。 -
3.3 纳米Mn3O4复合催化剂对AP热催化性能的影响
对原料AP、SA/AP混合物(SA/AP)、不同含量纳米M
n3 O4 复合催化剂/AP混合物(Mn3 O4 /AP)进行了DSC和TG分析,如图6所示。由图6a可以看出,AP的分解有三个阶段:从244 ℃开始的晶型转变的吸热峰,AP由斜方晶系转变为立方晶系;到达低温放热峰时,AP部分分解,生成中间产物;到达高温分解峰时,AP完全分解,生成挥发性产物,这与文献[17]记载分解过程基本相同,但也有差异,并不是加入纳米Mn3 O4 复合催化剂含量越高,高温分解峰温提前越多。随着纳米Mn3 O4 复合催化剂的含量从0.5%增加到4%,两个放热峰距离越来越近,甚至出现两峰合并,在纳米Mn3 O4 复合催化剂含量为0.5%~3%时,AP的高温分解峰温随着纳米Mn3 O4 复合催化剂的含量增加而提前,从343.59 ℃提前到336.71 ℃,再提前到335.24 ℃,在3%时提前到329.9 ℃,达到最低高温分解峰温;当纳米Mn3 O4 复合催化剂含量达到4%,温度反而延后到332.19 ℃,这可能是纳米Mn3 O4 复合催化剂过量造成的。当SA与AP混合时,只能使AP的热分解温度降低40.05 ℃,远不及0.5%纳米Mn3 O4 复合催化剂的催化效果(分解温度降低了75.41 ℃),这说明在纳米Mn3 O4 复合催化剂催化AP的整个分解过程中,起主要作用的是纳米Mn3 O4 ,而不是SA。与此同时,随着纳米Mn3 O4 复合催化剂含量从0%增加到4%,高温放热峰变得越来越尖锐,放热越来越集中,表明AP的分解速率随纳米Mn3 O4 复合催化剂含量的升高而增加。从图6b可以看出,AP的分解在244 ℃时,质量没有变化,此时DSC中,AP转晶吸热,由斜方晶系转变为立方晶系;同时,随纳米Mn3 O4 复合催化剂含量增加,完全分解温度提前,这也与DSC中AP的分解速率变化趋势一致,以上现象说明TG与DSC结果是一致的。参考文献[17,21]与本实验结果,推测纳米M
n3 O4 复合催化剂对AP的热分解机理如下:(1)AP的分解为固‑气多项反应,分解温度的控制步骤是电子从ClO4 -向NH4 +的转移过程。Mn3 O4 作为过渡态金属氧化物,在电子转移过程中起桥梁作用,其低价态的氧化物通过接受ClO4 -中转移的电子再传递给NH4 +,实现空穴的湮没,从而降低AP的分解温度,这与文献[21]的过程是符合的。(2)制备的MA薄膜,在煅烧后原位生成的纳米Mn3 O4 颗粒负载在碳化后的碳骨架上,有效防止了颗粒间的团聚,有大量的活性位点,因此具有较好的催化效果。 -
4 结 论
采用离子交换法制备了海藻酸锰薄膜,煅烧后得到了纳米M
n3 O4 复合催化剂,该催化剂对AP有较好的催化效果,具体结论如下:(1)锰离子能够较好地取代海藻酸钠薄膜中的钠离子,煅烧后生成的纳米M
n3 O4 能够很好地负载在碳化后的碳骨架上,生成纳米Mn3 O4 复合催化剂。(2)在一定的含量范围内,纳米M
n3 O4 复合催化剂对AP的催化效果随着其含量的增加而增强,并且放热速率明显增加;当含量为3%时,与纯AP相比,分解温度降低89.1 ℃。(3)该方法经过离子交换后一步煅烧,可以大量、快速制备纳米金属氧化物复合催化剂,对提高AP基固体推进剂的燃烧性能有一定的理论和应用价值。
-
参考文献
-
1
刘子如,施震灏,阴翠梅,等.热红联用研究AP与RDX和HMX混合体系的热分解[J].火炸药学报, 2007, 30(5): 57-61.
LIU Zi‑ru, SHI Zhen‑hao, YIN Cui‑mei, et,al. Investigation on thermal decompostion of mixed systems of AP with RDX and HMX by DSC‑TG‑FTIR[J]. Chinese Journal of Explosives and Propellants, 2007, 30(5): 57-61.
-
2
顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用[J].火炸药学报, 2006, 29(1): 48-51.
GU Ke‑zhuang, LI Xiao‑dong, YANG Rong‑jie. Catalytic action on combustion and thermal decomposition of AP with CNTs[J]. Chinese Journal of Explosives and Propellants, 2006, 29(1): 48-51.
-
3
Shusser M, Culock F E, Cohen N S. Combustion response of ammo‑nium perchlorate composite propellants[J]. Prpul Poucer, 2002, 18(5): 1093-1100.
-
4
Zhenye Ma, Fengsheng Li, Huaping Bai. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant[J].Propellants, Explosives, Pyrotechnics, 2006, 31(6): 447-451.
-
5
FU Ting‑ming, LU Fei‑quan, U lin, et al. Catalytic themal decomposition of ammonium perchlorate uing manganese oxide odtahednl molexular(OMS)[J]. Cadysis Connunictions, 2006,10(1): 108-112.
-
6
CHEN Li‑juan, LI Li‑ping, LI Guang‑he. Synthesis of CuO nano‑rods and their catalytie activity in the themmal decomposition of ammo‑nium perchlorate[J].Journal of Alloys and Compounds, 2008, 464(1): 532-536.
-
7
涂军令,徐勇军,定明月,等.Fe3O4纳米催化剂的制备及其F‑T合成性能研究[J].燃料化学学报, 2015, 43(7): 839-845.
TU Jun‑ling, XU Yong‑jun, DING Ming‑yue, et al. Reparation of nano‑structured Fe3O4 catalysts and their performance in Fischer‑Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2015, 43(7): 839-845.
-
8
李元元,黄妍,唐南,等.不同晶体结构MnO2纳米催化剂低温NH3‑SCR性能研究[J].燃料化学学报, 2018, 46(5): 578-584.
LI Yuan‑yuan, HUANG Yan, TANG Nan,et al. Study on the performance of low temperature NH3‑SCR over MnO2 nano‑catalyst with different crystal structures[J].Journal of Fuel Chemistry and Technology, 2018, 46(5): 578-584.
-
9
王秀娟,张坤生,任云霞,等.海藻酸钠凝胶特性的研究[J].食品工业科技, 2008, 29(2): 259-262.
WANG Xiu‑juan, ZHANG Kun‑sheng, REN Yun‑xia,et al.Study on gel properties of sodium alginate[J].Science and Technology of Food Industry, 2008, 29(2): 259-262.
-
10
樊李红,周 月,潘晓然,等.聚乙烯醇/海藻酸钠海绵的制备及性能研究[J].武汉理工大学学报, 2011, 33(3): 40-45.
FAN Li‑hong, ZHOU Yue, PAN Xiao‑ran, et al. Preparation and properties of polyvinyl alcohol/sodium alginate sponge[J].
Journal of Wuhan University of Technology, 2011, 33(3):40-45.
-
11
吴慧玲,张淑平.海藻酸钠纳米复合材料的研究应用进展[J].化工进展, 2014, 33(4): 954-959.
WU Hui‑ling, ZHANG Shu‑ping. Progress in research and application of sodium alginate nanocomposites[J].Chemical Industry and Engineering Progress, 2014, 33(4): 954-959.
-
12
Lu Y, Zhu Y, Xu P, et al. In situ synthesis of cobalt alginate/ammonium perchlorate composite and its low temperature decomposition performance[J]. Journal of Solid State Chemistry, 2018, 258: 718-721.
-
13
王宏磊,许雪棠,王凡.过渡金属离子掺杂四氧化三锰纳米催化剂[J].无机盐工业, 2016, 48(9): 79-82.
WANG Hong‑lei, XU Xue‑tang ,WANG Fan. Transition metal cation doped Mn3O4 nanocatalysts[J].Inorganic Chemicals Ind ustry, 2016, 48(9): 79-82.
-
14
钱石川,王桂萍,王利航. Mn3O4的室温制备及其对高氯酸铵热分解的催化性能[J].沈阳理工大学学报, 2016, 35(2): 75-79+84.
QIAN Shi‑chuan, WANG Gui‑ping, WANG Li‑hang. Preparation of Mn3O4 nanocrystalline and its catalytic effect on thermal decomposition of ammonium perchlorate(AP)[J].Journal of Shenyang Ligong University, 2016, 35(2): 75-79+84.
-
15
李博,窦明,杨红霞.海藻酸钠热稳定性能的研究[J].安徽农林科学, 2009, 37(35): 17348-17349.
LI Bo, DOU Ming, YANG Hong‑xia. Study on the thermal stability of sodium alginate[J].Journal of Anhui Agricultural and Forestry Sciences, 2009, 37(35): 17348-17349.
-
16
陈 峰,叶 红,彭湘红,等.聚吡咯/海藻酸锰小球的性能研究[J].江汉大学学报(自然科学版), 2014, 42(5): 15-18.
CHEN Feng ,YE Hong, PENG Xiang‑hong,et,al. Penformance study on microspheres of PPy/alginate manganese[J].Journal of Jianghan University(Natural Science Edition), 2014, 42(5): 15-18.
-
17
李露明,李兆乾,马拥军,等. Mn3O4微球的制备及其对高氯酸铵热分解的催化作用[J].含能材料, 2014, 22(6): 758-761.
LI Lu‑ming, LI Zhao‑gan, MA Yong‑jun, et al. Preparation of Mn3O4 microspheres and their catalytic activity for thermal decomposition of ammonium perchlorate[J].Chinese Journal of Energetic Materials, 2014, 22(6): 758-761.
-
18
朱刚,焦宝娟.二氧化锰的制备及其对高氯酸铵和黑索金的催化性能[J].应用化工, 2015, 44(1): 65-68.
ZHU Gang, JIAO Bao‑juan. Preparation of manganese dioxide and its catalytic performances for ammonium perchlorate and cyclonite[J]. Applied Chemical Industry,2015, 44(1): 65-68.
-
19
Yousong Liu,Bing Huang,Shengjie Peng,et al. Deflagration synthesis of nitrogen/fluorine codoped hollow carbon nanoparticles with excellent oxygen reduction performance[J].Inoranic Chemistry Fron, 2018(6): 1307-1313.
-
20
庞维强,樊学忠,张教强.纳米颗粒在制备过程中团聚现象的研究进展[J].化学工业与工程技术, 2008(3): 19-23.
PANG Wei‑qiang, FAN Xue‑zhong, ZHANG Jiao‑qiang. Research progress on agglomeration of nanoparticle in its preparationg[J].Journal of Chemical Industry & Engineering,2008(3): 19-23.
-
21
LI Na,CAO Min‑hua,WU Qing‑yin,et al. A facile one‑step method to produce Ni/graphene nanocomposites and their application to the thermal decomposition of ammonium perchlorate[J]. Cryst Eng Comm, 2012, 14(2): 428-431.
-
1
摘要
为了提升高氯酸铵(AP)基固体推进剂的燃烧及点火等性能,采用离子交换法制备了海藻酸锰薄膜,煅烧后得到了纳米M
Abstract
To improve the combustion and ignition performances of ammonium perchlorate (AP)‑based composite solid propellants, the manganese alginate film was prepared by an ion exchange method, and the nano‑M