CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
VenkatachalamS, SanthoshG, NinanK N. An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(3): 178-187.
参考文献 2
ThomasH, HeikeP, JasminA, et al. Ammonium dinitramide (ADN)‑prilling, coating, and characterization[J]. Propellants, Explosives, Pyrotechnics, 2009, 34: 231-238.
参考文献 3
LANYan‑hua, ZHAIJin‑xin, LIDing‑hua, et al. The influence of solution chemistry on the morphology of ammonium dinitramide crystals[J]. Journal of Materials Science, 2015, 50(14): 4933-4939.
参考文献 4
NagamachiM Y, Oliveira, J I S, Kawamoto, A M, et al. ADN‑The new oxidizer around the corner for an environmentally friendly smokeless propellant[J]. Journal of Aerospace Technology and Management, 2009, 1(2): 153-160.
参考文献 5
王灏静, 马媛, 李洪珍, 等. ADN/18C6共晶制备与表征[J]. 含能材料, 2018, 26(6): 545-548.
Hao‑jingWNG, MAYuan, LIHong‑zhen, et al. Preparation and characterization of ADN/18C6 cocrystal[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(6): 545-548.
参考文献 6
王业腾, 任晓婷, 何金选. 二硝酰胺铵的合成及晶形控制研究[J]. 火工品, 2018(2): 56-60.
WANGYie‑teng, RENXiao‑ting, HEJin‑xuan. Synthesis and crystal morphology control of ammonium dinitramide[J]. Initiators & Pyrotechnics, 2018(2): 56-60.
参考文献 7
潘永飞, 汪营磊, 陈斌, 等. 二硝酰胺铵(ADN)球形化技术研究进展[J]. 爆破器材, 2018, 47(5): 1-8.
PANYong‑fei, WANGYing‑lei, CHENBin, et al. Research status of spheroidization of ammonium dinitramide(ADN)[J]. Explosive Materials, 2018, 47(5): 1-8.
参考文献 8
马勇, 朱家文, 陈葵, 等. 磷酸结晶介稳区性质的研究[J]. 高校化学工程学报,2010,24(2): 331-335.
MAYong, ZHUJia‑wen, CHENKui, et al. Study on the properties of metastable zone of phosphoric acid crystal[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2): 331-335.
参考文献 9
LUYing‑hong, Chi‑bunCHING. Study on the metastable zone width of ketoprofen[J]. Chirality, 2006, 18(4): 239-244.
参考文献 10
NIXiong‑wei; LIAO, An‑ting. Effects of cooling rate and solution concentration on solution crystallization of L‑glutamic acid in an oscillatory baffled crystallizer[J]. Crystal Growth Design, 2008, 8(8): 2875-2881.
参考文献 11
SangwalK, Mielniczek‑BrzoskaE. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions[J]. Journal of Crystal Growth, 2004, 267(3-4): 662-675.
参考文献 12
LyczkoN, EspitalierF, LouisnardO, et al. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chemical Engineering Journal, 2002, 86(3): 233-241.
参考文献 13
KadamS S, KulkarniS A, RiberaR C, et al. A new view on the metastable zone width during cooling crystallization[J]. Chemical Engineering Science, 2012, 72(16): 10-19.
参考文献 14
丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985: 193.
DINGXu‑huai, TANQiu. Industrial Crystallization[M]. Beijing: Chemical Industry Press, 1985:193.
参考文献 15
CalvoB, ColladoI, CepedaE A. Solubilities of palmitic acid in pure solvents and its mixtures[J]. Journal of Chemical and Engineering Data, 2009, 54(1): 64-68.
参考文献 16
DomanskaU, Bogel‑LukasikE. Solubility of benzimidazoles in alcohols[J]. Journal of Chemical and Engineering Data, 2003, 48(4): 951-956.
参考文献 17
PENGBin, ZIJun‑qin, YANWei‑dong. Measurement and correlation of solubilities of luteolin in organic solvents at different temperatures[J]. Journal of Chemical and Engineering Data, 2006, 51(6): 2038-2040.
参考文献 18
JINGDing‑ding, WANGJing‑kang, ZHANGMei‑jing. Nucleation kinetics and growth model of penicillin sulfoxide in butyl acetate[J]. Chemical Engineering and Technology, 2013, 36(10): 1773-1778.
参考文献 19
HAOHong‑xun, WANGJing‑kang, WANGYong‑li. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol‑acetone system[J]. Journal of Crystal Growth, 2005, 274(3-4): 545-549.
参考文献 20
冷一欣, 谭倩, 黄春香, 等. L‑酒石酸水溶液结晶介稳区和诱导期的测定[J]. 化工学报, 2016, 67(6): 2433-2439.
LENGYi‑xin, TANQian, HUANGChun‑xiang, et al. Determination of the metastable zone and induction period of L‑tartaric acid aqueous solution[J]. CIESC Journal, 2016, 67(6): 2433-2439.
参考文献 21
WANGLiu‑cheng, WANGFu‑an. Solubility of niacin in 3‑picoline plus water from (287.65 to 359.15) K[J]. Journal of Chemical and Engineering Data, 2004, 49(1): 155-156.
参考文献 22
BuchowskiH, KslazcakA, PletrzykS. Solvent activity along a saturation line and solubility of hydrogen‑bonding solids [J]. Journal of Physical Chemistry, 1980(84): 975-979.
参考文献 23
KubotaN. A new interpretation of metastable zone widths measured for unseeded solutions[J]. Journal of Crystal Growth, 2008, 310(3): 629-634.
参考文献 24
NyvltJ. Kinetics of nucleation in solutions[J]. Journal of Crystal Growth, 1968, 3/4: 377-383.
参考文献 25
SangwalK. A novel self‑consistent Nyvlt‑like equation for metastable zone width determined by the polythermal method [J]. Crystal Growth, 2010, 312(5): 698-704.
参考文献 26
KashchievD, BorissovaA, HammindR B, et al. Effect of cooling rate on the critical undercooling for crystallization [J]. Crystal Research and Technology, 2009, 44(3): 231-247.
参考文献 27
MullinJ W. Crystallization[M]. 4th ed. London: Butterworth-Heinemann, 2001: 206.
参考文献 28
LenkaM, SarkarD. Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of L‑asparaginenohydrate[J]. Journal of Crystal Growth, 2014, 408:85-90.
参考文献 29
UshasreeP, MuralidharanR, JayavelR, et al. Metastable zonewidth, induction period and interfacial energy of zinctris (thiourea) sulfate[J]. Journal of Crystal Growth, 2000, 210(4): 741-745.
目录 contents

    摘要

    溶解度、介稳区宽度及诱导期是二硝酰胺铵(ADN)结晶过程中的重要参数。采用动态法测定了ADN在正丁醇、异丙醇、水和异丙醇混合溶剂(体积比为1∶10和1∶6)中的溶解度,并分别采用Apelblat方程和λh方程对溶解度数据进行了拟合。研究了搅拌速度、降温速率对ADN在正丁醇、异丙醇中介稳区宽度以及不同过饱和度对诱导期的影响。结果显示,Apelblat方程和λh方程都能对ADN溶解度很好地拟合;结晶介稳区的宽度随降温速率的降低、搅拌速度的增加而变窄;随着过饱和度的增大,结晶诱导期变短。应用自洽Nývlt型方程和3D成核理论,结合实验介稳区宽度与诱导期数据,计算的成核级数m约为4,ADN在正丁醇和异丙醇中的固‑液界面张力分别为0.235,0.191 mJ·m-2(均相成核),0.070,0.067 mJ·m-2(非均相成核)。

    Abstract

    Solubility, metastable zone width and induction period are important parameters in the crystallization process of ammonium dinitramide(ADN). The solubilities of ADN in n‑butanol, isopropanol and mixed solvent of water and isopropanol (volume ratio as 1∶10 and 1∶6) were measured by dynamic method and the solubility data were fitted by Apelblat equation and λh equation, respectively. The effects of stirring speed and cooling rate on the metastable zone width of ADN in n‑butanol and isopropanol and the effects of different supersaturation on the induction period were investigated, respectively. Results show that the Apelblat equation and the λh equation can well fit the solubility of ADN. With the decrease of the cooling rate and the increase of the stirring speed, the width of the crystalline metastable zone narrows. The crystallization induction period shortens with the increase of supersaturation. Using the self‑consistent Nývlt equation and 3D nucleation theory, combined with the metastable zone width and induction period data, the nucleation order m is calculated to be about 4, and the solid‑liquid interfacial tension of ADN in n‑butanol and isopropanol are 0.235 mJ·m-2 and 0.191 mJ·m-2 for homogeneous nucleation, 0.070 mJ·m-2 and 0.067 mJ·m-2 for heterogeneous nucleation, respectively.

    Graphic Abstract

    图文摘要

    The solubilities of ADN in n‑butanol, isopropanol and mixed solvent of water and isopropanol (volume ratio as 1∶10 and 1∶6) were measured by dynamic method. The effects of stirring speed and cooling rate on the metastable zone width and the effects of supersaturation on the induction period were investigated, respectively.

  • 1 引 言

    二硝酰胺铵(ADN)作为固体火箭推进剂中一种强有力的氧化剂,具有较高的比冲、低特征信号和环境友好性等特[1,2],其研究一直受到世界各国的重视。然而,实验制备的ADN晶体通常为针状或者层状结[3,4],容易吸湿团聚会影响推进剂的混合粘度和机械性能。王灏[5]等通过生成共晶的方式,从分子层面改善了ADN的吸湿性。王业[6]等采用计算模拟预测晶形控制技术,制备了块状ADN晶体,其吸湿性有所提高。此外,由于球形颗粒具有良好的流动性、高堆密度等优势,球形结晶技术也可用于改善ADN的应用。但我国的ADN球形结晶技术与国外相比,仍存在较大差[7],目前仍缺少ADN的溶解度、介稳区及诱导期等结晶热力学与动力学的基础性研究报道。

    结晶分离是化工产品生产过程中最为重要的单元操作之一。结晶过程最终影响产品的粒度分布、晶习和纯度,应尽量使结晶操作在产品的介稳区内进行,避免自发成核,以获得粒度均匀、晶习良好的晶体。介稳区宽度受很多因素影响,例如温[8]、搅拌强[9]、降温速[10]、杂[11]、超[12]及溶液体[13]等。结晶过程的诱导时间可以定义为从溶液中过饱和度产生到成核后新固相检测所经过的时间。因此,它是过饱和溶液保持亚稳态能力的量度。针对ADN结晶分离纯化效率不高,纯度低的问题,通过测定ADN的溶解度、介稳区宽度及诱导期数据,可以进一步了解成核现象和控制晶体尺寸分布,从而为优化结晶器的设计及结晶过程提供理论依[14]

    为了获得ADN结晶过程中的热力学与动力学基础数据,本研究采用动态法测定了ADN在其结晶过程中常用的溶剂(正丁醇、异丙醇,水和异丙醇混合溶剂)中的溶解度,分别采用Apelblat方程和λh方程拟合溶解度数据。研究了搅拌速率、降温速率对ADN在正丁醇、异丙醇中介稳区宽度及过饱和度对诱导期的影响。应用自洽Nývlt型方程和3D成核理论,结合实验数据计算了成核参数m与固‑液界面张力γ

  • 2 实验部分

  • 2.1 试剂与仪器

    ADN,西安近代化学研究所自制;异丙醇、正丁醇,天津市科密欧化学试剂有限公司,分析纯;去离子水,自制。

    EasyMax™自动化学合成反应器,瑞士梅特勒‑托利多;TLX‑B型激光仪、JD‑1激光二极管组件参数测量仪,西安赛朴林激光技术研究所。

  • 2.2 溶解度的测定

    采用动态[15,16,17]测定溶解度。精确称量一定质量的溶剂与溶质,启动搅拌,升温至所测温度值,随着溶质的溶解,激光信号值逐渐增大,全部溶解时,信号达到最大。然后分多次向体系加入少量(0.2~0.5 mg)溶质,直到信号值出现降低。为保证实验准确,重复三次。

    溶解度(摩尔分数)x采用式(1)式计算:

    x=m1/M1m1/M1+m2/M2
    (1)

    式中,m1是溶质的质量,g;m2是溶剂的质量,g;M1M2分别是溶质和溶剂的相对分子质量。

  • 2.3 介稳区宽度的测定

    按照上述所测溶解度数据,精确配置一定温度下的ADN饱和溶液,调节温度高于饱和温度3 ℃,使溶质全部溶解。开启激光系统,按照一定的搅拌速度和冷却速率降温,直到激光信号出现减小,这说明检测到晶核的形成,记录此刻的温度点。饱和温度与此刻的温度的差值即为介稳区宽度。为保证实验准确,重复三次。

  • 2.4 诱导期的测定

    采用激光[18,19,20]测定了ADN在正丁醇(70 ℃),异丙醇(55 ℃)的诱导期数据。根据溶解度数据,准确配置不同过饱和度的正丁醇与异丙醇溶液,调节温度高于实验温度(正丁醇70 ℃,异丙醇55 ℃)5 ℃,搅拌1 h(转速300 r·min-1)使溶质完全溶解。迅速降温到实验温度,同时开始计时。激光信号出现突然减弱时,停止计时,此段时间即为结晶诱导期。

  • 3 结果与讨论

  • 3.1 溶解度

    ADN在正丁醇、异丙醇、水和异丙醇混合溶剂(体积比为1∶10和1∶6)中溶解度的结果如表1所示。由表1能够看出,ADN在正丁醇、异丙醇、水和异丙醇混合溶剂中3种体系中的溶解度均随温度的上升而增大。

    表1 ADN在3种体系中的溶解度

    Table 1 Solubility of ADN in three kinds of systems

    n‑butanolisopropanolV(water)∶V(isopropanol)
    1∶101∶6
    T / KxT / KxT / KxT / Kx
    293.150.00098293.150.00159258.150.00077257.150.00061
    303.150.00232298.150.00289262.150.00146260.150.00126
    313.150.00343303.150.00349270.150.00294268.150.00282
    323.150.00577313.150.00643280.150.00460276.150.00450
    333.150.00955318.150.00853294.150.00760292.150.00720
    343.150.01753323.150.01136301.150.01159298.150.01134
    353.150.03250328.150.01462307.150.01717303.150.01679
    333.150.02023313.150.02803310.150.02665
    338.150.02797322.150.04161318.150.03986

    NOTE: T is temperature. x is the solubility in molar fraction.

  • 3.1.1 Apelblat方程

    采用修正后的Apelblat[21]方程(式(2))对实验测得的溶解度数据进行拟合关联:

    lnx=A+B/T+ClnT
    (2)

    式中,x是溶质溶解度,mol·mol-1T是实验温度,K;A,B,C是Apelblat方程中的模型参数。采用式(2)对ADN在正丁醇、异丙醇、水和异丙醇混合溶剂3种体系中的溶解度数据进行关联,得到参数A,B,C及相关系数(R2)和均方根偏差(RMSD)的值见表2。均方根偏差(RMSD)采用(3)式计算:

    表2 3种体系中Apelblat方程模型参数的回归结果

    Table 2 Regression results of Apelblat equation model parameters in three kinds of systems

    systemABCR2RMSD / %
    n‑butanol-177.65993237.821928.12500.99430.08
    isopropanol8.47145735.02880.83410.99430.08
    V(water)∶V(isopropanol)(1∶10)-36.57642758.29417.25320.98340.17
    V(water)∶V(isopropanol)(1∶6)-42.9077-2873.91488.45600.98230.24

    NOTE: A,B and C are the Apelblat equation model parameters. R is correlation coefficient. RMSD is root mean square deviation

    RMSD=i=1nxcal-xin1/2
    (3)

    式中,xi是实验中实际测得的溶解度值;xcal是根据拟合的Apelblat方程、λh方程(两种方程参数见表2表3)计算的溶解度值;n是实验测量溶解度的数据点个数。

    表3 3种体系中λh方程模型参数的回归结果

    Table 3 Regression results of λh equation model parameters in three kinds of systems

    systemλhR2RMSD / %
    n‑butanol0.0190224274.84130.96480.20
    isopropanol0.066081681.78650.99820.03
    V(water)∶V(isopropanol)(1∶10)0.185525155.11900.99960.15
    V(water)∶V(isopropanol)(1∶6)0.295317489.84840.98230.24

    NOTE: λ and h are the model parameters of λh equation.

  • 3.1.2 λh方程

    采用Buchowski根据固‑液相平衡理论提出的λh[22]方程(式(4))对实验测得的溶解度数据进行关联拟合:

    ln1+λ1-xx=λh1T-1Tm
    (4)

    式中,x是溶质溶解度,mol·mol-1T是实验温度,K;Tm是溶质的熔点,K;λhλh方程的模型参数。所得到的模型参数λh及相关系数(R2)和通过式(3)计算的均方根偏差(RMSD)的值见表3

    表2表3R2和RMSD可以看出,两种方程的拟合误差都比较小,都能较好地拟合ADN的溶解度,并可以预测体系中其他温度点下的溶解度数据,可为以后的结晶过程提供理论依据。

  • 3.2 搅拌转速对ADN介稳区宽度的影响

    将降温速率恒定为0.8 K·min-1,考察了5种搅拌转速(100,200,300,500,600 r·min-1)下ADN在正丁醇、异丙醇体系的介稳区宽度,结果如图1图2所示。

    图1
                            不同搅拌转速下ADN在正丁醇中的介稳区宽度

    图1 不同搅拌转速下ADN在正丁醇中的介稳区宽度

    Fig.1 Metastable zone width of ADN in n‑butanol at different stirring speeds

    图2
                            不同搅拌转速下ADN在异丙醇中的介稳区宽度

    图2 不同搅拌转速下ADN在异丙醇中的介稳区宽度

    Fig.2 Metastable zone width of ADN in isopropanol at different stirring speeds

    图1图2中可看出,随饱和温度的上升,介稳区宽度变窄,这是由于溶液饱和浓度随饱和温度的上升而升高,增加了溶质之间碰撞形成晶核的概率;总体来说,ADN在正丁醇、异丙醇中的介稳区宽度随着搅拌转速的增加而变窄(个别实验点除外)。根据Noriaki Kubota[23]指出,这是由于二次成核速率随着搅拌速度的增加而变高,导致实际检测到的晶体密度提前到达,因此仪器可以更早检测到成核现象,从而使介稳区宽度变窄。

  • 3.3 降温速率对ADN介稳区宽度的影响

    对自洽Nývlt型方[24]两边同取对数,可得ln(ΔTmax/T0)与lnr的线性关系,

    ΔTmaxT0=fKT01/mΔHsRT1-m/mr1/m
    (5)
    lnΔTmax/T0=Φ'-βlnT0+βlnr=Φ+βlnr
    (6)

    其中β=1/m

    Φ=Φ'-βlnT0
    (7)
    Φ'=1-mmlnΔHsRT+1mlnfK
    (8)

    式中,m是表观成核级数;K是新的成核常数;R是为普适气体常数,8.314 J·mol-1·K-1f是由溶质浓度计算所得的常数;T0是起始温度,K;T是成核温度,K;ΔHs是溶解焓,J·mol-1,可以根据3.1节的溶解度数据,结合范特霍夫方程得到:

    lnx=-ΔHsRT+ΔSR
    (9)

    式中,x是溶质溶解度的摩尔分数;ΔHs是溶解焓,J·mol-1;ΔS是溶解熵,J·mol-1R是普适气体常数,8.314 J·mol-1·K-1T是成核温度,K。

    恒定搅拌速率为300 r·min-1,考察了5种降温速率(1.2,1,0.8,0.6,0.4 K·min-1)下的ADN在正丁醇和异丙醇中介稳区宽度,结果如图3图4所示。由图3图4可看出,ADN在正丁醇和异丙醇中,当降温速率r固定时,介稳区宽度随饱和温度上升而变窄;当饱和温度固定时,介稳区宽度随降温速率减小而变窄。

    图3
                            ADN在正丁醇体系中的lnr与ln(ΔTmax/T0) 的关系

    图3 ADN在正丁醇体系中的lnr与ln(ΔTmax/T0) 的关系

    Fig.3 The lnr vs. ln(ΔTmax/T0) relations of ADN in n‑butanol system

    图4
                            ADN在异丙醇体系中的lnr与ln(ΔTmax/T0) 的关系

    图4 ADN在异丙醇体系中的lnr与ln(ΔTmax/T0) 的关系

    Fig.4 The lnr vs. ln(ΔTmax/T0) relations of ADN in isopropanol system

    根据图3图4直线的斜率β和截距Φ结合式(6)和式(8)可以分别得到成核级数m和成核常数K,见表4。从表4可看出,成核级数m受饱和温度的影响不大,m的值大致在4左右(考虑到实验误差的影响)。成核常数K与成核级数m的值与溶质‑溶剂相互作用密切相关。低的mK值代表强溶质‑溶剂相互作用,有利于通过在溶液中扩散使生长单元聚集成生长核从而形成稳定的3D[25]。此外低的m还表明,ADN在两种溶剂中的晶核是瞬间成核产生[26]

    表4 ADN在正丁醇、异丙醇中的mK的计算值

    Table 4 Calculated values of m and K of ADN in n‑butanol and isobutanol

    n‑butanolisopropanol
    T0 / KmK / 1028T0 / KmK / 1027
    313.154.681.47303.154.527.21
    323.153.988.92313.154.2621.74
    333.153.8523.93323.153.80148.38
    343.153.5974.13333.153.99258.37
    353.154.15238.07338.154.93242.15

    NOTE: T0 is temperature, m is the nucleation order. K is thenucleation constant.

  • 3.4 成核诱导期

    Mullin[26]指出,成核诱导期和成核速率成反比。结合球状晶核在3D经典成核理论中的成核速率:

    J=Aexp(-16πγ3V23kB3T3ln-2S)
    (10)

    可知诱导期tind与过饱和度S之间的关系:

    lntind=k+16πγ3V23kB3T3ln-2S=αln-2S+φ
    (11)

    式中,S是过饱和度(S=C/C0C是溶质的浓度,C0是溶质的溶解度);V是分子体积,m3kB是Boltzmann常数,1.380649×10-23K-1γ是固‑液界面张力,mJ·m-2T是热力学温度,K;k是截距,为常数。式(11)表明,在一定温度下,lntind和ln-2S的关系为线性关系。斜率α为:

    α=16πγ3V23kB3T3
    (12)

    由式(12)可推导出,在一定的温度和溶剂组成下,体系的固-液界面张力γ的表达式:

    γ=(3αkB3T316πv2)13
    (13)

    对ADN在正丁醇(70 ℃)和异丙醇(55 ℃)中的诱导期数据拟合,结果如图5所示。图5中,lntind与ln-2S的关系是由两条斜率不同的直线组成,代表着不同的成核机理。斜率大的线性曲线代表在高过饱和度S时,初级成核速度很快,成核过程以均相成核机理为主,而斜率平缓的曲线代表在低过饱和度S时成核过程以非均相成核机理为主,划分不同成核机理的过饱和度分界大致在1.06~1.10。图5显示,在恒定实验温度下,随着过饱和度S的增加,ADN的成核速率加快,结晶诱导期减小,出现晶核所需要的时间变短。这是因为非均相成核发生在如结晶器、叶轮或者尘埃的表面,可以减小由于固‑液界面张力所引起的成核能垒,促进成核,所以消耗的时间要比均相成核要[28]。由图5分别得到低、高过饱和度下的斜率α与截距ψ,再结合式(13),可算出ADN在正丁醇和异丙醇中的固‑液界面张力γ,结果如表5所示。固‑液界面张力在均相成核速率方程中是影响晶体成核与成长过程的重要影响因[29],表示溶质从溶液中结晶的能力,固‑液界面张力越小,表示溶质越容易从溶液中结晶出来,可以作为指导结晶操作过程中的溶剂选择的依据。由表5可见,ADN在正丁醇和异丙醇中的固‑液界面张力γ值相差不多,说明ADN在所选两种溶剂中结晶成核过程难易程度相同。

    图5
                            ADN在正丁醇、异丙醇体系中lntind和ln-2S的关系

    图5 ADN在正丁醇、异丙醇体系中lntind和ln-2S的关系

    Fig.5 The lntind vs ln-2S relations of ADN in n‑butanol and isopropanol systems

    表5 ADN在正丁醇、异丙醇中结晶诱导期的拟合参数

    Table 5 Fitting parameters of crystallization induction period of ADN in n‑butanol and isopropanol

    systemT / ℃low supersaturationhigh supersaturation
    αkγ / mJ·m-2αkγ / mJ·m-2
    n‑butanol700.01072.6130.0700.2804.6870.235
    isopropanol550.01350.5540.0670.5214.2660.191

    NOTE: T is temperature, α is slope, k is intercept, γ is solid‑liquid interfacial tension.

  • 4 结 论

    (1)采用动态法测定了ADN在正丁醇、异丙醇,水和异丙醇混合溶剂(体积比1∶10,1∶6)中的溶解度。结果显示,随着温度的升高,ADN溶解度增大;用Apelblat方程和λh方程对ADN溶解度数据进行拟合,得到了相应的模型参数,相关系数和均方根偏差值显示两个方程对溶解度的拟合关联结果较好。

    (2)研究了搅拌速率、降温速率对ADN在正丁醇、异丙醇中介稳区宽度的影响。结果表明,随着搅拌速率的增大,ADN介稳区宽度变窄;随着降温速率的增大,ADN介稳区宽度变宽。并应用自洽Nývlt型方程和3D成核理论计算成核参数,成核级数m受饱和温度的影响不大,m的值大致在4左右。

    (3)测定了ADN在正丁醇、异丙醇中的诱导期。结果显示,在恒定温度下,随着过饱和度S的增加,ADN的成核速率加快,结晶诱导期减小,出现晶核所需要的时间变短。lntind与ln-2S的关系用两条斜率不同的直线来关联,它们分别代表均相成核与非均相成核。成核以非均相成核为主的过程,ADN在正丁醇(70 ℃)和异丙醇(55 ℃)中的固-液界面张力分别为0.070和0.067 mJ·m-2。成核以均相成核为主的过程,ADN在正丁醇(70℃)和异丙醇(55 ℃)中的固-液界面张力为0.235, 0.191 mJ·m-2

    (责编:王艳秀)

  • 参考文献

    • 1

      Venkatachalam S, Santhosh G, Ninan K N. An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(3): 178-187.

    • 2

      Thomas H, Heike P, Jasmin A, et al. Ammonium dinitramide (ADN)‑prilling, coating, and characterization[J]. Propellants, Explosives, Pyrotechnics, 2009, 34: 231-238.

    • 3

      LAN Yan‑hua, ZHAI Jin‑xin, LI Ding‑hua, et al. The influence of solution chemistry on the morphology of ammonium dinitramide crystals[J]. Journal of Materials Science, 2015, 50(14): 4933-4939.

    • 4

      Nagamachi M Y, Oliveira, J I S, Kawamoto, A M, et al. ADN‑The new oxidizer around the corner for an environmentally friendly smokeless propellant[J]. Journal of Aerospace Technology and Management, 2009, 1(2): 153-160.

    • 5

      王灏静, 马媛, 李洪珍, 等. ADN/18C6共晶制备与表征[J]. 含能材料, 2018, 26(6): 545-548.

      WNG Hao‑jing, MA Yuan, LI Hong‑zhen, et al. Preparation and characterization of ADN/18C6 cocrystal[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(6): 545-548.

    • 6

      王业腾, 任晓婷, 何金选. 二硝酰胺铵的合成及晶形控制研究[J]. 火工品, 2018(2): 56-60.

      WANG Yie‑teng, REN Xiao‑ting, HE Jin‑xuan. Synthesis and crystal morphology control of ammonium dinitramide[J]. Initiators & Pyrotechnics, 2018(2): 56-60.

    • 7

      潘永飞, 汪营磊, 陈斌, 等. 二硝酰胺铵(ADN)球形化技术研究进展[J]. 爆破器材, 2018, 47(5): 1-8.

      PAN Yong‑fei, WANG Ying‑lei, CHEN Bin, et al. Research status of spheroidization of ammonium dinitramide(ADN)[J]. Explosive Materials, 2018, 47(5): 1-8.

    • 8

      马勇, 朱家文, 陈葵, 等. 磷酸结晶介稳区性质的研究[J]. 高校化学工程学报,2010,24(2): 331-335.

      MA Yong, ZHU Jia‑wen, CHEN Kui, et al. Study on the properties of metastable zone of phosphoric acid crystal[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2): 331-335.

    • 9

      LU Ying‑hong, CHING Chi‑bun. Study on the metastable zone width of ketoprofen[J]. Chirality, 2006, 18(4): 239-244.

    • 10

      NI Xiong‑wei; LIAO, An‑ting. Effects of cooling rate and solution concentration on solution crystallization of L‑glutamic acid in an oscillatory baffled crystallizer[J]. Crystal Growth Design, 2008, 8(8): 2875-2881.

    • 11

      Sangwal K, Mielniczek‑Brzoska E. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions[J]. Journal of Crystal Growth, 2004, 267(3-4): 662-675.

    • 12

      Lyczko N, Espitalier F, Louisnard O, et al. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chemical Engineering Journal, 2002, 86(3): 233-241.

    • 13

      Kadam S S, Kulkarni S A, Ribera R C, et al. A new view on the metastable zone width during cooling crystallization[J]. Chemical Engineering Science, 2012, 72(16): 10-19.

    • 14

      丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985: 193.

      DING Xu‑huai, TAN Qiu. Industrial Crystallization[M]. Beijing: Chemical Industry Press, 1985:193.

    • 15

      Calvo B, Collado I, Cepeda E A. Solubilities of palmitic acid in pure solvents and its mixtures[J]. Journal of Chemical and Engineering Data, 2009, 54(1): 64-68.

    • 16

      Domanska U, Bogel‑Lukasik E. Solubility of benzimidazoles in alcohols[J]. Journal of Chemical and Engineering Data, 2003, 48(4): 951-956.

    • 17

      PENG Bin, ZI Jun‑qin, YAN Wei‑dong. Measurement and correlation of solubilities of luteolin in organic solvents at different temperatures[J]. Journal of Chemical and Engineering Data, 2006, 51(6): 2038-2040.

    • 18

      JING Ding‑ding, WANG Jing‑kang, ZHANG Mei‑jing. Nucleation kinetics and growth model of penicillin sulfoxide in butyl acetate[J]. Chemical Engineering and Technology, 2013, 36(10): 1773-1778.

    • 19

      HAO Hong‑xun, WANG Jing‑kang, WANG Yong‑li. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol‑acetone system[J]. Journal of Crystal Growth, 2005, 274(3-4): 545-549.

    • 20

      冷一欣, 谭倩, 黄春香, 等. L‑酒石酸水溶液结晶介稳区和诱导期的测定[J]. 化工学报, 2016, 67(6): 2433-2439.

      LENG Yi‑xin, TAN Qian, HUANG Chun‑xiang, et al. Determination of the metastable zone and induction period of L‑tartaric acid aqueous solution[J]. CIESC Journal, 2016, 67(6): 2433-2439.

    • 21

      WANG Liu‑cheng, WANG Fu‑an. Solubility of niacin in 3‑picoline plus water from (287.65 to 359.15) K[J]. Journal of Chemical and Engineering Data, 2004, 49(1): 155-156.

    • 22

      Buchowski H, Kslazcak A, Pletrzyk S. Solvent activity along a saturation line and solubility of hydrogen‑bonding solids [J]. Journal of Physical Chemistry, 1980(84): 975-979.

    • 23

      Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions[J]. Journal of Crystal Growth, 2008, 310(3): 629-634.

    • 24

      Nyvlt J. Kinetics of nucleation in solutions[J]. Journal of Crystal Growth, 1968, 3/4: 377-383.

    • 25

      Sangwal K. A novel self‑consistent Nyvlt‑like equation for metastable zone width determined by the polythermal method [J]. Crystal Growth, 2010, 312(5): 698-704.

    • 26

      Kashchiev D, Borissova A, Hammind R B, et al. Effect of cooling rate on the critical undercooling for crystallization [J]. Crystal Research and Technology, 2009, 44(3): 231-247.

    • 27

      Mullin J W. Crystallization[M]. 4th ed. London: Butterworth-Heinemann, 2001: 206.

    • 28

      Lenka M, Sarkar D. Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of L‑asparaginenohydrate[J]. Journal of Crystal Growth, 2014, 408:85-90.

    • 29

      Ushasree P, Muralidharan R, Jayavel R, et al. Metastable zonewidth, induction period and interfacial energy of zinctris (thiourea) sulfate[J]. Journal of Crystal Growth, 2000, 210(4): 741-745.

刘欣玉

机 构:天津大学化工学院 化学工程联合国家重点实验室, 天津 300072

Affiliation:State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

作者简介:刘欣玉(1995-),女,硕士研究生,主要从事工业和药物结晶方面的研究。

孙杰

机 构:天津大学化工学院 化学工程联合国家重点实验室, 天津 300072

Affiliation:State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

罗义芬

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王灵宇

机 构:天津大学化工学院 化学工程联合国家重点实验室, 天津 300072

Affiliation:State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

龚俊波

机 构:天津大学化工学院 化学工程联合国家重点实验室, 天津 300072

Affiliation:State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

董伟兵

机 构:

1. 天津大学化工学院 化学工程联合国家重点实验室, 天津 300072

3. 青海民族大学化学化工学院, 青海 西宁 810007

Affiliation:

1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

3. School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining 810007, China

角 色:通讯作者

Role:Corresponding author

邮 箱:wbdong@ tju.edu.cn

作者简介:董伟兵(1979-),男,副教授,主要研究领域工业结晶与药物结晶。e‑mail:wbdong@ tju.edu.cn

n‑butanolisopropanolV(water)∶V(isopropanol)
1∶101∶6
T / KxT / KxT / KxT / Kx
293.150.00098293.150.00159258.150.00077257.150.00061
303.150.00232298.150.00289262.150.00146260.150.00126
313.150.00343303.150.00349270.150.00294268.150.00282
323.150.00577313.150.00643280.150.00460276.150.00450
333.150.00955318.150.00853294.150.00760292.150.00720
343.150.01753323.150.01136301.150.01159298.150.01134
353.150.03250328.150.01462307.150.01717303.150.01679
333.150.02023313.150.02803310.150.02665
338.150.02797322.150.04161318.150.03986
systemABCR2RMSD / %
n‑butanol-177.65993237.821928.12500.99430.08
isopropanol8.47145735.02880.83410.99430.08
V(water)∶V(isopropanol)(1∶10)-36.57642758.29417.25320.98340.17
V(water)∶V(isopropanol)(1∶6)-42.9077-2873.91488.45600.98230.24
systemλhR2RMSD / %
n‑butanol0.0190224274.84130.96480.20
isopropanol0.066081681.78650.99820.03
V(water)∶V(isopropanol)(1∶10)0.185525155.11900.99960.15
V(water)∶V(isopropanol)(1∶6)0.295317489.84840.98230.24
html/hncl/CJEM2018267/media/7563d189-8a57-4227-bf8a-fea88765f22c-image002.png
html/hncl/CJEM2018267/media/7563d189-8a57-4227-bf8a-fea88765f22c-image001.png
html/hncl/CJEM2018267/media/7563d189-8a57-4227-bf8a-fea88765f22c-image003.png
html/hncl/CJEM2018267/media/7563d189-8a57-4227-bf8a-fea88765f22c-image004.png
n‑butanolisopropanol
T0 / KmK / 1028T0 / KmK / 1027
313.154.681.47303.154.527.21
323.153.988.92313.154.2621.74
333.153.8523.93323.153.80148.38
343.153.5974.13333.153.99258.37
353.154.15238.07338.154.93242.15
html/hncl/CJEM2018267/media/7563d189-8a57-4227-bf8a-fea88765f22c-image005.png
systemT / ℃low supersaturationhigh supersaturation
αkγ / mJ·m-2αkγ / mJ·m-2
n‑butanol700.01072.6130.0700.2804.6870.235
isopropanol550.01350.5540.0670.5214.2660.191

表1 ADN在3种体系中的溶解度

Table 1 Solubility of ADN in three kinds of systems

表2 3种体系中Apelblat方程模型参数的回归结果

Table 2 Regression results of Apelblat equation model parameters in three kinds of systems

表3 3种体系中λh方程模型参数的回归结果

Table 3 Regression results of λh equation model parameters in three kinds of systems

图1 不同搅拌转速下ADN在正丁醇中的介稳区宽度

Fig.1 Metastable zone width of ADN in n‑butanol at different stirring speeds

图2 不同搅拌转速下ADN在异丙醇中的介稳区宽度

Fig.2 Metastable zone width of ADN in isopropanol at different stirring speeds

图3 ADN在正丁醇体系中的lnr与ln(ΔTmax/T0) 的关系

Fig.3 The lnr vs. ln(ΔTmax/T0) relations of ADN in n‑butanol system

图4 ADN在异丙醇体系中的lnr与ln(ΔTmax/T0) 的关系

Fig.4 The lnr vs. ln(ΔTmax/T0) relations of ADN in isopropanol system

表4 ADN在正丁醇、异丙醇中的mK的计算值

Table 4 Calculated values of m and K of ADN in n‑butanol and isobutanol

图5 ADN在正丁醇、异丙醇体系中lntind和ln-2S的关系

Fig.5 The lntind vs ln-2S relations of ADN in n‑butanol and isopropanol systems

表5 ADN在正丁醇、异丙醇中结晶诱导期的拟合参数

Table 5 Fitting parameters of crystallization induction period of ADN in n‑butanol and isopropanol

image /

T is temperature. x is the solubility in molar fraction.

A,B and C are the Apelblat equation model parameters. R is correlation coefficient. RMSD is root mean square deviation

λ and h are the model parameters of λh equation.

无注解

无注解

无注解

无注解

T0 is temperature, m is the nucleation order. K is thenucleation constant.

无注解

T is temperature, α is slope, k is intercept, γ is solid‑liquid interfacial tension.

  • 参考文献

    • 1

      Venkatachalam S, Santhosh G, Ninan K N. An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(3): 178-187.

    • 2

      Thomas H, Heike P, Jasmin A, et al. Ammonium dinitramide (ADN)‑prilling, coating, and characterization[J]. Propellants, Explosives, Pyrotechnics, 2009, 34: 231-238.

    • 3

      LAN Yan‑hua, ZHAI Jin‑xin, LI Ding‑hua, et al. The influence of solution chemistry on the morphology of ammonium dinitramide crystals[J]. Journal of Materials Science, 2015, 50(14): 4933-4939.

    • 4

      Nagamachi M Y, Oliveira, J I S, Kawamoto, A M, et al. ADN‑The new oxidizer around the corner for an environmentally friendly smokeless propellant[J]. Journal of Aerospace Technology and Management, 2009, 1(2): 153-160.

    • 5

      王灏静, 马媛, 李洪珍, 等. ADN/18C6共晶制备与表征[J]. 含能材料, 2018, 26(6): 545-548.

      WNG Hao‑jing, MA Yuan, LI Hong‑zhen, et al. Preparation and characterization of ADN/18C6 cocrystal[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(6): 545-548.

    • 6

      王业腾, 任晓婷, 何金选. 二硝酰胺铵的合成及晶形控制研究[J]. 火工品, 2018(2): 56-60.

      WANG Yie‑teng, REN Xiao‑ting, HE Jin‑xuan. Synthesis and crystal morphology control of ammonium dinitramide[J]. Initiators & Pyrotechnics, 2018(2): 56-60.

    • 7

      潘永飞, 汪营磊, 陈斌, 等. 二硝酰胺铵(ADN)球形化技术研究进展[J]. 爆破器材, 2018, 47(5): 1-8.

      PAN Yong‑fei, WANG Ying‑lei, CHEN Bin, et al. Research status of spheroidization of ammonium dinitramide(ADN)[J]. Explosive Materials, 2018, 47(5): 1-8.

    • 8

      马勇, 朱家文, 陈葵, 等. 磷酸结晶介稳区性质的研究[J]. 高校化学工程学报,2010,24(2): 331-335.

      MA Yong, ZHU Jia‑wen, CHEN Kui, et al. Study on the properties of metastable zone of phosphoric acid crystal[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2): 331-335.

    • 9

      LU Ying‑hong, CHING Chi‑bun. Study on the metastable zone width of ketoprofen[J]. Chirality, 2006, 18(4): 239-244.

    • 10

      NI Xiong‑wei; LIAO, An‑ting. Effects of cooling rate and solution concentration on solution crystallization of L‑glutamic acid in an oscillatory baffled crystallizer[J]. Crystal Growth Design, 2008, 8(8): 2875-2881.

    • 11

      Sangwal K, Mielniczek‑Brzoska E. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions[J]. Journal of Crystal Growth, 2004, 267(3-4): 662-675.

    • 12

      Lyczko N, Espitalier F, Louisnard O, et al. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chemical Engineering Journal, 2002, 86(3): 233-241.

    • 13

      Kadam S S, Kulkarni S A, Ribera R C, et al. A new view on the metastable zone width during cooling crystallization[J]. Chemical Engineering Science, 2012, 72(16): 10-19.

    • 14

      丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985: 193.

      DING Xu‑huai, TAN Qiu. Industrial Crystallization[M]. Beijing: Chemical Industry Press, 1985:193.

    • 15

      Calvo B, Collado I, Cepeda E A. Solubilities of palmitic acid in pure solvents and its mixtures[J]. Journal of Chemical and Engineering Data, 2009, 54(1): 64-68.

    • 16

      Domanska U, Bogel‑Lukasik E. Solubility of benzimidazoles in alcohols[J]. Journal of Chemical and Engineering Data, 2003, 48(4): 951-956.

    • 17

      PENG Bin, ZI Jun‑qin, YAN Wei‑dong. Measurement and correlation of solubilities of luteolin in organic solvents at different temperatures[J]. Journal of Chemical and Engineering Data, 2006, 51(6): 2038-2040.

    • 18

      JING Ding‑ding, WANG Jing‑kang, ZHANG Mei‑jing. Nucleation kinetics and growth model of penicillin sulfoxide in butyl acetate[J]. Chemical Engineering and Technology, 2013, 36(10): 1773-1778.

    • 19

      HAO Hong‑xun, WANG Jing‑kang, WANG Yong‑li. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol‑acetone system[J]. Journal of Crystal Growth, 2005, 274(3-4): 545-549.

    • 20

      冷一欣, 谭倩, 黄春香, 等. L‑酒石酸水溶液结晶介稳区和诱导期的测定[J]. 化工学报, 2016, 67(6): 2433-2439.

      LENG Yi‑xin, TAN Qian, HUANG Chun‑xiang, et al. Determination of the metastable zone and induction period of L‑tartaric acid aqueous solution[J]. CIESC Journal, 2016, 67(6): 2433-2439.

    • 21

      WANG Liu‑cheng, WANG Fu‑an. Solubility of niacin in 3‑picoline plus water from (287.65 to 359.15) K[J]. Journal of Chemical and Engineering Data, 2004, 49(1): 155-156.

    • 22

      Buchowski H, Kslazcak A, Pletrzyk S. Solvent activity along a saturation line and solubility of hydrogen‑bonding solids [J]. Journal of Physical Chemistry, 1980(84): 975-979.

    • 23

      Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions[J]. Journal of Crystal Growth, 2008, 310(3): 629-634.

    • 24

      Nyvlt J. Kinetics of nucleation in solutions[J]. Journal of Crystal Growth, 1968, 3/4: 377-383.

    • 25

      Sangwal K. A novel self‑consistent Nyvlt‑like equation for metastable zone width determined by the polythermal method [J]. Crystal Growth, 2010, 312(5): 698-704.

    • 26

      Kashchiev D, Borissova A, Hammind R B, et al. Effect of cooling rate on the critical undercooling for crystallization [J]. Crystal Research and Technology, 2009, 44(3): 231-247.

    • 27

      Mullin J W. Crystallization[M]. 4th ed. London: Butterworth-Heinemann, 2001: 206.

    • 28

      Lenka M, Sarkar D. Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of L‑asparaginenohydrate[J]. Journal of Crystal Growth, 2014, 408:85-90.

    • 29

      Ushasree P, Muralidharan R, Jayavel R, et al. Metastable zonewidth, induction period and interfacial energy of zinctris (thiourea) sulfate[J]. Journal of Crystal Growth, 2000, 210(4): 741-745.