CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006: 219-221.
WANGZe‑shan, HEWei‑dong, XUFu‑ming. The principle and technique for propellant charging design[M].Beijing: Beijing Institute of Technology Press,2006: 219-221.
参考文献 2
唐乾森, 肖正刚. 窄通道杆状发射药内孔燃气流动数值模拟[J].火炸药学报,2016, 39(5): 93-98.
TANGQian‑sen, XIAOZheng‑gang. Numerical simulation of combustion gas flow inside perforations of stick gun propellant with narrow channels[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 93-98.
参考文献 3
徐汉涛, 肖正刚, 何卫东.部分切口多孔杆状发射药的燃烧性能[J].含能材料, 2014, 22(2): 251-255.
XUHan‑tao, XIAOZheng‑gang, HEWei‑dong. Combustion characteristics of partially cut multiperforated stick propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2): 251-255.
参考文献 4
CarlR R, FrederickW R,ThomasC M, et al. A new high progressivity/high‑density propulsion concept:partially cut multiperforated stick propellat[R]. AD-A234255,1991.
参考文献 5
XIAOZheng‑gang, XUHan‑tao, HEWei‑dong. Influence of venting parameters on erosive burning of partially cut multi‑perforated stick propellants[J]. Science and Technology of Energetic Materials, 2015, 76(1-2): 42-46.
参考文献 6
王艳宾. 多孔切口杆状发射药燃烧性能研究[D]. 南京: 南京理工大学, 2008.
WANGYan‑bin. Burning performance of partially cut multiperforated stick propellant[D]. Nanjing: Nanjing University of Science and Technology, 2008.
参考文献 7
王锋, 李梓超, 刘国涛, 等. 多孔环切杆状发射药的燃烧性能[J].火炸药学报, 2015,38(2): 89-92.
WANGFeng, LIZi‑chao, LIUGuo‑tao, et al. Combustion performances of multiperforated curve cut stick gun propellants[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2): 89-92.
参考文献 8
许涛. 部分切口杆状药、包覆药及其混合装药渐增性燃烧性能研究[D]. 南京: 南京理工大学,2016.
XUTao. Progressive combustion performance study of partially cut stick propellants, coated granular propellants and their mixed charge[D]. Nanjing: Nanjing University of Science and Technology, 2016.
参考文献 9
XUTao, TANGQian‑sen, HEWei‑dong, et al. Progressive combustion of partially cut stick propellants and its mixed charge with granular coated propellant in closed vessel with high loading density[J]. 2015 International Autumn Seminar On Propellants, Explosives and Pyrotechnics, 2015.
参考文献 10
翁春生, 王浩. 计算内弹道学[M]. 北京: 国防工业出版社,2006: 2-15.
WENGChun‑sheng, WANGHao. Computational interior ballistics[M]. Beijing: National Defense Industry Press, 2006: 2-15.
参考文献 11
金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社,2004 : 42-44.
JINZhi‑ming. Gun interior ballistics[M]. Beijing: Beijing Institute of Technology Press, 2004: 42-44.
目录 contents

    摘要

    为了研究部分切口杆状发射药的装药内弹道性能,基于经典内弹道理论建立了部分切口杆状发射药的装药内弹道计算模型,采用高能硝胺发射药配方的部分切口杆状发射药进行了装药内弹道性能计算,在30 mm火炮上进行了试验验证,并分析了切距、切宽及切深对部分切口杆状发射药内弹道性能的影响。研究结果表明:采用建立的部分切口杆状发射药内弹道模型计算获得的最大膛压为430.2 MPa,与试验测试的最大膛压平均值409.7 MPa的计算误差为5.0%;计算的炮口初速为1378.2 m·s-1,与试验测试的炮口初速平均值1409.6 m·s-1的计算误差为2.2%;最大膛压和炮口初速随切距的增大而减小,切距从5 mm增加至50 mm,最大膛压降低了12.0%,初速降低了3.1%,且在切距值大于20 mm后对膛压及初速的影响逐渐降低;最大膛压及炮口初速随切深和切宽数值的增加而增大,切深对最大膛压的影响相较对炮口初速的影响更为显著,切宽数值的变化对内弹道性能的影响总体较小。

    Abstract

    To study the interior ballistic performance of charge for partially cut multi‑perforated stick propellant, a interior ballistic simulation model of charge for partially cut multi‑perforated stick propellant was established based on the classical interior ballistic theory. The calculation of interior ballistic performance of charge was performed using the partially cut multi‑perforated stick propellant with high energy nitramine propellant formulations. The experimental validation were carried out on 30 mm artillery. The effect of incision intervals, incision web and incision depth on the interior ballistic performance of partially cut multi‑perforated stick propellant was analyzed. The results show that the maximum bore pressure calculated by the established interior ballistic model of partially cut multi‑perforated stick propellant is 430.2 MPa. The calculated error of the maximum bore pressure is 5.0% compared with average value of testing maximum bore pressure of 409.7 MPa. The calculated muzzle velocity is 1378.2 m·s-1, and the calculated error is 2.2% compared with average value of testing muzzle velocity of 1409.6 m·s-1. The maximum bore pressure and muzzle velocity decrease with the increase of incision intervals. When the incision intervals increase from 5 mm to 50 mm, the maximum bore pressure reduces by 12.0%. And the muzzle velocity reduces by 3.1%. The effect upon the interior ballistic performance is gradually reduced when the numerical value of incision intervals is greater than 20 mm. The value of maximum bore pressure and muzzle velocity increases with the increase of incision depth and incision web. The effect of incision depth upon the maximum bore pressure is more significant than that upon the muzzle velocity. The interior ballistic performance of the propellant is insensitive to the change of incision web′s value.

  • 1 引 言

    高初速、远射程发射是火炮武器性能的主要发展方向。提高火炮初速的主要技术手段为采用高能发射药和提高装药的装填密度。发射药的能量通常与火药气体温度是正相关的,高能发射药会加剧对火炮身管的烧蚀现象,降低身管的寿命。因而,高装填密度装药技术是提高火炮弹道性能的最有效途径之[1]。部分切口多孔杆状发射药可在保持多孔粒状发射药良好的燃烧渐增性的同时,有效提高发射药装填密度,改善其点火一致[2,3],在高装填密度装药领域具有良好的应用前景。近年来,美国Carl[4]等研究了部分切口多孔杆状发射药的装药内弹道效能,并在155 mm火炮上进行了试验验证;国内的肖正[5]、王艳[6]等采用中止燃烧试验和密闭爆发器试验研究了不同切口参数对切口杆状发射药燃烧性能的影响;王[7]等通过试验对比了多孔切口杆状发射药与粒状药的静态燃烧性能和膛内燃烧性能;许[8,9]等对部分切口杆状发射药进行了包覆处理并研究了其燃烧特性。

    目前文献多通过试验手段研究部分切口杆状发射药的静态燃烧性能及内弹道性能,对采用切口杆状发射药的装药性能预估模型及其计算研究涉及不多。由于切口杆状发射药药体上一系列切口的存在,使得切口杆状药的燃烧过程既不同于传统的粒状发射药,也不同于杆状药,在采用切口杆状药进行装药设计时,采用粒状发射药及杆状发射药的燃烧模型难以有效进行装药内弹道性能预估,装药设计方案仍需进行大量的火炮射击试验才能最终选定,成本高昂且延长了新型切口杆状发射药的应用周期。

    基于此,本研究建立了切口杆状发射药的内弹道模型,采用高能硝胺发射药配方的切口杆状发射药进行了内弹道性能预估计算,在30 mm火炮上进行了试验验证,并研究了切口参数对切口杆状发射药装药内弹道性能的影响。

  • 2 部分切口杆状发射药的内弹道模型

    部分切口杆状发射药的示意图如图1所示。根据图1所示的部分切口杆状发射药药型结构,将切口杆状发射药的孔数记为n,无量纲;弧厚记为2e1,mm;药长记为2c,mm;孔径记为d0,mm;同向切距记为qt,mm;异向切距记为qy,mm;切口深度记为qs,mm;切口宽度记为qk,mm;药体上的切口个数记为x,无量纲。

    图1
                            部分切口杆状发射药示意图

    图1 部分切口杆状发射药示意图

    Fig.1 Schematic diagram of partially cut multi‑perforated stick propellants

    建立部分切口杆状发射药的内弹道模型时,基于以下基本假[10]

    (a)火药燃烧遵循几何燃烧定律,药体无局部破碎;

    (b)药体在平均压力下燃烧,其燃烧遵循指数燃烧定律;

    (c)不考虑药体和气流的运动对药体燃烧及弹丸运动造成的影响;

    (d)内膛表面热散失用修正火药力方法来间接修正;

    (e)弹丸挤进膛线是瞬时完成的,以一定的挤进压力标志弹丸的启动条件;

    (f)火药燃气服从诺贝尔‑阿贝尔状态方程,且火药燃烧产物成分在整个燃烧过程始终不变,火药力、余容及比热比均视为常数;

    (g)用次要功系数来考虑其它的次要功。

    根据以上假设,基于平行层燃烧推导出的整个燃烧过程的形状函数如式(1)所示:

    ψ=1-2SDt(c-e)-xVqt- 12nπ(d0+2e)(c-e)2SD0c-xVq0- 12nπd02c  e <e1ψ=χsee1+ρ(1+λsee1+ρ)                       e1 e< (e1+ρ)ψ=1                                                                     (e1+ρ) e
    (1)

    式中,SDt为对应时刻t的切口杆状发射药端面积,m2e为时刻t的切口杆状发射药弧厚的1/2,m;Vqt为对应时刻t的切口体积,m3;π为圆周率;SD0为切口杆状发射药初始表面积,m2Vq0为切口杆状发射药初始切口体积,m3χsλsρ为切口杆状发射药的形状特征量;SDtVqtSD0Vq0ρ均可以根据切口杆状发射药的药型通过几何运算得出。

    将密闭爆发器测试的压力时间数据和(1)式代入式(2)可求解出e随时间变化的函数,记为e(t):

    ψ(t)=1/Δ-1/ρpf/p(t)+α-1/ρp
    (2)

    式中,Δ为发射药装填密度,kg·m-3f为火药力,J·kg-1ρp为发射药密度,kg·m-3α为余容,m3·kg-1

    e(t)对时间t进行数值微分计算即可求得切口杆状发射药的燃速和压力的函数关[11],并按照式(3)进行拟合得到u1n1

    u=u1pn1
    (3)

    式中,u1为燃速系数,m·s-1·Pa-n1n1为压力指数,无量纲。

    弹丸运动方程按照式(4)计算:

    Sp=φmdvdt
    (4)

    速度与行程关系按照式(5)计算:

    v=dldt
    (5)

    能量平衡方程按照式(6)计算:

    Sp(l0[1-Δρp-Δ(α-1ρp)ψ]+l)=fωψ-θ2φmv2
    (6)

    式中,v为弹丸速度,m·s-1S为身管截面积,m2p为膛内平均压力,Pa;φ为次要功系数,无量纲;m为弹丸质量,kg;l为行程长,m;t为时间,s;l0为药室容积缩颈长,m;ω为装药量,kg;θ为比热系数,无量纲;ψ为已然质量百分比。

    膛底压力和平均压力的换算按照式(7)计算:

    pt=p1+ε21-1-S2A2θ02/1+ε31-3θ032(1-S2A2)
    (7)

    式中,θ0=W0/(W0+Sl);W0为药室容积,m3ε=ω/(φm);A为药室截面积,m2pt为膛底压力,Pa。

    弹底压力和膛底压力的换算按照式(8)计算:

    ptpd=1+ω2φ1m
    (8)

    式中,pd为弹底压力,Pa;φ1为阻力系数。联立(1)、(3)、(4)、(5)、(6)式即可计算获得部分切口杆状发射药的装药内弹道性能。

  • 3 试验部分

  • 3.1 密闭爆发器试验

    选用高能硝胺发射药配方,制备出7孔圆柱6/7药型的切口杆状发射药样品SDG‑6/7;按照GJB770B-2005《火药试验方法》《方法703.1密闭爆发器试验 微分压力法》进行爆发器试验,获得切口杆状发射药的静态燃烧压力时间曲线。

  • 3.2 内弹道装药试验

    在30 mm高压滑膛弹道炮上进行切口杆状发射药装药内弹道试验。以SDG‑6/7切口杆状发射药为主装药,电底火加中心传火管的点传火结构,采用2#小粒黑作为传火药,按照GJB2973A-2008《火炮内弹道试验方法》,采用引线式电测压法测试膛底和炮口压力,按照GJB2179-94《炮用发射药与装药内弹道试验方法》测试初速。

  • 4 结果与讨论

  • 4.1 部分切口杆状发射药内弹道性能预估精度分析

    爆发器试验和火炮内弹道试验中采用的切口杆状发射药的药型参数如表1所示。

    表1 SDG‑6/7切口杆状发射药药型参数

    Table 1 Formation parameters of SDG‑6/7 partially cut multi‑perforated stick propellants

    2e1/mmd0/mm2c/mmqt/mmqy/mmqs/mmqk/mm
    0.610.251201541.70.2

    NOTE: 2e1 is the web size of propellant; d0 is the diameter of interior hole; 2c is the length of propellant; qt is the incision interval of same side; qyis the incision interval of different sides; qs is the incision depth; qk is the incision web.

    SDG‑6/7切口杆状发射药密闭爆发器试验结果如图2所示。

    图2
                            切口杆状发射药的爆发器试验p‑t曲线

    图2 切口杆状发射药的爆发器试验p‑t曲线

    Fig.2 p‑t curves of closed‑bomb testing for partially cut multiperforated stick propellants

  • 30 mm高压滑膛炮的装填参数见表2所示。

    采用表2所示的装药参数进行火炮内弹道试验,测试膛压和炮口初速。由于测速靶测得的初速为炮口前方10 m处的速度(v10),依据GJB2179-94《炮用发射药与装药内弹道试验方法》,采用公式(9)进行初速修正。

    表2 30 mm炮发射装药参数

    Table 2 Formation parameters of 30 mm gun

    W0/cm3S/cm2lg/ mm/kgω/kgφ1
    314.57.071.660.2010.181.05

    NOTE: W0 is the chamber volume; S is transaction area of the barrel; lg is the traveling length of projectile; m is the mass of projectile; ω is the charge mass; φ1 is the coefficient of secondary work.

    v0=v10+id2l2×104mΔD(v)
    (9)

    式中,v0为修正后的炮口速度,m·s-1i为弹形系数,试验中采用的弹丸弹形系数为3.0,由弹厂提供;d为弹径,此处为0.03 m;l2为测速靶距炮口距离,此处为10 m;m为弹重,此处为0. 201 kg;ΔD(v)为相应初速修正系数,依据GJB2179-94《炮用发射药与装药内弹道试验方法》附录B确定。

    按照公式(9)初速修正后的内弹道试验结果如表3所示。

    表3 切口杆状发射药内弹道性能试验结果

    Table 3 Testing results of interior ballistic performance for partially cut multi‑perforated stick propellants

    Noω/gv10/m∙s-1v0/m∙s-1ptm/MPapgm/MPa
    11801382.61405.4401.472.5
    21801385.51408.3411.583.3
    31801391.81415.0416.179.5
    average1801386.61409.6409.778.4

    NOTE: ptm is maximum of bore bottom pressure; pgm is maximum of muzzle pressure.

    采用式(1)~式(3)及图2的爆发器压力时间数据计算切口杆状药SDG‑6/7的燃速方程,根据表1所示的切口杆状发射药参数及表2所示的30 mm炮发射装药参数和建立的切口杆状发射药的内弹道计算模型,计算的膛底压力曲线和第2发火炮试验测试获得的膛底、炮口压力曲线如图3所示。

    图3
                            切口杆状发射药计算压力(pt‑t)和测试压力(pg‑t)曲线

    图3 切口杆状发射药计算压力(pt‑t)和测试压力(pg‑t)曲线

    Fig.3 Calculated pt‑t curves and testing pg‑t curves of partially cut multiperforated stick propellants

    结合表3和图3可以看出,火炮试验测试的膛底最大压力平均值为409.7 MPa,计算的膛底压力最大值为430.2 MPa,压力计算值与测试值平均值的相对误差为5.0%;从图3所示的膛底压力计算曲线和实测曲线对比图可以看出,二者的变化趋势基本一致,采用式(8)计算的炮口压力为79.76 MPa,实测的炮口压力平均值为78.4 MPa,炮口压力计算值与测试值平均值的相对误差为1.73%。

    计算的弹丸运动时间曲线和位移时间曲线如图4所示。从图4所示的速度vt曲线和位移lt曲线可得出,计算的炮口初速为1378.2 m·s-1,测试的炮口速度平均值为1409.6 m·s-1,初速计算值与测试值平均值的相对误差为2.2%;计算的弹丸在膛内的运动时间为2.49 ms,对应图3测试的ptt曲线上33.3 MPa(按照式(7)将弹底挤进压力30 MPa换算成对应的膛底压力)的时刻为3.52 ms,pgt曲线上弹丸出炮口时刻为5.94 ms,即弹丸在膛内的运动时间为2.47 ms,表明计算的弹丸膛内运动过程具有较高的计算精度。

    图4
                            速度时间(v‑t)和位移时间(l‑t)曲线

    图4 速度时间(v‑t)和位移时间(l‑t)曲线

    Fig.4 vt and lt curves

  • 4.2 药型切口参数对内弹道性能的影响分析

  • 4.2.1 切距对内弹道性能的影响

    切距对部分切口杆状发射药装药最大膛压和初速的影响如表4所示。

    表4 切距对内弹道性能影响

    Table 4 Effect of incision intervals on the interior ballistic performance

    qt/mmptm/MPavg/m·s-1
    5465.11402.9
    15430.21378.2
    20412.41362.1
    30411.31360.4
    50409.21358.9

    NOTE: qt is incision interval of the same side; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

    结合表4数据可以看出,随着切距的变大,最大膛压和初速均减小,与5 mm切距时的内弹道性能对比,当切距增加至50 mm时,最大膛压降低了12.0%,初速降低了3.1%;且在20 mm以后的切距对应的最大膛压和初速衰减的幅度逐渐变小,表明对试验的样品,存在一个对装药内弹道性能产生显著影响的切距上限值。

  • 4.2.2 切深对内弹道性能的影响

    切深对部分切口杆状发射药装药最大膛压和初速的影响如表5所示。

    表5 切深对内弹道性能影响

    Table 5 Effect of incision depth on the interior ballistic performance

    qs/mmptm/MPavg/m·s-1
    0.6411.31363.9
    1.2426.11375.2
    1.7430.21378.2
    2.0436.41380.9
    2.5454.91392.1

    NOTE: qs is the incision depth; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

    从表5可以看出,随着切深的增大,膛压和初速均逐渐增大,与0.6 mm切深时的内弹道性能对比,当切深增加至2.5 mm时,最大膛压升高了10.6%,初速升高了2.1%,切深对最大膛压的影响相较初速更为显著。但切深过大影响药体强度,有可能对切口杆状药的装药和运输带来不利。

  • 4.2.3 切宽对内弹道性能的影响

    切宽对部分切口杆状发射药装药最大膛压和初速的影响如表6所示。

    表6 切宽对内弹道性能影响

    Table 6 Effect of incision web on the interior ballistic performance

    qk/mmptm/MPavg/m·s-1
    0.1427.41374.9
    0.2430.21378.2
    0.6432.31380.1
    1.0435.91382.8
    2.0440.11387.4

    NOTE: qk is the incision web; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

    从表6可以看出,随着切宽增大,膛压和初速均略有增大,与0.1 mm切宽时的内弹道性能对比,当切宽增加至2 mm时,最大膛压升高了3.0%,初速升高了0.9%,相较切距及切深而言,切宽数值的变化对内弹道性能的影响总体偏小。但切宽不易太大,否则会在一定程度上降低装填密度和药体强度。

  • 5 结 论

    (1)建立了部分切口杆状发射药的内弹道性能计算模型,计算获得的最大膛压与试验测试平均值的误差为5.0%,初速计算误差为2.2%,采用该模型可以对部分切口杆状发射药装药的内弹道性能参数进行有效预估。

    (2)部分切口杆状发射药切口参数对内弹道性能的影响分析表明:最大膛压和炮口初速随切距的增大而减小,且在20 mm以后的切距对应的最大膛压和初速衰减的幅度逐渐变小;最大膛压及炮口初速随切深和切宽数值的增加而增大,切深对最大膛压的影响相较初速更为显著;在部分切口杆状发射药制备过程中,切距和切深是影响装药性能的关键切口参数。

    (责编:高 毅)

  • 参考文献

    • 1

      王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006: 219-221.

      WANG Ze‑shan, HE Wei‑dong, XU Fu‑ming. The principle and technique for propellant charging design[M].Beijing: Beijing Institute of Technology Press,2006: 219-221.

    • 2

      唐乾森, 肖正刚. 窄通道杆状发射药内孔燃气流动数值模拟[J].火炸药学报,2016, 39(5): 93-98.

      TANG Qian‑sen, XIAO Zheng‑gang. Numerical simulation of combustion gas flow inside perforations of stick gun propellant with narrow channels[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 93-98.

    • 3

      徐汉涛, 肖正刚, 何卫东.部分切口多孔杆状发射药的燃烧性能[J].含能材料, 2014, 22(2): 251-255.

      XU Han‑tao, XIAO Zheng‑gang, HE Wei‑dong. Combustion characteristics of partially cut multiperforated stick propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2): 251-255.

    • 4

      Carl R R, Frederick W R,Thomas C M, et al. A new high progressivity/high‑density propulsion concept:partially cut multiperforated stick propellat[R]. AD-A234255,1991.

    • 5

      XIAO Zheng‑gang, XU Han‑tao, HE Wei‑dong. Influence of venting parameters on erosive burning of partially cut multi‑perforated stick propellants[J]. Science and Technology of Energetic Materials, 2015, 76(1-2): 42-46.

    • 6

      王艳宾. 多孔切口杆状发射药燃烧性能研究[D]. 南京: 南京理工大学, 2008.

      WANG Yan‑bin. Burning performance of partially cut multiperforated stick propellant[D]. Nanjing: Nanjing University of Science and Technology, 2008.

    • 7

      王锋, 李梓超, 刘国涛, 等. 多孔环切杆状发射药的燃烧性能[J].火炸药学报, 2015,38(2): 89-92.

      WANG Feng, LI Zi‑chao, LIU Guo‑tao, et al. Combustion performances of multiperforated curve cut stick gun propellants[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2): 89-92.

    • 8

      许涛. 部分切口杆状药、包覆药及其混合装药渐增性燃烧性能研究[D]. 南京: 南京理工大学,2016.

      XU Tao. Progressive combustion performance study of partially cut stick propellants, coated granular propellants and their mixed charge[D]. Nanjing: Nanjing University of Science and Technology, 2016.

    • 9

      XU Tao, TANG Qian‑sen, HE Wei‑dong, et al. Progressive combustion of partially cut stick propellants and its mixed charge with granular coated propellant in closed vessel with high loading density[J]. 2015 International Autumn Seminar On Propellants, Explosives and Pyrotechnics, 2015.

    • 10

      翁春生, 王浩. 计算内弹道学[M]. 北京: 国防工业出版社,2006: 2-15.

      WENG Chun‑sheng, WANG Hao. Computational interior ballistics[M]. Beijing: National Defense Industry Press, 2006: 2-15.

    • 11

      金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社,2004 : 42-44.

      JIN Zhi‑ming. Gun interior ballistics[M]. Beijing: Beijing Institute of Technology Press, 2004: 42-44.

赵煜华

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:guoke051@163.com

作者简介:赵煜华(1985-),男,工程师,主要从事发射药及装药技术研究。e‑mail:guoke051@163.com

杨伟涛

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

角 色:通讯作者

Role:Corresponding author

邮 箱:njyangweitao@163.com

作者简介:杨伟涛(1987-),男,副研究员,主要从事发射药及装药技术研究。e‑mail:njyangweitao@163.com

严文荣

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

张江波

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

肖霞

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

html/hncl/CJEM2018265/media/412beccf-1d68-4893-a034-bdd0f0ab5e0a-image001.png
2e1/mmd0/mm2c/mmqt/mmqy/mmqs/mmqk/mm
0.610.251201541.70.2
html/hncl/CJEM2018265/media/412beccf-1d68-4893-a034-bdd0f0ab5e0a-image002.png
W0/cm3S/cm2lg/ mm/kgω/kgφ1
314.57.071.660.2010.181.05
Noω/gv10/m∙s-1v0/m∙s-1ptm/MPapgm/MPa
11801382.61405.4401.472.5
21801385.51408.3411.583.3
31801391.81415.0416.179.5
average1801386.61409.6409.778.4
html/hncl/CJEM2018265/media/412beccf-1d68-4893-a034-bdd0f0ab5e0a-image004.png
html/hncl/CJEM2018265/alternativeImage/412beccf-1d68-4893-a034-bdd0f0ab5e0a-F003.png
qt/mmptm/MPavg/m·s-1
5465.11402.9
15430.21378.2
20412.41362.1
30411.31360.4
50409.21358.9
qs/mmptm/MPavg/m·s-1
0.6411.31363.9
1.2426.11375.2
1.7430.21378.2
2.0436.41380.9
2.5454.91392.1
qk/mmptm/MPavg/m·s-1
0.1427.41374.9
0.2430.21378.2
0.6432.31380.1
1.0435.91382.8
2.0440.11387.4

图1 部分切口杆状发射药示意图

Fig.1 Schematic diagram of partially cut multi‑perforated stick propellants

表1 SDG‑6/7切口杆状发射药药型参数

Table 1 Formation parameters of SDG‑6/7 partially cut multi‑perforated stick propellants

图2 切口杆状发射药的爆发器试验p‑t曲线

Fig.2 p‑t curves of closed‑bomb testing for partially cut multiperforated stick propellants

表2 30 mm炮发射装药参数

Table 2 Formation parameters of 30 mm gun

表3 切口杆状发射药内弹道性能试验结果

Table 3 Testing results of interior ballistic performance for partially cut multi‑perforated stick propellants

图3 切口杆状发射药计算压力(pt‑t)和测试压力(pg‑t)曲线

Fig.3 Calculated pt‑t curves and testing pg‑t curves of partially cut multiperforated stick propellants

图4 速度时间(v‑t)和位移时间(l‑t)曲线

Fig.4 vt and lt curves

表4 切距对内弹道性能影响

Table 4 Effect of incision intervals on the interior ballistic performance

表5 切深对内弹道性能影响

Table 5 Effect of incision depth on the interior ballistic performance

表6 切宽对内弹道性能影响

Table 6 Effect of incision web on the interior ballistic performance

image /

无注解

2e1 is the web size of propellant; d0 is the diameter of interior hole; 2c is the length of propellant; qt is the incision interval of same side; qyis the incision interval of different sides; qs is the incision depth; qk is the incision web.

无注解

W0 is the chamber volume; S is transaction area of the barrel; lg is the traveling length of projectile; m is the mass of projectile; ω is the charge mass; φ1 is the coefficient of secondary work.

ptm is maximum of bore bottom pressure; pgm is maximum of muzzle pressure.

无注解

无注解

qt is incision interval of the same side; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

qs is the incision depth; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

qk is the incision web; ptm is maximum of bore bottom pressure; vg is calculated muzzle velocity.

  • 参考文献

    • 1

      王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006: 219-221.

      WANG Ze‑shan, HE Wei‑dong, XU Fu‑ming. The principle and technique for propellant charging design[M].Beijing: Beijing Institute of Technology Press,2006: 219-221.

    • 2

      唐乾森, 肖正刚. 窄通道杆状发射药内孔燃气流动数值模拟[J].火炸药学报,2016, 39(5): 93-98.

      TANG Qian‑sen, XIAO Zheng‑gang. Numerical simulation of combustion gas flow inside perforations of stick gun propellant with narrow channels[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 93-98.

    • 3

      徐汉涛, 肖正刚, 何卫东.部分切口多孔杆状发射药的燃烧性能[J].含能材料, 2014, 22(2): 251-255.

      XU Han‑tao, XIAO Zheng‑gang, HE Wei‑dong. Combustion characteristics of partially cut multiperforated stick propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(2): 251-255.

    • 4

      Carl R R, Frederick W R,Thomas C M, et al. A new high progressivity/high‑density propulsion concept:partially cut multiperforated stick propellat[R]. AD-A234255,1991.

    • 5

      XIAO Zheng‑gang, XU Han‑tao, HE Wei‑dong. Influence of venting parameters on erosive burning of partially cut multi‑perforated stick propellants[J]. Science and Technology of Energetic Materials, 2015, 76(1-2): 42-46.

    • 6

      王艳宾. 多孔切口杆状发射药燃烧性能研究[D]. 南京: 南京理工大学, 2008.

      WANG Yan‑bin. Burning performance of partially cut multiperforated stick propellant[D]. Nanjing: Nanjing University of Science and Technology, 2008.

    • 7

      王锋, 李梓超, 刘国涛, 等. 多孔环切杆状发射药的燃烧性能[J].火炸药学报, 2015,38(2): 89-92.

      WANG Feng, LI Zi‑chao, LIU Guo‑tao, et al. Combustion performances of multiperforated curve cut stick gun propellants[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2): 89-92.

    • 8

      许涛. 部分切口杆状药、包覆药及其混合装药渐增性燃烧性能研究[D]. 南京: 南京理工大学,2016.

      XU Tao. Progressive combustion performance study of partially cut stick propellants, coated granular propellants and their mixed charge[D]. Nanjing: Nanjing University of Science and Technology, 2016.

    • 9

      XU Tao, TANG Qian‑sen, HE Wei‑dong, et al. Progressive combustion of partially cut stick propellants and its mixed charge with granular coated propellant in closed vessel with high loading density[J]. 2015 International Autumn Seminar On Propellants, Explosives and Pyrotechnics, 2015.

    • 10

      翁春生, 王浩. 计算内弹道学[M]. 北京: 国防工业出版社,2006: 2-15.

      WENG Chun‑sheng, WANG Hao. Computational interior ballistics[M]. Beijing: National Defense Industry Press, 2006: 2-15.

    • 11

      金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社,2004 : 42-44.

      JIN Zhi‑ming. Gun interior ballistics[M]. Beijing: Beijing Institute of Technology Press, 2004: 42-44.