1 引 言
目前,奥克托今(HMX)已被广泛用于高威力导弹战斗部、起爆药和高能火箭推进剂等诸多领域,但由于较高的机械感度,其应用受到了一定限制。HMX有两种主要的分子构象:船‑船(Boat‑boat)式和椅式(Chair);具有α‑、β‑、γ‑和δ‑四种晶型,均为无色晶体。β‑HMX在通常条件下最稳定,是实际应用的晶
型[1] ,其密度为1.903 g·cm-3 ,氧平衡-22%,爆热5674 kJ·kg-1 ,生成焓253.18 kJ·kg-1 ,爆速9109 m·s-1 (ρ=1.89 g·cm-3 )[2] 。α‑与δ‑HMX分别在377~429K、429~549 K下稳定存在[3,4] 。γ‑HMX是HMX的水合物,在约429 K下稳定存在,在溶剂中极易转变为β‑HMX[5] 。不同晶型的HMX,分子结构与堆积方式存在一定差异,导致不同的密度、能量、安全性等性质性能。含能材料在制造加工、运输储存和实际的军事应用过程中通常会受到热、机械撞击、摩擦以及冲击波等外界刺激的作用,从而导致体系的温度和压力发生变化,使HMX晶型发生转变,但对于这些转变的研究还长期停留在宏观的实验方面,缺少HMX多晶型转变的理论研究。共晶技术是基于已有分子实现含能材料结构与性能调谐的有效手段之一,HMX由于其能量和安全性的综合优势,是一种备选的含能共晶配体。但是,目前HMX基共晶的数量有限,还难以形成规律性认识。此外,感度是决定含能材料能否使用的重要性能之一,目前,人们已从原子/分子层次研究了HMX在不同刺激条件下的分解机
理[6,7,8,9,10,11,12] ,这些机理在一定程度上反映了感度的本质,但研究结果仍然存在差异,尚未形成统一认识。鉴于此,本文综述了HMX分子、HMX基晶体的结构和性质研究进展。2 HMX分子结构与特性
2.1 HMX分子的几何结构
气相HMX分子有两种稳定构
象[3] ,即α‑、γ‑和δ‑HMX晶型的船‑船式(Boat‑boat)结构和β‑HMX晶型的椅式(Chair)结构,如图1所示。由图1可知,Boat‑boat结构中四个硝基(—NO2 )位于八元环结构的同侧,而 Chair结构中四个硝基(—NO2 )两两位于环结构的异侧。Cad
y[3] 采用单晶X射线衍射方法获得了α‑HMX和β‑HMX的晶体结构数据,其分子构象结构几何参数如表1所示。Boat‑boat结构环C—N键长为1.44~1.47 Å,直立N—N键长为1.35 Å,平伏N—N键长为1.37 Å,N—O键长为1.21~1.24 Å;而Chair结构中环C—N键长为1.43~1.46 Å,直立N—N键长为1.37 Å,平伏N—N键长为1.41 Å,N—O键长为1.23~1.25 Å,表明两种构象仅平伏N—N键长差异较大。通过分析键角可知(表1),Boat‑boat构象的分子结构具有轴对称性,而Chair构象具有中心对称性。对于Boat‑boat和Chair两种构象的二面角,C(3)—N(4)—C(1′)—N(2′)差异最大,其键角分别为64.7°和-11.5°,相差约90°。因此,两种HMX构象结构差别主要表现为对称性和二面角的差异。此外,由于β‑HMX能量低、安全性高,所以HMX分子理论模拟计算多以β‑HMX中Chair式为研究对象[13,14,15] 。.bond length/Å bond angle/(°) bond angle/(°) boat‑boat chair boat‑boat chair boat‑boat chair C(1)—N(2)/N(2′)—C(1′) 1.44 1.46 C(1)—N(2)—C(3) 124 124.3 C(1)—N(2)—C(3)—N(4) 105.0 119.1 N(2)—C(3)/N(2′)—C(3′) 1.45 1.43 N(2)—C(3)—N(4) 110 108.7 N(2)—C(3)—N(4)—C(1′) -37.6 -50.1 C(3)—N(4)/C(3′)—N(4′) 1.47 1.45 C(3)—N(4)—C(1′) 120 125.3 C(3)—N(4)—C(1′)—N(2′) 64.7 -11.5 N(4)—C(1′)/N(4′)—C(1) 1.45 1.43 N(4)—C(1′)—N(2′) 113 111.4 C(3′)—N(4′)—C(1)—N(2) 64.7 11.5 N(2)—N(5)/N(2′)—N(5′) 1.35 1.37 C(1)—N(2)—N(5) 117 117.3 N(4)—C(1′)—N(2′)—C(3′) -100.7 97.5 N(4)—N(6)/N(4′)—N(6′) 1.37 1.41 C(3)—N(2)—N(5) 117 117.0 N(4′)—C(1)—N(2)—C(3) -100.7 -97.5 N(5)—O(1)/N(5′)—O(1′) 1.21 1.22 C(3)—N(4)—N(6) 119 114.3 N(2)—C(3)—N(4)—N(6) 125.9 111.5 N(5)—O(2)/N(5′)—O(2′) 1.24 1.22 C(1′)—N(4)—N(6) 119 115.9 N(2′)—C(3′)—N(4′)—N(6′) 125.9 -111.5 N(6)—O(3)/N(6′)—O(3′) 1.23 1.23 O(1)—N(5)—O(2) 125 128.2 N(4)—C(1′)—N(2′)—N(5′) 75.0 -91.0 N(6)—O(4)/N(6′)—O(4′) 1.22 1.22 O(3)—N(6)—O(4) 125 123.9 N(4′)—C(1)—N(2)—N(5) 75.0 91 2.2 HMX分子的能量与电子结构性质
含能晶体的诸多物化性质取决于体系的能量和电子结构,因此对含能晶体的研究不能只停留在分子结构的特征上,还必须深入到分子的电子结构层次。众多研究人员通过理论计算的方法研究HMX的两种构象分子的相对能量、能隙和偶极距,如表2所示。Lewis
等[6] 采用不同密度泛函理论(DFT)方法优化了α‑、β‑和δ‑HMX晶体,发现α‑HMX和δ‑HMX中的分子结构都优化为Boat‑boat构象,而β‑HMX则优化为Chair构象。他们还比较了两种优化构象结构的相对能量,发现在杂交泛函(B3LYP)水平下,Boat‑boat构象比Chair构象的能量高9.74 kJ·mol-1 ,而在BLYP水平下,该能量差为3.39 kJ·mol-1 ,如表2所示。Chakraborty等[16] 在B3LYP/6‑31G(d)水平下得到的这一能量差为10.46 kJ·mol-1 ,考虑零点能时,此值为8.37 kJ·mol-1 。Smith[17] 用经典力场方法得到能量差为2.6 kJ·mol-1 。以上结果表明,不同计算方法得到的相对能量存在一定差异,但所有结果均表明Chair构象比Boat‑boat构象的总能量低,是热力学占优的构象。此外,Smith[17] 在MP2/6‑311G水平上得到的两种构象的偶极距数据表明,Chair构象对称性更高,电荷更分散。2.3 HMX分子热稳定性
含能材料热分解机理关系其感度和安定性,是含能材料研究的重要内容。分子是保持材料基本性质的最小单元,研究HMX单分子的热分解机理是理解HMX晶体热性能的基础。随着计算机和量子化学的发展与结合,大量研究工作者从单分子分子角度研究了HMX的热力学性
质[6,7,8,9,10,11,12] 。图2为已报道的HMX分子可能的初始分解路径[18,19,20] ,共五种:a,N—NO2 均裂[18] ,该机制普遍被认为是硝胺类炸药分解的引发机制;b,HONO解离[19] ,由环上亚甲基(—CH2 )上的H转移到相邻N—NO2 上的O原子上,形成五元环过渡结构,随后解离HONO,释放出亚硝酸及HNO2 ,此反应是N—NO2 均裂的竞争反应;c,环均裂形成4个CH2 NNO2 [19];d,环上C—N键断裂[19] ;e,硝基的异构化反应,并发生C—N键断裂释放出NONO[20] 。表3和表4分别对HMX分子不同热分解机理的热力学和动力学数据进行了比较。结果表明,不同方法获得的解离能不尽相同,甚至有些数据的可靠性还有待考证,比如Lewi
s[7] 基于B3LYP/6‑311G,p方法计算HMX以不同路径(HNO2 释放、C—N键断裂、环均裂和N—NO2 )分解所需的解离能相差太大,这可能是由于采用同种方法计算不同基团的解离能精确性不同导致。由表3可知,N—NO2 断裂时,直立硝基所需要的能量更低,这一点在 Chair构象中更明显。此外,三线态条件下的解离能比单线态条件下的低。表4中的动力学数据表明,N—NO2 断裂在动力学上总是占优的。综上,N—NO2 的断裂是气相HMX分解的主要途径。表3 HMX分子不同分解路径的解离能
Table 3 Dissociation energies for different decomposition paths of gaseous HMX
method conformation dissociation energy / kJ·mo l-1 a b c d e BLYP/6‑311G, p[7] boat‑boat 174.89 179.49 201.25 172.38 B3LYP/6‑311G, p[7] boat‑boat 169.45 300.41 234.30 B3LYP/cc‑pVD Z[9] boat‑boat 166.19 177.53 B3LYP/6‑31G(d )[16] boat‑boat (189.1 5eq )(211.71) (189.9 5ax )chair 166.5 2eq 186.61 (194.56 ax )PB E[11] chair 218.8 2S 164.85 191.63 159.4 1T PB E[20‑21] chair 237.2 3S 186.6 1eq 191.63 218.8 2S 181.5 9ax 169.58 PB E[22] boat‑boat 164.0 1ax 137.65 167.3 6eq NOTE: eq is the equatorial bond. ax is the axial bond. S is the singlet state. T is the triplet state. The value in parentheses is the data that does not contain the single point energy. The same as below.
3 HMX及其共晶的晶体结构与性能
3.1 晶体结构
据报道,HMX基共晶(包含溶剂化合物)有上百种,但是多数共晶并无晶体结构实验数据,比如奥克托今/三氨基三硝基苯(HMX/TATB
)[23] 、奥克托今/高氯酸铵(HMX/AP)[24,25] 、奥克托今/二甲基甲酰胺(HMX/DMF)[26,27] 、奥克托今/N‑甲基吡咯烷酮(HMX/NMP)[28,29] 、奥克托今/2,6‑二氨基‑3,5‑二硝基吡嗪‑1‑氧化物(HMX/LLM‑105)[30] 、奥克托今/梯恩梯(HMX/TNT)[31] 及其它理论预测的共晶等[32] 。目前在晶体结构数据库(CCDC)中可有效利用的HMX及其共晶晶体结构信息如表5所示,包含α‑、β‑和δ‑HMX三种晶型[3,4,5] 和γ‑HMX水合物[5] ,以及奥克托今/1,3‑二甲基‑2‑咪唑啉酮(HMX/DMI)[33] 、奥克托今/并二噻吩(HMX/T2 )、奥克托今/对氟苯胺(HMX/FA)、奥克托今/3,4‑二氨基甲苯(HMX/DAT)、奥克托今/2‑吡咯烷酮(HMX/Py)、奥克托今/1,2‑苯二胺(HMX/PDA)、奥克托今/2‑甲基吡啶‑N‑氧化物(HMX/PNox)、奥克托今/1.4‑吡嗪二甲醛(HMX/PDCA)[34] 、奥克托今/2,4‑二硝基‑2,4‑二氮杂戊烷(HMX/DNDA)[35] 和奥克托今/六硝基六氮杂异伍兹烷(HMX/CL‑20)[36,37,38,39,40] 十种HMX基共晶(含溶剂化合物)。表5 HMX基晶体结构信息
Table 5 HMX‑based crystal structure information
coformer α‑HM X[3] β‑HM X[3] δ‑HM X[4] HMX/ H2 O[5] HMX/DM I[33] HMX/T 2[34] HMX/F A[34] HMX/DA T[34] HMX/P y[34] HMX/PD A[34] HMX/PNo x[34] HMX/PDC A[34] HMX/DND A[35] HMX/CL‑2 0[36] conformation boat‑boat chair boat‑boat boat‑boat boat‑boat boat‑boat boat‑boat boat‑boat boat‑boat boat‑boat chair chair chair chair space group FDD2 P 21 /cP 61 Pc Cm Pnma P 21 Pnma P 63 /mPnma P¯1 P 21 /cP1121/n P1 proportion - - - - 1∶1 1∶1 1∶1 1∶1 1∶1 1∶1 1∶2 1∶1 1∶2 1∶2 Z 8 2 6 4 2 4 4 4 6 4 1 4 2 2 a / Å 15.14 6.54 7.71 13.27 7.231 11.14 7.715 11.437 15.847 11.415 6.061 13.838 10.72 16.346 b / Å 23.89 11.05 7.71 7.9 14.739 19.175 11.211 18.731 15.847 18.482 7.818 6.419 11.68 9.936 c / Å 5.913 8.7 32.55 10.95 7.552 7.69 18.539 7.831 10.537 7.712 12.154 20.748 11.098 12.142 α/(°) 90 90 90 90 90 90 90 90 90 90 71.6 90 90 90 β /(°) 90 124.4 90 106.8 96.66 90 90 90 90 90 80.885 104.25 90 99.23 γ/(°) 90 90 120 90 90 90 90 90 120 90 86.33 90 114.6 90 ρcale / g·c m-1 1.76 1.905 1.8 1.76 1.705 1.764 1.687 1.562 1.547 1.79 1.583 1.63 1.64 2.001 V / A3 2138.7 519.38 1676.27 1098.93 799.48 1642.69 1603.69 1677.45 2291.61 1627.02 539.53 1786.28 1264.28 1946.42 CSD code OCHTET OCHTET01 OCHTET03 DEDBUJ IDENEM ZEZHAP ZEZHET ZEZHIX ZEZGUI ZEZHOD ZEZGIW ZEZGOC RENPUV ZEBJOH measurement or preparation conditions 10-30 ℃,
1 atm
10-30 ℃,
1 atm
10-30 ℃,
1 atm
heat saturated HMX acetone solution evaporation at 40 ℃ acetonitrile solution, evaporation at room temperature Ibid. Ibid. Ibid. Ibid. Ibid. Ibid. Ibid. propanol solution,evaporation at 60 ℃ 分子间相互作用是分子形成晶体的前提,并决定了晶体的物理化学性质。不同晶型的HMX是由同种分子通过不同堆积方式形成的,并且分子间相互作用也存在一定差异。HMX共晶也是通过分子间相互作用驱动HMX分子与其它分子在分子层面上得到规则有序的平衡微观晶格。Lenchitz
等[27] 对DMF和HMX的缔合物进行了热化学研究,通过测定缔合物HMX/DMF的解离热判定HMX/DMF间的结合力是范德华力。量子化学和科学计算机的发展,为研究晶体提供了有效手段,例如,密度泛函理论(DFT)已被广泛应用于含能晶体结构与性能的研究中。态密度是晶体能带结构的表征,它能反映晶体中导带和价带的组成以及电子在各能带中的分布情况。区域态密度又可将态密度分别归属到每个原子的贡献,直接投影到相应的原子轨道上。因此,态密度分析是研究晶体中分子间相互作用力的重要手段。例如,Lin
等[29,30,31,33] 用单晶X射线衍射与DFT研究了HMX共晶炸药的凝聚态结构,分析了共晶的态密度,结果表明HMX分子亚甲基上的H比较活泼,容易与吸电子基团形成氢键;同时HMX的硝基也易于其他基团产生偶极‑偶极作用,并且作者认为亚甲基氢键作用的强度要大于硝基的偶极‑偶极作用。在炸药晶体中,分子堆积方式是决定晶体结构与性能的重要因素。图3是不同晶型HMX和HMX共晶的堆积结构图。根据文献[41]中低感含能材料晶体堆积方式的定义,图3中α‑HMX的堆积方式属于层层堆积结构,β‑HMX属于波浪状堆积结构;而δ‑HMX与前二者不同,其中含有规则空腔结构,这可能也是δ‑HMX易形成热点和感度更高的原因之一。多晶型HMX晶体结构堆积中,波浪状β‑HMX为最稳定的晶型。Liu
等[42] 采用密度泛函理论PBE泛函方法(PBE‑D)计算分析HMX三种晶型的构象能、晶格能和总能量,结果表明β‑HMX是热力学上占优势的晶型,并且主导此优势的是分子构象能。多晶型含能分子的差异体现在晶体堆积和分子构象,在热动力学上其分别对应是晶格能(LE)和构象能(MCE),这两者能量的总和则是晶体的总能量(TE)。三种晶型HMX的相对晶格能(RLE)、相对分子构象能(RMCE)和相对总能量(RTE)如表6所示[42] 。由表6可知,β‑HMX的相对总能量(RTE)最低,在热力学上占优。其中,三种晶型的LE相差不大,但三种晶型中,β‑HMX的RMCE最小,导致RTE最小。polymorphs RMCE / kJ·mo l-1 RLE / kJ·mo l-1 RTE / kJ·mo l-1 α‑HMX 10.7 0.0 10.7 β‑HMX 0.1 6.0 6.1 δ‑HMX 10.3 8.1 18.4 NOTE: RMCE is relative molecular configuration energy; RLE is relative lattice energy; RTE is relative total energy.
Landenberger
等[34] 将HMX共晶炸药的结构分为三类,即Chair‑chair/layered、Chair‑chair/pocket和Chair/layered。但事实上,Landenberger定义中的Chair‑chair是我们常说的船式构象。为了避免歧义,在此将HMX的共晶炸药的堆积方式简化为为两种:(1)夹层堆积,如图3中的HMX/DAT、HMX/FA、HMX/T2、HMX/PDCA、HMX/PNox、HMX/DMI和HMX/CL‑20;(2)口袋结构,如HMX/Py。其实早在1969年,就有相关研究者用X‑射线衍射及红外光谱研究了多种HMX的缔和物,认为这些缔和物形成了夹层结构。层状结构中,HMX分子层与缔和物分子层交替分布,其中HMX/CL‑20的夹层结构为1层HMX与2层CL‑20交替分布。口袋结构的HMX/Py晶体,HMX分子与配体Py分子混合分布在每一层,且每一层中,3个Py分子由6个Boat‑boat构象的HMX分子包围。3.2 晶体安定性
热安定性对炸药的制造、储存和使用具有重要意义,是评定炸药能否正常使用的重要性能之一。HMX是一种高能耐热炸药,热安定性高于其类似物黑索今(RDX),真空安定性则与梯恩梯(TNT)接近。炸药的热安定性是炸药不同形式感度的综合体现,热安定性好,感度可能就低。在HMX的4种晶型中,β‑HMX的感度最低,相对安全性最
高[43] 。Zhu等[44] 用DFT方法,在研究一系列高能晶体和电子结构的基础上,提出用晶体带隙值作为感度的理论判据。例如,HMX四种晶型的带隙值分别为3.62(β‑HMX),3.38(γ‑HMX),2.42(α‑HMX),0.021(δ‑HMX),与稳定性递减(感度递增)顺序β>γ>α>δ一致。当HMX与其它惰性分子结合形成共晶炸药时,感度会减小。表7是HMX与一些共晶炸药的撞击感度值。其中HMX与非含能分子(溶剂分子)所形成的共晶炸药的撞击感度要明显小于HMX。但是在加热过程中,这些炸药中的溶剂分子一旦脱离HMX分子,感度则会升高,这是因为HMX‑溶剂化合物转变为HMX。HMX分子与含能分子组成的共晶可兼具组分分子的优点,例如HMX/CL‑2
0[37] ,该共晶炸药的感度与HMX相比没有明显差异,但是能量比HMX高,有用作主炸药的潜力。表7 HMX与一些共晶炸药的撞击感度值
Table 7 Impact sensitivity of HMX polymorphs and HMX‑based cocrystals
sample height of 2.5 kg drop hammer 50% explosion / c m[2] sample H50 / c m[34] sandpaper no sandpaper β‑HMX 27 37 β‑HMX 47 δ‑HMX - - δ‑HMX 27 HMX/DMF 136 127 HMX/T2 >145 HMX/DMA 137 371 HMX/PNox >145 HMX/BL 208 309 HMX/T2
after phaseseparation
27 HMX/NMP 311 320 cm 22 times in 3 explosions HMX/PNox
after phaseseparation
27 HMX/CP 264 no explosion under 320 cm HMX/CL‑20 5 5[37] NOTE: DMA is N,N‑dimethylacetamide. BL is γ‑lactone. NMP is N‑methyl‑2‑pyrrolidone. CP is cyclopentanone. H50 is 50% explosion of explosive specimens in impact sensitivity test.
关于固相HMX初始热分解机制的研究,主要是基于气相HMX热分解机制的讨论,包括N—N
O2 的断裂、HNO2 的释放、NONO的异构化和C—N键的断裂等,其中在晶体模拟研究中未见环均裂主导HMX分解的相关报道。影响固相HMX热分解的因素很多,就晶体自身而言,晶型的不同与晶体的完美程度都会影响其热分解。因此,仅研究完美固相HMX的初始热分解机理是不够的,要针对具体问题建立代表这一问题的模型,同时根据实际条件以制定相应的模拟条件,如高温、冲击波和高压下的分解等。固相HMX热分解研究非常丰富。Onise Sharia
等[16,20,21,22,45,46] 曾对HMX晶型进行了系统研究,通过密度泛函理论PBE泛函方法(DFT‑PBE)计算得到了不同HMX晶体(完美晶体以及带有表面等缺陷的晶体)主要初始分解路径(N—NO2 的均裂、HNO2 的释放及NONO的异构化)的动力学数据,研究结果表明:(1)N—NO2 均裂为HMX晶体断裂的主要方式;(2)从计算角度证明了理论—表面等缺陷可以诱导加速材料分解—的正确性;(3)高感δ‑HMX比低感β‑HMX分解快。不过,需要指出的是,他们的研究没有提及环C—N键断裂机制的可能性。此外,Zhou等[47] 通过ReaxFF反应力场模拟了不同缺陷程度的β‑HMX超胞在不同温度条件下的热分解过程,其研究结果显示:温度和缺陷都可加快HMX的降解。在该研究中,作者分析了含有缺陷HMX晶体的分解,并充分考虑了三种初始分解机理(N—NO2 的均裂、HNO2 的释放及环的裂解),结果显示以N—NO2 的断裂为主,并且作者认为在相对低温时,环的断裂机制存在于含缺陷的晶体分解中,而在完美晶体中并未出现。作者通过去掉完美晶体中的一些分子来模拟带有空位缺陷的晶体,这些缺陷作为热点加快了固相HMX的分解。此外,相对于完美晶体,这些缺陷实质上导致了晶体密度的降低,这就是表观密度下降感度升高的本质原因之一。冲击波也是模拟HMX分解要考虑的一种情况。Ge
等[48,49] 用自洽‑紧束缚近似方法(SCC‑DFTB)研究了不同冲击波条件下β‑HMX的分解过程,发现在低冲击波速度8km·s‑1 时,N—NO2 的均裂在初始分解中占主导地位;而在高冲击波速度条件下(10 km·s-1 和11 km·s-1 ),环C—H键的断裂在其早期热分解中占主要地位。Wen等[50] 通过ReaxFF力场结合MSST方法,模拟了完美HMX晶体和存在孪晶的HMX晶体在不同冲击波条件下的热分解。通过比较这两种晶体在分解过程中的分解速率、产生的压力和放热量,作者认为,相对于完美晶体而言,孪晶会加快HMX的分解,提高其冲击波感度。此外,在该研究中无论是完美晶体还是孪晶,N—NO2 的断裂都为主要分解机制。He等[51] 采用自洽‑紧束缚近似方法(SCC‑DFTB)与MSST相结合的方法模拟了β‑HMX(100)表面和含缺陷的晶体在冲击加载下的热分解,结果表明环C—N键断裂方式在β‑HMX的分解中占主导地位。由此可以看出,加载条件与结构不同时,反应的机制也不尽相同。此外,Xue
等[52] 利用LAMMPS软件采用ReaxFF‑lg力场模拟了共晶HMX/CL‑20以及纯ε‑CL‑20和β‑HMX在不同温度条件下的热分解行为,得到了如下结果:(1)HMX/CL‑20共晶炸药的热分解速率比纯CL‑20分解速率大,比纯HMX的热分解速率小,这与实验观察一致。因此共晶炸药起着调节晶体稳定性的作用。(2)热分解时,该共晶炸药中两种分子的分解是独立的,CL‑20分子优先分解,其放出的热可诱导HMX分子的分解。(3)此共晶的形成不会影响炸药的初始分解机理,它们都以N—NO2 的断裂为主。以上固相HMX的热力响应结果均来自于理论模拟,只重点考查了温度、压力与晶体缺陷等变量对HMX分解的影响,但事实上,影响HMX固相分解的因素还有很多,例如填充密度、粒径、冲击方式、环境气氛与杂质组分及含量
等[43,53,54,55,56,57,58] 。4 结论与展望
(1)多晶型HMX中Chair构象的β‑HMX在常条件下最为稳定,感度最低;Boat‑boat构象的δ‑HMX感度最高。关于HMX的众多研究仅限于最稳定构型β‑HMX,而缺乏对其它三种晶型或分子的研究。实际上,α‑、γ‑和δ‑HMX也可能存在很大的实用价值,对其进行深入研究将会加深对多晶型HMX的理解和应用。
(2)HMX可通过共晶改变其晶体结构,从分子水平对物质重新组装从而有效降低其感度,提高安全性。对HMX共晶炸药的研究,目前仅限于少量实验探索和理论预测,晶体数据尚不完善,需要对HMX共晶的相互作用方式和形成机理进行深入研究,为制备更多共晶,拓宽HMX的使用范围提供理论依据。
(3)众多研究表明N—N
O2 断裂机制在HMX的分解中占主导地位。影响HMX热分解的因素很多,不同条件下的热力响应机制表明,HMX晶体材料在高温、高压及存在缺陷时分解速率提高。事实上,HMX的分解机制取决于其具体结构和加载方式。在理论模拟中,HMX的分解机制取决于建模、模拟条件的设置和计算方法,因此建立更为准确的模拟计算方法是今后需要不断努力的方向。(责编:高 毅)
参考文献
- 1
Choi C S, Boutin H P. A study of the crystal structure of β‑cyclotetramethylene tetranitramine by neutron diffraction[J]. Acta Crystallographica, 1970, 26(9): 1235-1240.
- 2
欧育湘. 炸药学[M]. 北京: 北京理工大学出版社, 2006.
OU Yu‑xiang. Frying pharmacy [M]. Beijing: Beijing Institute of Technology Press, 2006.
- 3
Cady H H, Larson A C, Cromer D T. The crystal structure of α‑HMX and a refinement of the structure of β‑HMX[J]. Acta Crystallographica, 1963, 16(7): 617-623.
- 4
Cobbledick R E, Small R W H. The crystal structure of the δ‑form of 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane (δ‑HMX): erratum[J]. Acta Crystallographica, 1975, 31(1): 332.
- 5
Main P, Cobbledick R E, Small R W H. Structure of the fourth form of 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane (γ‑HMX), 2C4H8N8O8∙0.5H2O[J]. Acta Crystallographica, 1985, 41(9): 1351-1354.
- 6
Lewis J P, Sewell T D, Evans R B, et al. Electronic structure calculation of the structures and energies of the three pure polymorphic forms of crystalline HMX[J]. Journal of Physical Chemistry B, 2000, 104(5): 1009-1013.
- 7
Lewis J P, Glaesemann K R, VanOpdorp K, et al. Ab initio calculations of reactive pathways for α‑octahydro‑ 1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine (α‑HMX)[J]. Journal of Physical Chemistry A, 2000, 104(48): 11384-11389.
- 8
Lyman J L, Liau Y C, Brand H V. Thermochemical functions for gas‑phase, 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane (HMX), its condensed phases, and its larger reaction products[J]. Combustion & Flame, 2002, 130(3): 185-203.
- 9
Zhang S W, Nguyen H N, Truong T N. Theoretical study of mechanisms, thermodynamics,and kinetics of the decomposition of gas‑phase α‑HMX (Octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine)[J].Journal of Physical Chemistry B, 2003,107(16): 2981-2989.
- 10
Cobos C J. DFT study of the thermochemistry of gas‑phase 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane (β‑HMX)[J]. Journal of Molecular Structure: theochem, 2005, 714(2-3):147-152.
- 11
Sharia O, Kuklja M M. Ab initio kinetics of gas phase decomposition reactions[J]. Journal of Physical Chemistry A, 2010, 114(48): 12656-12661.
- 12
Manaa M R, Fried L E, Melius C F, et al. Decomposition of HMX at extreme conditions: a molecular dynamics simulation[J].Journal of Physical Chemistry A,2002,106(39): 9024-9029.
- 13
肖继军, 张骥, 杨栋, 等. 环四甲撑四硝胺(HMX)结构和性质的DFT研究[J]. 化学物理学报, 2002, 15(1): 41-45.
XIAO Ji‑jun, ZHANG Wei, YANG Dong, et al. DFT study on the structure and properties of cyclotetramethyltetramine (HMX)[J]. Chinese Journal of Chemical Physics, 2002, 15(1): 41-45.
- 14
肖鹤鸣, 朱卫华, 肖继军, 等. 含能材料感度判别理论研究——从分子, 晶体到复合材料[J]. 含能材料, 2012, 20(5): 514-527.
XIAO He‑ming, ZHU Wei‑hua, Xiao Ji‑jun, et al. Theoretical study on sensitivity of energetic materials——from molecules, crystals to composites[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao)2012, 20(5): 514-527.
- 15
王爱英, 陈树森, 李丽洁, 等. 不同量子化方法计算β‑HMX分子结构的比较[J]. 火炸药学报, 2007, 30(2): 21-25.
WANG Ai‑ying, CHEN Shu‑sen, LI Li‑jie, et al. Comparison of different quantization methods for calculating β‑HMX molecular structure[J]. Chinese Journalof Explosives & Prop, 2007, 30(2): 21-25.
- 16
Chakraborty D, Muller R P, Dasgupta S, et al. Mechanism for unimolecular decomposition of HMX(1,3,5,7‑Tetranitro‑1,3,5,7‑tetrazocine), an ab initio study[J]. Journal of Physical Chemistry A, 2001,105(8):1302-1314.
- 17
Smith G D, Bharadwaj R K. Quantum chemistry based force field for simulations of HMX[J]. Journal of Physical Chemistry B, 1999, 103(18):3570-3575.
- 18
Jr R B, Bulusu S. Thermal decomposition of energetic materials. 2. Deuterium isotope effects and isotopic scrambling in condensed‑phase decomposition of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J].Journal of Physical Chemistry, 1991, 95(15): 5838-5845.
- 19
Shaw R, Walker F E. Estimated kinetics and thermochemistry of some initial unimolecular reaction in the thermal decomposition of 1,3,5,7‑ tetranitro‑1,3,5,7‑tetrazaacyclootane in the gas phase[J]. Journal of Physical Chemistry, 1977, 81(25): 2572-2576.
- 20
Sharia O, Kuklja M M. Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: application to β‑HMX[J]. Journal of Physical Chemistry B, 2011, 115(44): 12677-126886.
- 21
Sharia O, Kuklja M M.Rapid materials degradation induced by surfaces and voids: ab initio modeling of β‑octatetramethylene tetranitramine [J].Journal of Physical ChemistrySociety, 2012, 134(28): 11815-11820.
- 22
ShariaO, Tsyshevsky R, Kuklja M M. Surface‑accelerated decomposition of δ‑HMX[J]. Journal of Physical Chemistry Letters, 2013, 4(5): 730-734.
- 23
Shen J P, Duan X H, Luo Q P, et al. Preparation and characterization of a novel cocrystal explosive[J]. Crystal Growth & Design, 2011, 11(5):1759-1765.
- 24
Levinthal M L. Propellant made with cocrystals of cyclotetramethylenetetranitramine and ammonium perchlorate: US, US4086110[P]. 1978, 4, 25.
- 25
徐文英, 熊静安, 静宝元. 过氯酸铵(AP)与奥克托今(HMX)共晶物性能研究[J]. 推进技术, 1986, 7(5): 62-67.
XU Wen‑ying, XIONG Jin‑an, JING Bao‑yuan. Study on the properties of ammonium perchlorate (AP) and octato (HMX) eutectic[J]. Journal of Propulsion Technology, 1986, 7(5): 62-67.
- 26
Haller T M, Rheingold A L, Brill T B. The structure of the complex between octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine (HMX) and N, N‑dimethylformamide (DMF) [J]. Acta Crystallographica, 2010, 39(11): 1559-1563.
- 27
Lenchitz C, Velicky R. A thermochemical investigation of the complex formed by cyclotetramethylenetetranitramine(HMX) and dimethylformamide(DMF)[R]. 435690: 1964.
- 28
Haller T M, Rheingold A L, Brill T B. Structure of the 1/1 complex between octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine (HMX), C4H8N8O8, and N‑methyl‑2‑pyrrolidinone (NMP), C5H9NO[J]. Acta Crystallographica, 1985, 41(6):963-965.
- 29
Lin H, Zhu S G, Zhang L, et al. Synthesis and first principles investigation of HMX/NMP cocrystal explosive[J]. Journal of Energetic Materials, 2013, 31(4): 261-272.
- 30
Lin H, Zhu S G, Li H Z, et al. Structure and detonation performance of a novel HMX/LLM‑105 cocrystal explosive[J]. Journal of Physical Organic Chemistry, 2013, 26(11): 898-907.
- 31
Li H, An C, Guo W, et al. Preparation and performance of nano HMX/TNT co‑crystals[J]. Propellants Explosives Pyrotechnics, 2015, 40(5): 652-658.
- 32
Li Y X, Chen S S, Ren F D. Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies[J]. Journal of Molecular Modeling, 2015, 21(9): 245-257.
- 33
Lin H, Zhu S G, Li H Z, et al. Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive[J]. Journal of Molecular Structure, 2013, 1048(11): 339-348.
- 34
Landenberger K B, Matzger A J. Cocrystals of 1,3,5,7‑tetranitro‑1,3,5,7‑tetrazacyclooctane (HMX)[J]. Crystal Growth & Design, 2012, 12(12): 3603-3609.
- 35
Levakova I V, Korobko A P, Krasheninnikov S V, et al. Crystal and molecular structure of a complex between 1,3,5,7‑tetranitro‑1,3,5,7‑tetraa zacyclooctane and 2,4‑dinitro‑2,4‑diazapentane[J]. Kristallografiya, 1996,41(6): 963-965.
- 36
Bolton O, Simke L R, Pagoria P F, et al. High power explosive with good sensitivity: a 2:1 cocrystal of CL‑20/HMX[J]. Crystal Growth & Design, 2012, 12(9): 4311-4314.
- 37
Gao B, Wang D, Zhang J, et al. Facile, continuous and large‑scale synthesis of CL‑20/HMX nano co‑crystals with high‑performance by ultrasonic spray‑assisted electrostatic adsorption method[J]. Journal of Materials Chemistry A, 2014, 2(47): 19969-19974.
- 38
Liu Z, Wu Q, Zhu W, et al. Insights into the roles of two constituents CL‑20 and HMX in the CL‑20:HMX cocrystal at high pressure: A DFT‑D study[J]. Rsc Advances, 2015, 5(43):34216-34225.
- 39
Qiu H, Patel R B, Damavarapu R S, et al. Nanoscale 2CL‑20·HMX high explosive cocrystal synthesized by bead milling[J]. Crystengcomm, 2015, 17(22): 4080-4083.
- 40
Sun S, Zhang H, Liu Y, et al. Transitions from separately crystalized CL‑20 and HMX to CL‑20/HMX cocrystal based on solvent media[J]. Crystal Growth & Design, 2018, 18: 77-84.
- 41
Ma Y, Zhang A, Zhang C, et al. Crystal packing of low‑sensitivity high‑energy explosives[J]. Crystal Growth & Design, 2014, 14(9): 6101-6114.
- 42
Liu G R, Gou R J, Li H Z, et al. Polymorphism of energetic materials: a comprehensive study of m olecular conformers, crystal packing and the dominance of their energetics ingoverning the most stable polymorph[J]. Crystal Growth & Design, 2018, 18(7): 4174-4186.
- 43
舒远杰,霍冀川. 炸药学概论[M].北京:化学工业出版社, 2011.
SHU Yuan‑jie, HUO Ji‑chuan. Introduction to fried medicine [M]. Beijing: Chemical Industry Press, 2011.
- 44
Zhu W, Xiao J, Ji G, et al. First‑principles study of the four polymorphs of crystalline octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑ tetrazocine[J]. Journal of Physical Chemistry B, 2007, 111(44): 12715-12722.
- 45
Kuklja M M, Tsyshevsky R V, Sharia O. Effect of polar surfaces on decomposition of molecular materials[J]. Journal of the American Chemical Society, 2014, 136(38):13289-13302.
- 46
Sharia O, Kuklja M M. Surface‑enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylenetetranitramine[J]. Journal of Physical Chemistry C, 2012, 116(20): 11077-11081.
- 47
Zhou T T, Huang F L. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2011, 115(2): 278-287.
- 48
Ge N N, Wei Y K, Ji G F, et al. Initial Decomposition of the Condensed‑Phase β‑HMX under Shock Waves: Molecular Dynamics Simulations[J]. Journal of Physical Chemistry B, 2012, 116(46): 13696-13704.
- 49
Ge N N, Wei Y K, Song Z F, et al. Anisotropic responses and initial decomposition of condensed‑phase β‑HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique[J]. Journal of Physical Chemistry B, 2014, 118(29): 8691-8699.
- 50
Wen Y, Xue X, Zhou X, et al. Twin induced sensitivity enhancement of HMX versus shock: a molecular reactive force field simulation[J]. Journal of Physical Chemistry C, 2013, 117(46): 24368-24374.
- 51
He Z H, Chen J, Ji G F, et al.Dynamic responses and initial decomposition under shock loading: a dftb calculation combined with msst method forβ‑HMX with molecular vacancy[J].Journal of Physical Chemistry B,2015,119(33):10673-10681.
- 52
Xue X, Ma Y, Zeng Q, et al. Initial decay mechanism of the heated CL‑20/HMX cocrystal: a case of the cocrystal mediating the thermal stability of the two pure components[J]. Journal of Physical Chemistry C, 2017, 121(9): 4899-4908.
- 53
徐容, 李洪珍, 康彬, 等. HMX晶体内部孔隙率、缺陷类型及颗粒度对冲击波感度的影响[J]. 含能材料, 2011, 19(6): 632-636.
XU Rong, LI Hong‑zhen, KANG Bin, et al. Effect of internal porosity, defect type and particle size of HMX crystal on shock wave sensitivity[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao)2011, 19(6): 632-636.
- 54
Peng Q, Rahul, Wang G, et al. Predicting elastic properties of β‑HMX from first‑principles calculations[J]. Journal of Physical Chemistry B, 2015, 119(18): 5896-5903.
- 55
Long Y, Chen J. A systematic study of the reaction kinetics for HMX[J]. Journal of Physical Chemistry A, 2015, 119(18):4073-4082.
- 56
Cui H L, Ji G F, Chen X R, et al. First‑principles study of high‑pressure behavior of solid β‑HMX[J]. Journal of Physical Chemistry A, 2010, 114(2):1082-1092.
- 57
Glascoe E A, Zaug J M, Burnham A K. Pressure‑dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa[J]. Journal of Physical Chemistry A, 2009, 113(48):13548-13555.
- 58
Zhang C Y,Li Y Z,Xiong Y, et al. Acid and alkali effects on the decomposition of hmx molecule: acomputational study[J]. Journal of Physical Chemistry A, 2011, 115(43): 11971-11978.
- 1
摘要
奥克托今(HMX)是目前使用最广泛的含能材料之一。本文综述了HMX的两种分子构象结构、电子结构性质、分子热稳定性以及HMX基晶体的堆积结构和热稳定性的研究进展。从分子角度、晶体堆积结构分析了HMX分子构象稳定性和HMX基晶体热稳定差异的本质,比较了不同分解机理的动力学和热力学数据。认为探索HMX不同晶型转化机理和热力学性质,制备新型HMX共晶并深入理解其形成机制,以及建立更准确的模拟计算方法是未来的研究重点。
Abstract
Octogen(HMX) is one of the most widely used energetic materials. Research progress in the two molecular conformation structures, electronic structure properties and molecular thermal stability of HMX and the stacking structure and thermal stability of HMX‑based crystals were reviewed. The essential difference between the conformational stability of HMX and the thermal stability of HMX‑based crystals were analyzed from the molecular angle and crystal packing structure. The kinetic and thermodynamic data of different decomposition mechanisms were compared. It is considered that the future research should focus on exploring the transformation mechanism and thermodynamic properties of each crystal form of HMX, preparing new HMX cocrystals and understanding the formation mechanism,and establishing more accurate simulation calculation method for HMX.