-
1 引 言
纳米CuO(nano‑CuO)具有无毒无害,价格低廉,热稳定性和化学稳定性优异的特
点[1,2] ,可显著降低高氯酸铵(AP)热分解放热峰温度和活化能,增加AP表观分解热和反应速率常数[3] ,是一种常用的AP热分解催化剂[4] 。目前,人们已经制备出了具有不同形貌的纳米CuO,其催化效果具有较大的差异[5,6,7,8,9,10] ,但都具有一个共同的问题,即纳米CuO容易团聚,导致有效活性位点减少,催化活性降低[11] 。石墨烯(G)具有较大的比表面积(2630m2 ·g-1 )[12] ,采用石墨烯负载纳米CuO时,可以有效改善CuO的分散性[11,13] 。但石墨烯片层间具有π‑π堆积和范德华力等作用,使得片层之间相互吸引,本身易于团聚[14,15] 。多孔石墨烯(PG)的多孔性进一步提高了比表面积,增大了表面功能化密度和表面活性位点[16] 。此外,PG本身具有催化性能,其光学性能有利于辐射传热[17] ,可以促进燃烧中间过程的反应[18] ,且与石墨烯相比,分散性较好。本研究以多孔石墨烯为载体,采用络合沉淀法制备了CuO形貌不同的CuO/PG纳米复合材料,采用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)、能谱仪(EDS)和比表面积测定法(BET)对其进行了表征,并研究了其对复合固体推进剂中常用的氧化剂AP热分解的影响。 -
2 实验部分
-
2.1 试剂与仪器
PG, 采用碳热还原
法[19,20,21,22] 制得,孔径约10 nm,比表面积232.6m2 ·g-1 ;硝酸铜(Cu(NO3 )2 ·6H2 O)、冰醋酸(CH3 COOH)、氢氧化钠(NaOH)、无水乙醇(EtOH),分析纯,北京化工厂;AP,工业品,大连北方氯酸钾有限公司。 -
2.2 CuO/PG纳米复合材料的制备
将100 g PG加入到500 mL 0.02 mol·
L-1 的硝酸铜溶液中,超声分散使PG与溶液混合均匀。将混合溶液加热到一定温度,剧烈地搅拌,加入氢氧化钠,使溶液pH值为6~7,保持10 min; 再升温至130 ℃,保持10 min后结束反应,静置、离心、过滤、60 ℃真空干燥24 h,所得固体物质即为CuO/PG纳米复合材料。CuO形貌不同的CuO/PG纳米复合材料的制备条件见表1。不同形貌的纳米CuO的制备采用同样的方法和条件,但不加入PG。表1 CuO形貌不同的CuO/PG纳米复合材料的制备条件
Table 1 Preparation conditions of CuO/PG nanocomposites with different CuO morphologies
No. samples volume of C H3 COOH / mLheating temperature / ℃ 1# CuO/PG nanocomposites with flaky CuO 1 60 2# CuO/PG nanocomposites with linear CuO 0 60 3# CuO/PG nanocomposites with rod CuO 0 100 4# CuO/PG nanocomposites with spherical CuO 1 130 -
2.3 CuO/PG/AP纳米复合材料的制备
取一定量的AP于研钵中,加入少量无水乙醇后充分研磨,之后加入CuO/PG纳米复合材料(CuO/PG纳米复合材料与AP的质量比为2∶98),继续研磨。待CuO/PG纳米复合材料和AP混合均匀后,60 ℃真空干燥24 h,即得到CuO/PG/AP纳米复合粒子。
-
2.4 测试表征
TEM测试采用日本JEOL公司的JEM‑2100型透射电子显微镜,加速电压200 kV。
高分辨率透射电镜(HRTEM)测试采用美国FEI公司的Tecnai
G2 F30场发射透射电子显微镜,加速电压300 kV。SEM测试采用日本HITACHI公司的S‑4800型场发射扫描电子显微镜,加速电压为2~15 kV。
EDS能谱采用上述场发射扫描电子显微镜配带的EDS能谱仪,采用Si(Li)探测器。
XRD测试采用荷兰PANalyrical公司的X′Pert Pro MPD型X射线衍射仪,X射线的衍射源为Cu
Kα 靶,波长λ=0.15406 nm,测试电压为40 kV,测试电流为40 mA,步长度为0.01°(2θ),扫描速度为0.01°/s,扫描范围为5°~80°(2θ)。BET测试采用美国Micromeritics公司ASAP2020型比表面分析仪,脱气温度100 ℃,脱气时间10 h,在液氮温度-196 ℃下测量样品的
N2 吸脱附等温曲线,利用Brunauer‑Emmerr‑Teller(BET)方法计算比表面积。DSC测试采用METTLER TOLEDO TGA/DSC 同步热分析仪,分析温度范围30~900 ℃,升温速度20 ℃·mi
n-1 ,氮气流量40 mL·min-1 ,氧化铝陶瓷,氧化铝陶瓷坩埚,带盖。 -
3 结果与讨论
-
3.1 CuO形貌不同的CuO/PG纳米复合材料的表征
-
3.1.1 不同形貌CuO的SEM测试
根据表1的条件,通过控制反应温度及是否添加醋酸制得了片状、线状、棒状和球状四种形貌的纳米CuO,其SEM结果如图1所示。
从图1可以看出,不同条件下制得的纳米CuO的形貌分别为片状、线状、棒状和球状。这主要是因为冰醋酸和温度会影响CuO晶体的不同方向的生长速率。在Cu(N
O3 )2 水溶液中加入NaOH会生成配位八面体Cu(OH)6 4- [23],其中四个OH- 位于同一个正方形平面,另外两个OH- 位于垂直于该平面的轴上。位于轴上的两个OH- 的结合能低于位于平面的OH- 的结合能[24] 。因此,当温度较低时,轴向的Cu‑OH易于脱水生成CuO微晶,而位于平面的Cu‑OH不易脱水形成CuO微晶,即轴上的CuO的生长速度高于平面的生长速度,而这种生长速率的差异会导致各向异性CuO纳米晶体的形成。故60 ℃时,Cu(OH)6 4-结构的OH- 可通过互连形成氢键,且冰醋酸的引入导致氢键数量增多,CuO的定向生长将由于氢键的形成而被抑制[25] 。此外,氢键间存在复杂的缔合作用,导致线状CuO微晶粗聚集,从而形成片状产物。当温度升高到100 ℃时,越来越多的氢键被破坏。同时,成核和生长速率随着升高温度而变快[26] 。位于Cu(OH)6 4-轴上的OH‑ 快速脱水并产生定向生长以形成纳米棒。当温度升高到130 ℃,氢键基本完全被破坏。失去了氢键的抑制作用,同时平面上CuO的生长速度随着温度的升高也有所加快,所以CuO形貌变成球状。此外,CH3 COOH、CH3 COO− 也可以吸附在CuO生长最快的晶面上,控制CuO的生长方向和速率,进而控制所得CuO的形貌。 -
3.1.2 CuO形貌不同的CuO/PG纳米复合材料的TEM测试
采用表1的条件分别制得了CuO形貌不同四种(
1# ,2# ,3# ,4# )的CuO/PG纳米复合材料,其TEM结果如图2所示,图内为对应的HRTEM结果。由图2可见,片状、棒状纳米CuO均匀分布在PG的表面上,平均粒径分别约99 nm×136 nm和171 nm×307 nm(图2a,图2b);棒状纳米CuO在PG的表面上相互堆积在一起,其平均粒径约12 nm×7 nm(图2c);球状纳米CuO在PG的表面上分散最好,平均粒径为4 nm(图2d)。这证实了通过负载可以解决纳米CuO分散性的问题。同时,球状纳米CuO具有最好的分散性,这是因为球状纳米CuO制备温度最高,在高温环境下,水解产生CuO的过程较快,更多的CuO负载到PG上。所以,PG表面上CuO的生长位点较多,CuO的分散性最好。另外,与纳米CuO相比,CuO/PG纳米复合材料中CuO的粒径变小了,这是因为PG存在下,CuO晶体的生长受PG的空间位阻的影响,从而缩减了CuO颗粒的尺寸。
图2 CuO形貌不同的CuO/PG纳米复合材料的TEM图谱
Fig.2 TEM images of CuO/PG nanocomposites with different CuO morphologies
四种样品的EDS图谱基本一致,其中
1# 样品的EDS图谱如图3所示。从图3e中可以看出,CuO/PG纳米复合材料表面元素主要由C,O,Cu组成,说明PG片层上确实负载了一定量的纳米CuO。并且,从EDS面扫(图3a,图3b,图3c)结果可以看出,纳米CuO均匀地分布在PG表面,没有出现元素聚集现象,进一步证明复合材料能改善CuO的分散性。
-
3.1.3 CuO形貌不同的CuO/PG纳米复合材料的XRD测试
四种CuO/PG纳米复合材料的XRD曲线如图4所示。图4中32.8°、35.59°、38.78°、48.81°、53.52°、58.37°、61.53°、66.31°和68.14°出现的衍射峰分别对应单斜晶纳米CuO(1 1 0)、(0 0 2)、(2 0 0)、(2 0 -2)、(0 2 0)、(2 0 2)、(1 1 -3)、(3 1 -1)以及(2 2 0)晶面。没有观察到其他的杂峰,表明复合材料中纳米CuO的纯度较高。另一方面,
1# 样品在26.11°附近出现的宽峰对应于PG的(002)晶面,同样2# 、3# 和4# 样品也有相同的特征峰,这证明成功制备了CuO形貌不同的CuO/PG纳米复合材料。由Scherrer公式[30] 可以估算出,3# 和4# 样品中纳米CuO晶粒的尺寸分别为10.7 nm(棒状)和6.03 nm(球状)。由于通过XRD计算得到的是CuO晶粒的尺寸,而不是CuO晶体的尺寸,因此XRD计算结果会与TEM存在一定的差异。 -
3.1.4 CuO形貌不同的CuO/PG纳米复合材料的BET测试
不同形貌的纳米CuO和四种CuO/PG纳米复合材料的
N2 吸脱附曲线如图5所示,四种CuO/PG纳米复合材料的孔径分布曲线如图6所示。根据图5a和图5b分别计算得到不同形貌的纳米CuO和四种CuO/PG纳米复合材料的比表面积,见表2。从图5b中可以看出,CuO/PG纳米复合材料的吸脱附等温线属于典型的Ⅳ型吸脱附等温线。随着相对压力的增加,吸附量也迅速增加,并且具有H3特征滞后
环[31] 。根据图6,CuO/PG纳米复合材料的孔径分布在2~50 nm,这说明CuO/PG纳米复合材料是一种介孔材料。根据表2可知,与纳米CuO的比表面积相比,CuO/PG纳米复合材料的比表面积明显增大。 -
3.2 CuO形貌不同的CuO/PG纳米复合材料对AP热分解的催化作用
-
3.2.1 四种CuO/PG纳米复合材料对AP的热分解性能的影响
不同形貌的纳米CuO与AP共混物及四种CuO/PG纳米复合材料与AP共混物的DSC曲线如图7所示。
表2 不同形貌的纳米CuO和四种CuO/PG纳米复合材料的比表面积
Table 2 Specific surface areas of nano‑CuO and CuO/PG nanocomposites with different CuO morphologies
samples specific surface area / m2 ·g-1 flaky nano‑CuO 44.00 linear nano‑CuO 66.88 rod nano‑CuO 71.84 spherical nano‑CuO 97.21 1# 81.39 2# 89.25 3# 103.73 4# 115.25 对比图7a和图7b可以看出,对相同形貌的纳米CuO和CuO/PG纳米复合材料,CuO/PG纳米复合材料使AP的高温分解放热峰温度下降较多,对AP热分解催化的效果较好。由图7b中可以看出,AP和CuO/PG/AP纳米复合材料在244 ℃均出现了一个吸收峰,这是由于AP由单斜晶体向立方晶体的转换引起
的[27] ,表明这四种CuO/PG纳米复合材料对AP的晶型转变过程几乎没有影响。AP会发生低温(317.9 ℃)和高温(424.4 ℃)分解[27] ,但四种CuO/PG纳米复合材料与AP的混合物均只出现了一个分解峰,这说明四种CuO/PG纳米复合材料对AP分解都有一定的促进作用,使AP的高温分解和低温分解同时进行,集中放热。从图7b中可以看出,4# 使AP的高温分解放热峰温度下降到310.1 ℃,下降最多,即4# 对AP热分解的催化效果最好。这主要由于4# 中CuO粒径最小,可以在PG上更加均匀的分布,且比表面积最大,所以催化效果最好。 -
3.2.2 CuO/PG纳米复合材料催化AP热分解的机理分析
图7 不同形貌的纳米CuO与AP及四种CuO/PG纳米复合材料与AP混合物的DSC曲线
Fig.7 DSC curves of mixture of nano‑CuO and AP,and mixture of CuO/PG nanocomposites and AP with different CuO morphologies
根据图7,CuO/PG纳米复合材料对AP热分解具有较好的催化效果。因为决定AP分解快慢的因素是Cl
O4 -与NH4 +之间的电子转移[28] 。在催化AP热分解的过程中,过渡金属氧化物会对电子转移起到加速的作用。金属离子带正电,会促进ClO4 -将电子释放出来,然后逐渐向NH4 +中转移。同时,因为PG的导电性能非常优异,使得CuO/PG纳米复合材料的导电能力进一步加强,电子转移速率也会变得更快。另一方面,催化剂的比表面积会在很大程度上影响着其催化性能。在对AP的热分解进行催化时,较大的比表面积更大,会产生更多的活性位
点[29] ,AP分解过程中产生的大量气体产物就会更容易被吸附,使得其气体的浓度变得更大,促进气体之间的化学反应,进而促进AP的热分解。PG具有多孔性,其比表面积较大,催化活性位点较多;同时PG具有较好的导热能力,使得AP热分解过程的热量传递变得更好,对AP 热分解过程起到更好的促进作用。故分析CuO/PG纳米复合材料催化AP热分解的原理如图8。 -
4 结 论
采用络合沉淀法制备了CuO形貌不同的CuO/PG纳米复合材料并对其进行了表征,研究了其对AP热分解性能的影响,得到了以下结论:
(1)
1# 、2# 、3# 和4# 四种CuO/PG纳米复合材料中对应的片状、线状、棒状、球状纳米CuO平均粒径分别约为99 nm×136 nm、171 nm×307 nm、12 nm×7 nm和4 nm。(2)与纳米CuO相比,CuO形貌相同的CuO/PG纳米复合材料比表面积较大。
1# 、2# 、3# 、4# 四种CuO/PG纳米复合材料的比表面积分别为81.39m2 ·g-1 、89.25m2 ·g-1 、103.73m2 ·g-1 和115.25m2 ·g-1 。(3)CuO形貌不同的CuO/PG纳米复合材料均对AP热分解有明显的催化效果,其中
4# 对AP热分解催化效果最好,使AP的高温分解放热峰温度下降至310.1 ℃。《含能材料》“观点”征稿
为了丰富学术交流形式,及时传递含能材料领域同行们的学术观点和思想,《含能材料》开设了“观点”栏目。“观点”栏目的来稿应观点鲜明、内容新颖、形式上短小精悍。欢迎含能材料各领域的专家积极来稿。来稿时请附个人简介及主要研究工作介绍。
《含能材料》编辑部
-
参考文献
-
1
Christy A J, Nehru L C, Umadevi M. A novel combustion method to prepare CuO nanorods and its antimicrobial and photocatalytic activities[J]. Powder Technology, 2013, 235(2): 783-786.
-
2
Derekaya F B, Kutar C, Güldür Çiğdem. Selective CO oxidation over ceria supported CuO catalysts[J]. Materials Chemistry & Physics, 2009, 115(2): 496-501.
-
3
郝嘎子,刘杰,高寒,等.纳米CuO的制备及其对AO热分解的催化作用[J]. 火炸药学报, 2015, 38(4): 18‑21, 26.
HAO Ga‑zi, LIU Jie, GAO Han, et al. Preparation of nano‑sized CuO and its catalytic effect on the thermal decomposition of AP[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 18-21, 26.
-
4
刘磊力,李凤生,杨毅,et al.纳米铜粉对高氯酸铵热分解的影响[J]. 无机化学学报. 2005, 21(10): 1525-1530.
LIU Lei‑li,LI Feng‑sheng,YANG Yi, et al. Effect of nanometer Cu powder on thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(10): 1525-1530.
-
5
Xie G.The study of morphology control and catalytic performance of nano/micro oxides and sulfides[D]. Northwestern University, 2006.
-
6
罗元香,陆路德,李孝恒,等.纳米CuO的制备及其对NH4ClO4热分解的催化性能[J]. 无机化学学报, 2002, 18(12): 1211‑1214.
LUO Yuan‑xiang, LU Lu‑de, Li Xiaoheng, et al. Synthesis of nanocrystalline CuO and its catalytic activity on the thermal decomposition of NH4ClO4[J]. Chinese Journal of Inorganic Chemistry, 2002, 18(12): 1211-1214.
-
7
闫波,王新,邵纯红,等.纳米氧化铜的制备及常温脱硫效能研究[J]. 无极化学学报, 2007, 23(11): 1869-1874.
YAN Bo, WANG Xin, SHAO Chun‑hong, et al. CuO Nanoparticles:Preparation and desulfurization performance at normal temperature[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11):1869-1874.
-
8
Zhang W, Ding S, Yang Z, et al. Growth of novel nanostructured copper oxide(CuO) films on copper foil[J]. Journal of Crystal Growth, 2006, 291(2): 479-484.
-
9
Ahmadi S J, Sadjadi S, Hosseinpour M, et al. Granulated copper oxide nano‑catalyst: a novel and efficient catalyst for C—N cross‑coupling of amines with iodobenzene[J]. Monatshefte für Chemie‑Chemical Monthly, 2011, 42(8):801-806.
-
10
El‑Nahhal I M, Zourab S M, Kodeh F S, et al. Nanostructured copper oxide‑cotton fibers: synthesis, characterization, and applications[J]. International Nano Letters, 2012, 2(1): 1-5.
-
11
Fertassi M A, Alali K T, Liu Q.Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate[J]. Rsc Advances, 2016, 6(78): 74155-74161.
-
12
Chae H K, Siberio‑Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
-
13
Chen X C, Wei W, Lv W, et al. A graphene‑based nanostructure with expanded ion transport channels for high rate Li‑ion batteries[J]. Chemical Communications, 2012, 48(47): 5904-5906.
-
14
Ding X, Huang Z, Shen W, et al .Preparation and electrochemical performance of a CuO/graphene composite[J]. New Carbon Materials, 2013, 63 (3): 593-593.
-
15
Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
-
16
McAllister M J, Li J, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18): 4396-4404.
-
17
Bakare P P, Date S K, Khollam Y B, et al. Mössbauer effect studies on the formation of iron oxide phases synthesized via microwave‑hydrothermal route[J]. Hyperfine Interactions, 2006, 168(1‑3): 1127-1132.
-
18
Fowler J D, Allen M J, Tung V C. Practical chemical sensors from chemically derived graphene[J]. Acs Nano, 2009, 3(2): 301-306.
-
19
Yan J, Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene‑MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833.
-
20
Wu Y, Liu S, Zhao K. Synthesis of δ‑MnO2 film on FTO glass with high electrochemical performance[J]. Ionics, 2015, 22(5): 1-11.
-
21
Palaniselvam T, Aiyappa H B, Kurungot S. An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites[J]. Journal of Materials Chemistry, 2012, 22(45): 23799-23805.
-
22
Zhou D, Cui Y, Xiao P W, et al. A general and scalable synthesis approach to porous graphene[J]. Nature Communications, 2014(5): 4716-4724.
-
23
Zhang X, Xie Y, Xu F, et al. Shape‑controlled synthesis of submicro‑sized cuprous oxide octahedral[J]. Inorganic Chemistry Communications, 2003, 6(11):1390-1392.
-
24
Guo H L, Xie J L, Zhang S, et al. Influence of nucleating agent on the formation of C4A3S[J]. Journal of Wuhan University of Technology, 2012, 27(1):177-180.
-
25
Zhao T, Sun R, Yu S, et al. Size‑controlled preparation of silver nanoparticles by a modified polyol method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1‑3): 197-202.
-
26
Zhu J, Bi H, Wang Y, et al. CuO nanocrystals with controllable shapes grown from solution without any surfactants[J]. Materials Chemistry & Physics, 2008, 109(1): 34-38.
-
27
Vargeese A A, Muralidharan K. Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate[J]. Applied Catalysis A General, 2012, 447-448(24): 171-177.
-
28
Li N, Cao M, Wu Q, et al. A facile one‑step method to produce Ni/graphene nanocomposites and their application to the thermal decomposition of ammonium perchlorate[J]. Crystengcomm, 2011, 14(2): 428-434.
-
29
Zeng L, Zhu J. The Effects of preparation methods on the crystal phase and specific surface area of VPO catalysts[J]. Journal of Molecular Catalysis, 2003, 17(5): 367-370.
-
30
Ramakrishna A, Murali N, Margarette S J, et al. Studies on structural, magnetic, and DC electrical resistivity properties of Co0.5M0.37Cu0.13Fe2O4(M=Ni, Zn and Mg) ferrite nanoparticle systems[J]. Advanced Powder Technology, 2018, 29: 2601-2607.
-
31
陈彦,张济宇.NaCO3催化剂对福建高变质无烟煤比表面及气化反应特性的影响[J]. 化工学报, 2011, 62(10): 768-2775.
CHEN Yan, ZHANG Ji‑yu. Effects of catalyst loading of NaCO3 on specific surface area and gasification characteristics of Fujina high‑metamorphous anthracite[J]. CIESC Journal, 2011, 62(10): 2768-2775.
-
1
摘要
为改善纳米CuO的催化效果,以多孔石墨烯(PG)为载体,采用络合沉淀法分别制备CuO形貌为片状、线状、棒状和球状的CuO/PG纳米复合材料,并通过差示扫描量热法(DSC)测试了CuO/PG纳米复合材料对高氯酸铵(AP)热分解的影响,分析了其催化机理。结果表明,与相同形貌的纳米CuO相比,CuO/PG纳米复合材料的比表面积更大,对AP热分解的催化效果更好。在四种CuO/PG纳米复合材料中,球状氧化铜粒径最小,约4 nm,其复合材料的比表面积最大,约115
Abstract
To improve the catalytic effect of nano‑CuO, the CuO/PG nanocomposites of CuO morphology as flakes, lines, rods and spheres were prepared by complex precipitation method using porous graphene (PG) as carrier. The effect of CuO/PG nanocomposites on the thermal decomposition of ammonium perchlorate(AP) was investigated by DSC and its catalytic mechanism was analyzed. Results show that compared with the nano‑CuO with the same morphology, the CuO/PG nanocomposites have larger specific surface area and better catalytic effect on the thermal decomposition of AP. Among four kinds of CuO/PG nanocomposites, the spherical copper oxide has the smallest particle size, about 4 nm and the specific surface area of the composite is the largest, about 115.25