CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KuhlA L,BellJ B,BecknerV E. Turbulent combustion in SDF explosions[C]//JANNAF Conference. SAN DIEGO, CA, United States,2009.
参考文献 2
KuhlA L,ReichenbachH. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute,2009,32(2): 2291-2298.
参考文献 3
KuhlA L,OppenheimA K,FergusonR E. Multi‑fluid model of exothermic fields in explosions[C]//Proceedings of the 12th All‑Union Symposiumon Combustiona and Explosion. Chernogolovka, Moscow Region,Russia, 2000.
参考文献 4
KuhlA L,HowardM,FriedL. Thermodynamic model of afterburning in explosions[C]//34th In ternational ICT Conference,2003.
参考文献 5
KuhlA L,KhasainovB. Quadractic model of thermodynamic states in SDF explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany,2007.
参考文献 6
TogashiF,BaumJ D,MestreauE,et al. Numerical simulation of long‑duration blast wave evolution in confined facilities[J].Shock Waves,2010,20(5): 409-424.
参考文献 7
TogashiF,BaumJ D,SotoO A,et al. Numerical simulation of TNT‑Al explosives in explosion chamber[C]//Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7). Big Island, Hawaii,2012.
参考文献 8
FedinaE,FurebyC. Investigating ground effects on mixing and afterburning during a TNT explosion[J]. Shock Waves,2013,23(3): 251-261.
参考文献 9
FedinaE,FurebyC,HelteA. Predicting mixing and combustion in the afterburn stage of air blasts[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida,2013.
参考文献 10
CaoW,HeZ,ChenW. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method[J]. Shock Waves,2014,24(6): 619-624.
参考文献 11
徐维铮,吴卫国. 泄压口大小对约束空间爆炸准静态超压载荷的影响规律[J]. 高压物理学报,2017,31(5): 619-628.
XUWei‑zheng, WUWei‑guo. Effects of size of venting holes on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of High Pressure Physics,2017, 31(5): 619-628.
参考文献 12
徐维铮,吴卫国. 封闭空间爆炸载荷特性研究[J]. 爆破,2017,34(4): 40-45.
XUWei‑zheng, WUWei‑guo. Investigation on characteristics of blasting loading in closed space[J]. Blasting,2017,34(4): 40-45.
参考文献 13
徐维铮,吴卫国. WENO格式精度对舱室内爆炸载荷影响规律研究[J]. 舰船科学技术,2018,40(1): 9-16.
XUWei‑zheng, WUWei‑guo. The influence of accuracy of WENO schemes on the blast load in confined cabin[J]. Ship Science and Technology, 2018, 40(1): 9-16.
参考文献 14
徐维铮,吴卫国. 装药质量对约束空间内爆炸准静态超压载荷的影响规律研究[J]. 应用力学学报,2018,35(1): 42-46,226.
XUWei‑zheng, WUWei‑guo. Influence of mass of explosives on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of Applied Mechanics, 2018,35(1): 42-46,226.
参考文献 15
徐维铮,吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律研究[J]. 中国舰船研究.2018,(已录用).
XUWei‑zheng, WUWei‑guo. Research on the afterburning effect on blast load in confined space[J]. Chinese Journal of Ship Research. 2018, Accepted.
参考文献 16
徐维铮,吴卫国. 一种约束空间内炸药爆炸温度场数值计算方法及应用[J]. 应用力学学报.2018, (已经录用).
XUWei‑zheng, WUWei‑guo. A numerical calculation method for explosive temperature field in a confined space and its application[J]. Chinese Journal of Applied Mechanics, 2018, Accepted.
参考文献 17
LiuX D,OsherS,ChanT. Weighted essentially non‑oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
参考文献 18
JiangG S,ShuC W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(2): 202-228.
参考文献 19
ShuC W. Essentially non‑oscillatory and weighted essentially non‑oscillatory schemes for hyperbolic conservation laws[J].NASA Langley Research Center,1997: 325-432.
参考文献 20
刘国昭,张树道. 气相爆轰高阶中心差分‑WENO组合格式自适应网格方法[J]. 计算物理, 2008,25(4): 387-395.
LIUGuo‑zhao, ZHANGShu‑dao. High order hybrid central‑WENO AMR method for gaseous detonation[J]. Cinese Journal of Computational Physics, 2008,25(4): 387-395.
参考文献 21
KuhlA L,BellJ B,BecknerV E,et al.Numerical simulations of thermobaric explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany, 2007.
参考文献 22
MillerP J. A Reactive Flow Model with Coupled Reaction Kinetics for Detonation and Combustion in Non‑Ideal Explosives [J]. Mrs Online Proceedings Library Archive,1995,418: 413.
参考文献 23
钟巍,田宙,赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算[J]. 爆炸与冲击, 2015, 35(6): 777-784.
ZHONGWei, TIANZhou, ZHAOYang. Calculation of the quasi‑static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products[J]. Explosion and Shock Waves, 2015,35(6): 777-784.
参考文献 24
EdriI,FeldgunV R,KarinskiY S,et al. Afterburning aspects in an internal TNT explosion[J]. International Journal of Protective Structures, 2013,4(1): 97-116.
参考文献 25
张三慧. 大学物理学.第二册:热学 [M]. 清华大学出版社. 1991: 109-113.
ZHANGSan‑hui. University physics. Book two: thermology[M]. Tsinghua University Press. 1991:109-113.
参考文献 26
SugiyamaY,HomaeT,WakabayashiK,et al. Numerical simulations of blast wave characteristics with a two‑dimensional axisymmetric room model[J]. Shock Waves,2017,27(4): 1-8.
目录 contents

    摘要

    为了研究后燃烧效应对爆炸场参数的影响规律,提出一种考虑后燃烧效应密闭空间内爆炸场数值计算方法,将简化的反应率模型,耦合到三维两组可压缩欧拉方程中近似考虑后燃烧效应。并通过建立气体内能与热容之间的关系求得瞬态温度,根据热力学关系建立绝热指数计算公式。基于FORTRAN平台,采用五阶WENO有限差分格式,自主开发考虑后燃烧效应密闭空间内炸药爆炸场三维数值计算程序。基于所开发的程序数值探讨内爆炸场演化过程及后燃烧效应对爆炸场参数计算的影响。结果表明:(1)准静态温度、绝热指数及超压数值解与考虑后燃烧效应的理论解吻合较好,相对误差小于5%,初步验证了所开发程序的可靠性。(2)后燃烧效应在内爆炸场数值模拟中需要引起足够的重视,同一内爆炸工况下,准静态温度、绝热指数及超压数值解与不考虑后燃烧效应的理论解误差分别高达25%,6%,31%。

    Abstract

    To study the influence rule of afterburning effect on the parameters of explosion field, a numerical calculation method for the explosion field in a closed space considering the afterburning effects was proposed. The simplified reaction rate model was coupled with three‑dimensional two components compressible Euler equations to approximately consider afterburning effects. Transient temperature was obtained by establishing the relationship between gas internal energy and heat capacity. The calculation formula of specific heat ratio was established according to thermodynamic relation. Based on FORTRAN platform, the fifth‑order WENO finite difference scheme was adopted to develop an in‑house 3D numerical calculation program, which can simulate the explosion field in closed space considering afterburning effects. The evolution process of internal explosion field and the influence of afterburning effects on the calculated explosion field parameters were numerically discussed based on the developed program. Results show that (1)the numerical solutions of quasi‑static temperature, specific heat ratio and overpressure are in good agreement with theoretical solutions considering afterburning effects, and the relative error is less than 5%. The reliability of the developed program is preliminarily verified. (2)the afterburning effects should be paid enough attention in numerical simulation of internal explosion field. Under the same internal explosion condition, the relative errors between the numerical solutions of quasi‑static temperature, specific heat ratio and overpressure and theoretical solutions without considering afterburning effects are as high as 25%, 6% and 31%, respectively, This research method can be applied to the numerical calculation of internal explosion of other types of explosives, and provide some reference and guidance for the evaluation of internal explosion damage

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image004.png

  • 1 引 言

    1

    针对内爆炸问题,必须重点关注一个内爆炸现象是:爆炸后燃烧效应。大多数炸药爆轰产物具有负氧性(例如三硝基甲苯(TNT)炸药、温压炸药、SDF(Shock‑Dispersed‑Fuel)混合型炸[1]等),其高温高压爆轰产物在膨胀的过程中会与周围的空气进行剧烈燃烧反应释放大量的能量,这一物理现象称为后燃烧效[2]。后燃烧效应会对爆炸冲击波传播过程、冲击波壁面反射压力、最终准静态压力以及整个温度场产生一定影响。

    针对内爆炸后燃烧效应数值模拟,美国劳伦斯利弗莫尔重点实验室的Kuhl A L[3]提出采用多流体模型描述爆炸场。将爆炸场划分为爆轰产物、空气和燃烧产物三种成分,分别对这三种成分建立质量、动量守恒方程。爆炸过程中采用狄拉克函数进行燃烧阵面的捕捉,从而描述后燃烧过程中能量的释放。其采用高阶Godunov方法对控制方程进行数值离散求解,并采用自适应网格技术进行加密。紧接着Kuhl A L[4,5]采用Cheetah Code对爆炸产物热力学状态进行计算,采用多项式对计算结果进行拟合建立温度和内能之间的函数关系式。该函数关系式为程序中计算后燃烧温度场提供了重要的基础。佐治亚理工学院的Togashi F[6,7]将自主开发的三维爆炸波数值计算程序与Cheetah code衔接,在程序每一个时间步内,利用Cheetah code进行后燃烧能量的计算,再将后燃烧能量添加到程序中,从而实现爆炸过程中后燃烧效应的模拟。瑞典国防研究机构的Fedina E[8,9]采用大涡模拟方法数值求解可压缩、多组分反应NS方程,数值研究开敞空间和近地面TNT爆炸过程。其数值模拟中爆炸初场采用一维点爆炸理论结果,空气及燃烧产物采用理想气体状态方程,爆轰产物状态方程采用Nobel‑Abel状态方程。国内南京理工大学的Cao W[10]在双层容器内开展TNT炸药在空气、氧气、氮气三种环境气氛中爆炸压力场测试,并采用商用软件Autodyn中的JWL‑Miller模型对TNT后燃烧过程进行模拟,通过与实验结果的对比确定了Miller模型中的参数。该方法虽然没有考虑复杂的后燃烧机理,但是作为经验模型对于理解爆炸过程后燃烧机理具有一定的指导意义。

    分析上述研究现状可知,国外各大知名实验室主要通过自主开发数值程序从物理模型、状态方程、多组分化学反应等角度深入探讨后燃烧过程,侧重于燃烧机制的探讨。然而其模型方程复杂,参数众多,程序繁琐,不便于工程中的快速计算。而国内针对爆炸后燃烧效应的研究主要采用商用软件Autodyn中的JWL‑Miller经验模型进行近似考虑,但商用软件对内爆炸场参数的数值计算方法交代的并不清晰,同时其并不能较好地考虑后燃烧过程中气体参数的变化(例如,其不能考虑后燃烧过程中气体绝热指数随温度的变化)。

    针对上述研究现状,本研究在前期对内爆炸载荷特性的研[11,12,13,14,15,16]的基础上,提出一种考虑后燃烧效应密闭空间内炸药爆炸场数值计算方法。基于FORTRAN平台,采用五阶WENO有限差分格[17,18,19],自主开发考虑后燃烧效应密闭空间内炸药爆炸场三维数值计算程序。利用所开发的程序数值探讨内爆炸场演化过程及后燃烧效应对爆炸场参数计算的影响。

  • 2 控制方程及数值求解

    2
  • 2.1 控制方程

    2.1

    以单质TNT炸药为研究对象,该炸药在密闭空间内部爆炸后,爆炸流场中主要包含爆轰产物和周围空气两种组分。为了在数值计算过程中区别这两种组分,将爆轰产物质量分数输运方程耦合到三维可压缩欧拉方程中进行数值求解,其具体形式参看文献[20]。

    爆炸后燃烧过程属于非预混燃烧类别,非常复[3,21],涉及爆轰产物与周围空气之间多组分化学反应过程。若考虑多组分之间的化学反应过程,涉及物理量和化学反应参数众多,不仅程序编写繁琐,计算量大,而且还需特殊处理刚性源项所引起的稳定性问题。为了近似考虑爆炸后燃烧效应,满足工程计算的需求,这里在Miller反应率模[22]思想的启发下,提出一种考虑炸药爆炸后燃烧效应的数值计算方[15]。程序中采用的反应率模型如下:

    d α d t = - a α 1 2 p 1 6
    (1)

    将上述反应率模型耦合到两组分可压缩欧拉方程中,并以源项的形式进行后燃烧能量的添加,进一步可得考虑后燃烧效应的三维两组分可压缩欧拉方程:

    U t + E x + F y + G z = S ,
    (2)

    其中,

    U = ρ ρ u ρ v ρ w E ρ λ ρ α , E = ρ u ρ u 2 + p ρ u v ρ u w u E + p ρ u λ ρ u α , F = ρ v ρ v u ρ v 2 + p ρ v w v E + p ρ v λ ρ v α ,
    G = ρ w ρ w u ρ v w ρ w 2 + p w E + p ρ w λ ρ w α , S = 0 0 0 0 ρ a α 1 2 p 1 6 Q a f 0 - ρ a α 1 2 p 1 6
    (3)

    式中,ρ为气体密度,kg·m-3u,v,wx,y,z方向上气体的速度分量;p为气体压力,Pa;e为气体比内能,J·kg-1γ为气体的绝热指数;λ为爆轰产物的质量分数;α为后燃烧过程中反应率(在初始时刻,炸药所在区域设置为1,炸药周围区域设置为0,随着爆炸过程的不断演化,当密闭空间内部各网格点处的反应率全部为0时,表示后燃烧能量释放完毕);a为反应速率常数;Qaf表示爆炸后燃烧过程中单位质量炸药与周围空气反应所额外释放的能量,J·kg-1

  • 2.2 温度求解

    2.2

    上述控制方程(2)并不能显式求解得到温度值,这里通过建立比内能e与气体热容cp之间的关系,以求得密闭空间内爆炸温度,具体求解公式如[23]

    c p = A + B T + C T 2 + D T 2
    (4)
    e - e 0 = T 0 T c p = A T - T 0 + 1 2 B T 2 - T 0 2 + 1 3 C T 3 - T 0 3 - D T - D T 0
    (5)

    式中,e0表示密闭空间内部气体初始时刻的比内能,J·kg-1T0表示爆炸初始时刻密闭空间内部气体的温度,取值为298 K;T表示爆炸发生后密闭空间内部气体的瞬态温度,K;AB,C,D表示按照爆轰产物质量分数λ加权的热容系数,计算公式参看下式:

    A = λ A T N T + 1 - λ A K Q ; B = λ B T N T + 1 - λ B K Q C = λ C T N T + 1 - λ C K Q ; D = λ D T N T + 1 - λ D K Q
    (6)

    式中,ATNTBTNTCTNTDTNT表示TNT爆轰产物单位质量热容系数;AKQBKQCKQDKQ表示周围空气单位质量热容系数。

    爆轰产物单位质量热熔系数计算方法如下:

    A T N T = α A T N T , Q + 1 - α A T N T , H ; B T N T = α B T N T , Q + 1 - α B T N T , H C T N T = α C T N T , Q + 1 - α C T N T , H ; D T N T = α D T N T , Q + 1 - α D T N T , H
    (7)

    式中,ATNT,QBTNT,QCTNT,QDTNT,Q表示后燃烧反应初始时刻(α=1)TNT爆轰产物单位质量热容系数;ATNT,HBTNT,QCTNT,QDTNT,Q表示后燃烧反应结束时刻(α=0)TNT爆轰产物单位质量热容系数,具体求解方法参见文献[16]。

    空气单位质量热熔系数计算方法如下:

    A K Q = α A K Q , Q + 1 - α A K Q , H ; B K Q = α B K Q , Q + 1 - α B K Q , H C K Q = α C K Q , Q + 1 - α C K Q , H ; D K Q = α D K Q , Q + 1 - α D K Q , H
    (8)

    式中,AKQ,QBKQ,QCKQ,QDKQ,Q表示后燃烧反应初始时刻(α=1)周围空气单位质量热容系数;AKQ,HBKQ,HCKQ,HDKQ,H表示后燃烧反应结束时刻( α = 0 )周围空气单位质量热容系数,具体求解方法参见文献[16]。温度场数值求解方法的可靠性在文献[16]得到了初步论证。式(5)是关于瞬态温度T的一元非线性方程,在程序计算每一个时间步Δt内,采用Newton迭代[23]进行数值求解。

  • 2.3 绝热指数求解

    2.3

    在内爆炸高温条件下,需要考虑绝热变化的影[24],这里根据化学热力学知[25]提出采用如下的方法计算绝热指数γ

    γ = c p c p - R λ
    (9)

    其中,Rλ表示按照爆轰产物质量分数λ加权的单位质量普适气体常数,J·mol-1·K-1,按照下式进行计算:

    R ¯ = λ R T N T + 1 - λ R K Q
    (10)

    式中,RTNTRKQ分别表示爆轰产物和周围空气单位质量普适气体常数,J·mol-1·K-1。进一步可得爆轰产物单位质量普适气体常数计算方法如下:

    R T N T = α R T N T , Q + 1 - α R T N T , H
    (11)

    式中,RTNT,Q表示后燃烧反应初始时刻(α=1)爆轰产物单位质量普适气体常数,J·mol-1·K-1RTNT,H表示后燃烧反应结束时刻(α=0)爆轰产物单位质量普适气体常数,J·mol-1·K-1;具体计算方法如下:

    R T N T , Q = R i = 1 4 n T N T , Q , i / m Q ; R T N T , H = R i = 1 4 n T N T , H , i / m H
    (12)

    式中,R表示普适气体常数,取值为8.314 J·mol-1·K-1nTNT,Q,inTNT,H,i分别表示后燃烧反应前后爆轰产物中各组分的摩尔数,mol;各组分具体计算参见文献[16,23];mQmH分别表示后燃烧反应前后爆轰产物中各组分质量和,kg。

    同理可得,空气单位质量普适气体常数计算方法如下:

    R K Q = α R K Q , Q + 1 - α R K Q , H
    (13)

    式中,RKQ,Q表示后燃烧反应初始时刻(α=1)空气单位质量普适气体常数,J·mol-1·K-1RKQ,H表示后燃烧反应结束时刻(α=0)空气单位质量普适气体常数,J·mol-1·K-1;具体计算方法如下:

    R K Q = R i = 1 2 n K Q , Q , i / m K Q , Q ; R K Q , H = R i = 1 2 n K Q , H , i / m K Q , H
    (14)

    式中,nKQ,Q,inKQ,H,i分别表示后燃烧反应前后空气中各组分的摩尔数,mol;各组分具体计算过程参见文献[16,23];mKQ,QmKQ,H分别表示后燃烧反应前后空气中各组分质量和,kg。

    至此,方程组(2)完全封闭。采用五阶WENO格[18]数值离散方程组(2)中的空间项,采用三阶TVD‑RK[13]数值离散方程组中(2)的时间项。

  • 3 舱室内爆炸场数值计算

    3
  • 3.1 舱室尺寸及爆炸初场

    3.1

    计算舱室为长方体密闭舱室,其具体尺寸参及爆炸初始温度场、绝热指数场、反应率场分布如图1所示。在舱室壁面和内部设置四个测点No.1、No.2、No.3、No.4(图1a)记录爆炸参数时间历程。壁面边界条件设置为刚性边界(不考虑舱室结构的变形[12],正交均匀网格尺寸取为40 mm。

    基于瞬时爆轰假定,将柱状炸药等效为均匀高温高压爆轰产[26],典型柱状炸药参数见表1(由于网格尺寸影响炸药填充质量,实际炸药填充质量并不等于设定的药量值)。通过计算可得爆轰产物初始参数为:密度1630 kg·m-3,温度2789.7 K,绝热指数1.2362,压力1.6132×109 Pa。炸药设置在舱室中间,周围蓝色区域表示空气域,空气的初始参数为:密度1.2017 kg·m-3,温度298 K,绝热指数1.3897,压力1.01325×105 Pa。

    根据文献[23]中爆轰产物与周围空气中各组分反应可得表1中四种药量内爆炸工况下,后燃烧过程中单位质量炸药与周围空气反应所额外释放的能量Qaf分别为:1.6454×106,-0.9575×1066,-1.0899×1066, -1.1917×1066 J·kg-1。其中Qaf数值为正表示后燃烧过程中整体发生放热反应,数值为负表示后燃烧过程中整体发生吸热反应(注:后燃烧过程涉及多组分化学反应,存在放热和吸热反应,在某些药量体积比工况下,吸热反应占据优势,则整体后燃烧过程呈现为吸热反应)。在本文的数值算例中,反应速率常数a统一取值为10.0。

    表1 柱状装药参数及填充质量

    Table 1 Parameters of cylindrical charges and filled mass

    mass / gradius / mmheight / mmdensity / kg·m-3filled mass /g
    200069.88016301476
    400088.410016304437
    8000114.112016307218
    16000149.4140163012195
    表1
                    柱状装药参数及填充质量
    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image008.png

    a. size of closed cabin(unti:mm) b. initial temperature field

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image009.png

    c. initial specific heat ratio field d. nitial reaction rate field

    图1 密闭舱室尺寸及爆炸初场

    Fig.1 Size of closed cabin and initial field of the explosion

  • 3.2 爆炸场演化云图分析

    3.2

    2左、中、右三列分别给出不同时刻7218 g TNT炸药内爆炸温度场、绝热指数场及反应率场演化云图。根据图2左、中两列可知,温度场与绝热指数场呈现相似的演化特征,然而数值上呈现相反的变化,在高温区域,绝热指数数值减小,在低温区域,绝热指数数值增大。例如,根据图2a给出的计算结果可知,爆炸波初次到达舱室上下壁面后形成正规则反射,在壁面形成高达4051 K的高温区域,而此处气体的绝热指数相较舱室其他区域(爆炸波尚未到达的空气域绝热指数为1.3897)较低,最小值为1.1913,差异达14.3%。根据图2最右边一列可知,舱室中部的反应率数值相较其他区域较大,说明爆炸后反应主要集中在舱室中部区域进行。随着爆炸过程的演化,舱室内部反应率数值逐渐变小,即反应速率开始减慢,能量释放过程减缓,当舱室内部反应率全部为0时,表明爆炸后燃烧过程结束。

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image005.png

    a. t = 0.150 ms

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image006.png

    b. t = 5.464 ms

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image007.png

    c. t = 12.187 ms

    图2 不同时刻温度场、绝热指数场及反应率场云图(左:温度场,中:绝热指数场,右:反应率场)

    Fig.2 Temperature, specific heat ratio and reaction rate field distribution at different times (left: temperature field, middle: specific heat ratio field, right: reaction rate field)

  • 3.3 爆炸参数分析

    3.3
  • 3.3.1 温度、绝热指数

    3.3.1

    3给出了表1中四种药量不同测点处温度、绝热指数时间历程曲线。分析图3a~图3d可知,内爆炸温度场、绝热指数场具有空间上的不均匀性(各测点最终平稳值存在一定的差异);爆炸初期,温度、绝热指数时间历程曲线由于冲击波的加载呈现多峰值特征,在爆炸后期随着冲击波衰减逐渐趋于平稳值。

    考虑到舱室内部爆炸参数空间分布的不均匀性,为了求得舱室内部最终的准静态温度值、准静态绝热指数值和准静态超压值,对舱室内部温度场、绝热指数场和超压场进行体积积分平均得到准静态温度Tav、准静态绝热指数γav、准静态超压Δpav时间历程曲线(见图4),计算公式如下:

    T a v = 1 8 i = 0 N x - 1 j = 0 N y - 1 k = 0 N z - 1 T i , j , k + T i + 1 , j , k + T i + 1 , j + 1 , k + T i , j + 1 , k + T i , j , k + 1 + T i + 1 , j , k + 1 + T i + 1 , j + 1 , k + 1 + T i , j + 1 , k + 1 Δ x Δ y Δ z / V
    (15)
    γ a v = 1 8 i = 0 N x - 1 j = 0 N y - 1 k = 0 N z - 1 γ i , j , k + γ i + 1 , j , k + γ i + 1 , j + 1 , k + γ i , j + 1 , k + γ i , j , k + 1 + γ i + 1 , j , k + 1 + γ i + 1 , j + 1 , k + 1 + γ i , j + 1 , k + 1 Δ x Δ y Δ z / V
    (16)
    Δ p a v = 1 8 i = 0 N x - 1 j = 0 N y - 1 k = 0 N z - 1 Δ p i , j , k + Δ p i + 1 , j , k + Δ p i + 1 , j + 1 , k + Δ p i , j + 1 , k + Δ p i , j , k + 1 + Δ p i + 1 , j , k + 1 + Δ p i + 1 , j + 1 , k + 1 + Δ p i , j + 1 , k + 1 Δ x Δ y Δ z / V
    (17)

    式中,NxNy,Nz表示x,y,z三个方向的网格数;Δx,Δy,Δz表示x,y,z三个方向的网格尺寸;Ti,j,kγi,j,k,Δpi,j,k分别表示网格节点i,j,k处的温度、绝热指数及超压数值计算结果;V表示舱室的体积,m3

    分析图4a可知,由于1147g药量内爆炸后燃烧过程整体为放热反应,因此可以观察到温度体积积分平均时间历程曲线存在持续的上升段,最后才趋于平稳值。而剩下的三种药量内爆炸后燃烧过程整体为吸热反应,因此可以明显观察到温度体积积分平均时间历程曲线上升到一定的数值后,由于吸热反应的进行存在下降段,最后才趋于平稳值。表2给出各准静态温度值Tf与文献[23]中考虑/不考虑后燃烧效应密闭空间内爆炸准静态温度理论解对比结果。

    根据表2可知,数值计算准静态温度与文献[23]中理论解吻合较好,相对误差控制小于5%。若与不考虑后燃烧效应的理论解进行比较,则数值解与理论解误差接近25%。

    分析图4b可知,由于爆炸后舱室内部气体温度的整体升高,使得绝热指数体积积分平均时间历程曲线整体呈现快速衰减,并逐渐趋近平稳值的趋势。各准静态绝热指数值γf与文献[23]中考虑/不考虑后燃烧效应密闭空间内爆炸准静态绝热指数理论解的对比结果见表3

    表2 最终准静态温度值与理论解(考虑/不考虑后燃烧)相对误差

    Table 2 Relative error between final quasi‑static temperature value and theoretical solution (considering or no considering afterburning)

    mass/gTf /K

    theoretical

    solution

    considering

    afterburning/K

    relative

    error

    /%

    theoretical

    solution no

    considering

    afterburning/K

    relative

    error

    /%

    14762364.42305.22.571902.724.27
    44372005.11990.30.742407.8-16.72
    72182056.02068.6-0.612541.4-19.10
    121952080.72135.1-2.552637.2-21.10
    表2
                    最终准静态温度值与理论解(考虑/不考虑后燃烧)相对误差

    根据表3可知,数值计算准静态绝热指数与文献[23]中理论解吻合较好,相对误差控制在1%以内。若与不考虑后燃烧效应的理论解进行比较,则数值解与理论解相对误差增大,高达6%。

  • 3.3.2 超压

    3.3.2

    5a~图5d分别给出四种药量超压时间历程曲线与考虑后燃烧效应密闭空间内爆炸准静态超压峰值理论计算公[11,15](见式(18))对比图。

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image010.png

    a. 1476 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image011.png

    b. 4437 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image012.png

    c. 7218 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image013.png

    d. 12195 g

    图3 不同药量内爆炸不同测点温度、绝热指数时间历程曲线

    Fig.3 Temperature and specific heat ratio time histories curves of different gauging points for the internal explosion of different mass of explosives

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image018.png

    a. temperature

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image019.png

    b. specific heat ratio

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image020.png

    c. overpressure

    图4 不同药量内爆炸温度、绝热指数及超压体积积分平均时间历程曲线

    Fig.4 Temperature, specific heat ratio and overpressure volume integral average time history curves for the internal explosion of different mass of explosives

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image014.png

    a. 1476 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image015.png

    b. 4437 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image016.png

    c. 7218 g

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image017.png

    d. 12195 g

    图5 不同药量内爆炸超压时间历程曲线与理论解对比结果

    Fig.5 Comparisons of the overpressure time history curves and the theoretical solutions for the internal explosion of different mass of explosives

    表3 最终准静态绝热指数值与理论解(考虑/不考虑后燃烧)相对误差

    Table 3 Relative error between final quasi‑static specific heat ratio value and theoretical solution (considering or no considering afterburning)

    mass

    /g

    γf

    theoretical

    solution

    considering

    afterburning

    relative

    error

    /%

    theoretical

    solution no

    considering

    afterburning

    relative

    error

    /%

    14761.21331.20550.651.2900-5.95
    44371.26951.2687-0.061.25920.82
    72181.25111.24870.191.25110.00
    121951.23681.23300.311.2453-0.68
    Δ p s = γ f - 1 p 0 γ 0 - 1 1 - 1 ρ E m V + Q + Q a f m V - p 0
    (18)

    式中,Δps表示准静态超压峰值,Pa;γ0表示初始时刻炸药周围空气绝热指数;p0表示初始时刻周围空气压力(1.01325×105 Pa);ρE表示炸药密度(1630 kg·m-3);m表示炸药的质量,kg;Q表示炸药爆热(4.19×106 J·kg-1)。

    根据图5可以看出,在爆炸初期,不同测点处超压峰值存在一定的差异,而在爆炸后期准静态超压峰值保持一致,具有空间上的均匀性。这是压力场与温度场/绝热指数场的主要区别。

    根据图4c,超压体积积分平均时间历程曲线可得各药量内爆炸最终准静态超压峰值数值解为:1.547,3.341,4.858,7.505 MPa。并将准静态超压峰值数值解与考虑/不考虑后燃烧效应理论解进行对比,相对误差见表4。根据表4可知,若考虑后燃烧效应则两者相对误差控制在5%以内,满足实际的工程计算要求,也初步验证了本文所开发的内爆炸场数值计算程序的可靠性。若与不考虑后燃烧效应理论解进行对比,则随着药量的增大,两者相对误差高达31%。

    表4 准静态超压数值解与理论解(考虑或不考虑后燃烧)相对误差

    Table 4 Relative error between quasi‑static overpressure numerical and theoretical solutions (considering or no considering afterburning)

    mass

    /g

    numerical

    solution

    /MPa

    theoretical

    solution

    considering

    afterburning

    /MPa

    relative

    error

    /%

    theoretical

    solution no

    considering

    afterburning

    /MPa

    relative

    error

    /%

    14761.5471.4893.901.5311.05
    44373.3413.3130.854.149-19.47
    72184.8584.7941.346.563-25.98
    121957.5057.3542.0510.868-30.94
    表4
                    准静态超压数值解与理论解(考虑或不考虑后燃烧)相对误差

    为了直观展示后燃烧效应对密闭空间内爆炸温度、绝热指数及超压时间历程的影响,图6a~图6c分别给出4437g药量内爆炸工况下(整体为吸热反应),考虑和不考虑后燃烧效应典型测点No.1处温度、绝热指数及超压时间历程曲线对比图。根据图6可以明显看出,考虑后燃烧效应后,温度明显降低,从而导致绝热指数增大。而由于该内爆炸工况整体为吸热反应,从而使得准静态超压峰值降低。因此,考虑后燃烧效应的影响可使得数值计算结果更接近实际爆炸工况,在内爆炸场数值模拟中,尤其需要重视。

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image001.png

    a. temperature

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image002.png

    b. specific heat ratio

    html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image003.png

    c. overpressure

    图6 4437g药量内爆炸考虑/不考虑后燃烧典型测点No.1温度、绝热指数及超压时间历程曲线对比结果

    Fig. 6 Comparisons of temperature, specific heat ratio, and overpressure time history curves of gauging point No.1 considering or no considering afterburning for the internal explosion of 4437g explosive

  • 4 结 论

    4

    (1)准静态温度、绝热指数及超压数值解与考虑后燃烧效应的理论解吻合较好,相对误差小于5%,初步验证本文所开发考虑后燃烧效应内爆炸场数值计算程序的可靠性。

    (2)根据本文计算案例可知同一爆炸工况下,准静态温度、绝热指数及超压数值解与不考虑后燃烧效应的理论解误差较大,分别高达25%,6%,31%。因此后燃烧效应在内爆炸场数值模拟中必须引起足够的重视。

    (3)虽然本文提出的考虑后燃烧效应密闭空间内爆炸场数值计算方法中包含一定的假设,将复杂的多组分化学反应过程进行简化处理,但针对工程应用具有一定的可靠性,便于快速计算。同时该研究方法可推广应用于其他类型的炸药(如太安(PETN)、温压炸药等),也可为内爆炸毁伤评估提供一定的参考和指导。

  • 参考文献

    • 1

      Kuhl A L,Bell J B,Beckner V E. Turbulent combustion in SDF explosions[C]//JANNAF Conference. SAN DIEGO, CA, United States,2009.

    • 2

      Kuhl A L,Reichenbach H. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute,2009,32(2): 2291-2298.

    • 3

      Kuhl A L,Oppenheim A K,Ferguson R E. Multi‑fluid model of exothermic fields in explosions[C]//Proceedings of the 12th All‑Union Symposiumon Combustiona and Explosion. Chernogolovka, Moscow Region,Russia, 2000.

    • 4

      Kuhl A L,Howard M,Fried L. Thermodynamic model of afterburning in explosions[C]//34th In ternational ICT Conference,2003.

    • 5

      Kuhl A L,Khasainov B. Quadractic model of thermodynamic states in SDF explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany,2007.

    • 6

      Togashi F,Baum J D,Mestreau E,et al. Numerical simulation of long‑duration blast wave evolution in confined facilities[J].Shock Waves,2010,20(5): 409-424.

    • 7

      Togashi F,Baum J D,Soto O A,et al. Numerical simulation of TNT‑Al explosives in explosion chamber[C]//Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7). Big Island, Hawaii,2012.

    • 8

      Fedina E,Fureby C. Investigating ground effects on mixing and afterburning during a TNT explosion[J]. Shock Waves,2013,23(3): 251-261.

    • 9

      Fedina E,Fureby C,Helte A. Predicting mixing and combustion in the afterburn stage of air blasts[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida,2013.

    • 10

      Cao W,He Z,Chen W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method[J]. Shock Waves,2014,24(6): 619-624.

    • 11

      徐维铮,吴卫国. 泄压口大小对约束空间爆炸准静态超压载荷的影响规律[J]. 高压物理学报,2017,31(5): 619-628.

      XU Wei‑zheng, WU Wei‑guo. Effects of size of venting holes on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of High Pressure Physics,2017, 31(5): 619-628.

    • 12

      徐维铮,吴卫国. 封闭空间爆炸载荷特性研究[J]. 爆破,2017,34(4): 40-45.

      XU Wei‑zheng, WU Wei‑guo. Investigation on characteristics of blasting loading in closed space[J]. Blasting,2017,34(4): 40-45.

    • 13

      徐维铮,吴卫国. WENO格式精度对舱室内爆炸载荷影响规律研究[J]. 舰船科学技术,2018,40(1): 9-16.

      XU Wei‑zheng, WU Wei‑guo. The influence of accuracy of WENO schemes on the blast load in confined cabin[J]. Ship Science and Technology, 2018, 40(1): 9-16.

    • 14

      徐维铮,吴卫国. 装药质量对约束空间内爆炸准静态超压载荷的影响规律研究[J]. 应用力学学报,2018,35(1): 42-46,226.

      XU Wei‑zheng, WU Wei‑guo. Influence of mass of explosives on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of Applied Mechanics, 2018,35(1): 42-46,226.

    • 15

      徐维铮,吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律研究[J]. 中国舰船研究.2018,(已录用).

      XU Wei‑zheng, WU Wei‑guo. Research on the afterburning effect on blast load in confined space[J]. Chinese Journal of Ship Research. 2018, Accepted.

    • 16

      徐维铮,吴卫国. 一种约束空间内炸药爆炸温度场数值计算方法及应用[J]. 应用力学学报.2018, (已经录用).

      XU Wei‑zheng, WU Wei‑guo. A numerical calculation method for explosive temperature field in a confined space and its application[J]. Chinese Journal of Applied Mechanics, 2018, Accepted.

    • 17

      Liu X D,Osher S,Chan T. Weighted essentially non‑oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.

    • 18

      Jiang G S,Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(2): 202-228.

    • 19

      Shu C W. Essentially non‑oscillatory and weighted essentially non‑oscillatory schemes for hyperbolic conservation laws[J].NASA Langley Research Center,1997: 325-432.

    • 20

      刘国昭,张树道. 气相爆轰高阶中心差分‑WENO组合格式自适应网格方法[J]. 计算物理, 2008,25(4): 387-395.

      LIU Guo‑zhao, ZHANG Shu‑dao. High order hybrid central‑WENO AMR method for gaseous detonation[J]. Cinese Journal of Computational Physics, 2008,25(4): 387-395.

    • 21

      Kuhl A L,Bell J B,Beckner V E,et al.Numerical simulations of thermobaric explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany, 2007.

    • 22

      Miller P J. A Reactive Flow Model with Coupled Reaction Kinetics for Detonation and Combustion in Non‑Ideal Explosives [J]. Mrs Online Proceedings Library Archive,1995,418: 413.

    • 23

      钟巍,田宙,赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算[J]. 爆炸与冲击, 2015, 35(6): 777-784.

      ZHONG Wei, TIAN Zhou, ZHAO Yang. Calculation of the quasi‑static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products[J]. Explosion and Shock Waves, 2015,35(6): 777-784.

    • 24

      Edri I,Feldgun V R,Karinski Y S,et al. Afterburning aspects in an internal TNT explosion[J]. International Journal of Protective Structures, 2013,4(1): 97-116.

    • 25

      张三慧. 大学物理学.第二册:热学 [M]. 清华大学出版社. 1991: 109-113.

      ZHANG San‑hui. University physics. Book two: thermology[M]. Tsinghua University Press. 1991:109-113.

    • 26

      Sugiyama Y,Homae T,Wakabayashi K,et al. Numerical simulations of blast wave characteristics with a two‑dimensional axisymmetric room model[J]. Shock Waves,2017,27(4): 1-8.

徐维铮

机 构:

1. 武汉理工大学 高性能舰船技术教育部重点实验室, 湖北 武汉 430063

2. 武汉理工大学 交通学院, 湖北 武汉 430063

Affiliation:

1. Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China

2. School of Transportation, Wuhan University of Technology, Wuhan 430063, China

邮 箱:xuweizheng@whut.edu.cn

作者简介:徐维铮(1991-),男,博士,主要从事约束空间内爆炸场高精度数值计算及载荷特性研究。e‑mail:xuweizheng@whut.edu.cn

吴卫国

机 构:

1. 武汉理工大学 高性能舰船技术教育部重点实验室, 湖北 武汉 430063

2. 武汉理工大学 交通学院, 湖北 武汉 430063

Affiliation:

1. Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China

2. School of Transportation, Wuhan University of Technology, Wuhan 430063, China

角 色:通讯作者

Role:Corresponding author

邮 箱:mailjt@163.com

作者简介:吴卫国(1960-),男,教授,主要从事舰船结构抗爆抗冲击研究。e‑mail:mailjt@163.com

mass / gradius / mmheight / mmdensity / kg·m-3filled mass /g
200069.88016301476
400088.410016304437
8000114.112016307218
16000149.4140163012195
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image008.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image009.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image005.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image006.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image007.png
mass/gTf /K

theoretical

solution

considering

afterburning/K

relative

error

/%

theoretical

solution no

considering

afterburning/K

relative

error

/%

14762364.42305.22.571902.724.27
44372005.11990.30.742407.8-16.72
72182056.02068.6-0.612541.4-19.10
121952080.72135.1-2.552637.2-21.10
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image010.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image011.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image012.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image013.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image018.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image019.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image020.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image014.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image015.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image016.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image017.png

mass

/g

γf

theoretical

solution

considering

afterburning

relative

error

/%

theoretical

solution no

considering

afterburning

relative

error

/%

14761.21331.20550.651.2900-5.95
44371.26951.2687-0.061.25920.82
72181.25111.24870.191.25110.00
121951.23681.23300.311.2453-0.68

mass

/g

numerical

solution

/MPa

theoretical

solution

considering

afterburning

/MPa

relative

error

/%

theoretical

solution no

considering

afterburning

/MPa

relative

error

/%

14761.5471.4893.901.5311.05
44373.3413.3130.854.149-19.47
72184.8584.7941.346.563-25.98
121957.5057.3542.0510.868-30.94
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image001.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image002.png
html/hncl/CJEM2018248/media/13ffec1a-620f-44d3-984c-ca74e4aefe2f-image003.png

表1 柱状装药参数及填充质量

Table 1 Parameters of cylindrical charges and filled mass

图1 密闭舱室尺寸及爆炸初场 -- a. size of closed cabin(unti:mm) b. initial temperature field

Fig.1 Size of closed cabin and initial field of the explosion -- a. size of closed cabin(unti:mm) b. initial temperature field

图1 密闭舱室尺寸及爆炸初场 -- c. initial specific heat ratio field d. nitial reaction rate field

Fig.1 Size of closed cabin and initial field of the explosion -- c. initial specific heat ratio field d. nitial reaction rate field

图2 不同时刻温度场、绝热指数场及反应率场云图(左:温度场,中:绝热指数场,右:反应率场) -- a. t = 0.150 ms

Fig.2 Temperature, specific heat ratio and reaction rate field distribution at different times (left: temperature field, middle: specific heat ratio field, right: reaction rate field) -- a. t = 0.150 ms

图2 不同时刻温度场、绝热指数场及反应率场云图(左:温度场,中:绝热指数场,右:反应率场) -- b. t = 5.464 ms

Fig.2 Temperature, specific heat ratio and reaction rate field distribution at different times (left: temperature field, middle: specific heat ratio field, right: reaction rate field) -- b. t = 5.464 ms

图2 不同时刻温度场、绝热指数场及反应率场云图(左:温度场,中:绝热指数场,右:反应率场) -- c. t = 12.187 ms

Fig.2 Temperature, specific heat ratio and reaction rate field distribution at different times (left: temperature field, middle: specific heat ratio field, right: reaction rate field) -- c. t = 12.187 ms

表2 最终准静态温度值与理论解(考虑/不考虑后燃烧)相对误差

Table 2 Relative error between final quasi‑static temperature value and theoretical solution (considering or no considering afterburning)

图3 不同药量内爆炸不同测点温度、绝热指数时间历程曲线 -- a. 1476 g

Fig.3 Temperature and specific heat ratio time histories curves of different gauging points for the internal explosion of different mass of explosives -- a. 1476 g

图3 不同药量内爆炸不同测点温度、绝热指数时间历程曲线 -- b. 4437 g

Fig.3 Temperature and specific heat ratio time histories curves of different gauging points for the internal explosion of different mass of explosives -- b. 4437 g

图3 不同药量内爆炸不同测点温度、绝热指数时间历程曲线 -- c. 7218 g

Fig.3 Temperature and specific heat ratio time histories curves of different gauging points for the internal explosion of different mass of explosives -- c. 7218 g

图3 不同药量内爆炸不同测点温度、绝热指数时间历程曲线 -- d. 12195 g

Fig.3 Temperature and specific heat ratio time histories curves of different gauging points for the internal explosion of different mass of explosives -- d. 12195 g

图4 不同药量内爆炸温度、绝热指数及超压体积积分平均时间历程曲线 -- a. temperature

Fig.4 Temperature, specific heat ratio and overpressure volume integral average time history curves for the internal explosion of different mass of explosives -- a. temperature

图4 不同药量内爆炸温度、绝热指数及超压体积积分平均时间历程曲线 -- b. specific heat ratio

Fig.4 Temperature, specific heat ratio and overpressure volume integral average time history curves for the internal explosion of different mass of explosives -- b. specific heat ratio

图4 不同药量内爆炸温度、绝热指数及超压体积积分平均时间历程曲线 -- c. overpressure

Fig.4 Temperature, specific heat ratio and overpressure volume integral average time history curves for the internal explosion of different mass of explosives -- c. overpressure

图5 不同药量内爆炸超压时间历程曲线与理论解对比结果 -- a. 1476 g

Fig.5 Comparisons of the overpressure time history curves and the theoretical solutions for the internal explosion of different mass of explosives -- a. 1476 g

图5 不同药量内爆炸超压时间历程曲线与理论解对比结果 -- b. 4437 g

Fig.5 Comparisons of the overpressure time history curves and the theoretical solutions for the internal explosion of different mass of explosives -- b. 4437 g

图5 不同药量内爆炸超压时间历程曲线与理论解对比结果 -- c. 7218 g

Fig.5 Comparisons of the overpressure time history curves and the theoretical solutions for the internal explosion of different mass of explosives -- c. 7218 g

图5 不同药量内爆炸超压时间历程曲线与理论解对比结果 -- d. 12195 g

Fig.5 Comparisons of the overpressure time history curves and the theoretical solutions for the internal explosion of different mass of explosives -- d. 12195 g

表3 最终准静态绝热指数值与理论解(考虑/不考虑后燃烧)相对误差

Table 3 Relative error between final quasi‑static specific heat ratio value and theoretical solution (considering or no considering afterburning)

表4 准静态超压数值解与理论解(考虑或不考虑后燃烧)相对误差

Table 4 Relative error between quasi‑static overpressure numerical and theoretical solutions (considering or no considering afterburning)

图6 4437g药量内爆炸考虑/不考虑后燃烧典型测点No.1温度、绝热指数及超压时间历程曲线对比结果 -- a. temperature

Fig. 6 Comparisons of temperature, specific heat ratio, and overpressure time history curves of gauging point No.1 considering or no considering afterburning for the internal explosion of 4437g explosive -- a. temperature

图6 4437g药量内爆炸考虑/不考虑后燃烧典型测点No.1温度、绝热指数及超压时间历程曲线对比结果 -- b. specific heat ratio

Fig. 6 Comparisons of temperature, specific heat ratio, and overpressure time history curves of gauging point No.1 considering or no considering afterburning for the internal explosion of 4437g explosive -- b. specific heat ratio

图6 4437g药量内爆炸考虑/不考虑后燃烧典型测点No.1温度、绝热指数及超压时间历程曲线对比结果 -- c. overpressure

Fig. 6 Comparisons of temperature, specific heat ratio, and overpressure time history curves of gauging point No.1 considering or no considering afterburning for the internal explosion of 4437g explosive -- c. overpressure

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Kuhl A L,Bell J B,Beckner V E. Turbulent combustion in SDF explosions[C]//JANNAF Conference. SAN DIEGO, CA, United States,2009.

    • 2

      Kuhl A L,Reichenbach H. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute,2009,32(2): 2291-2298.

    • 3

      Kuhl A L,Oppenheim A K,Ferguson R E. Multi‑fluid model of exothermic fields in explosions[C]//Proceedings of the 12th All‑Union Symposiumon Combustiona and Explosion. Chernogolovka, Moscow Region,Russia, 2000.

    • 4

      Kuhl A L,Howard M,Fried L. Thermodynamic model of afterburning in explosions[C]//34th In ternational ICT Conference,2003.

    • 5

      Kuhl A L,Khasainov B. Quadractic model of thermodynamic states in SDF explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany,2007.

    • 6

      Togashi F,Baum J D,Mestreau E,et al. Numerical simulation of long‑duration blast wave evolution in confined facilities[J].Shock Waves,2010,20(5): 409-424.

    • 7

      Togashi F,Baum J D,Soto O A,et al. Numerical simulation of TNT‑Al explosives in explosion chamber[C]//Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7). Big Island, Hawaii,2012.

    • 8

      Fedina E,Fureby C. Investigating ground effects on mixing and afterburning during a TNT explosion[J]. Shock Waves,2013,23(3): 251-261.

    • 9

      Fedina E,Fureby C,Helte A. Predicting mixing and combustion in the afterburn stage of air blasts[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida,2013.

    • 10

      Cao W,He Z,Chen W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method[J]. Shock Waves,2014,24(6): 619-624.

    • 11

      徐维铮,吴卫国. 泄压口大小对约束空间爆炸准静态超压载荷的影响规律[J]. 高压物理学报,2017,31(5): 619-628.

      XU Wei‑zheng, WU Wei‑guo. Effects of size of venting holes on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of High Pressure Physics,2017, 31(5): 619-628.

    • 12

      徐维铮,吴卫国. 封闭空间爆炸载荷特性研究[J]. 爆破,2017,34(4): 40-45.

      XU Wei‑zheng, WU Wei‑guo. Investigation on characteristics of blasting loading in closed space[J]. Blasting,2017,34(4): 40-45.

    • 13

      徐维铮,吴卫国. WENO格式精度对舱室内爆炸载荷影响规律研究[J]. 舰船科学技术,2018,40(1): 9-16.

      XU Wei‑zheng, WU Wei‑guo. The influence of accuracy of WENO schemes on the blast load in confined cabin[J]. Ship Science and Technology, 2018, 40(1): 9-16.

    • 14

      徐维铮,吴卫国. 装药质量对约束空间内爆炸准静态超压载荷的影响规律研究[J]. 应用力学学报,2018,35(1): 42-46,226.

      XU Wei‑zheng, WU Wei‑guo. Influence of mass of explosives on the characteristics of quasi‑static overpressure in confined space[J]. Chinese Journal of Applied Mechanics, 2018,35(1): 42-46,226.

    • 15

      徐维铮,吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律研究[J]. 中国舰船研究.2018,(已录用).

      XU Wei‑zheng, WU Wei‑guo. Research on the afterburning effect on blast load in confined space[J]. Chinese Journal of Ship Research. 2018, Accepted.

    • 16

      徐维铮,吴卫国. 一种约束空间内炸药爆炸温度场数值计算方法及应用[J]. 应用力学学报.2018, (已经录用).

      XU Wei‑zheng, WU Wei‑guo. A numerical calculation method for explosive temperature field in a confined space and its application[J]. Chinese Journal of Applied Mechanics, 2018, Accepted.

    • 17

      Liu X D,Osher S,Chan T. Weighted essentially non‑oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.

    • 18

      Jiang G S,Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(2): 202-228.

    • 19

      Shu C W. Essentially non‑oscillatory and weighted essentially non‑oscillatory schemes for hyperbolic conservation laws[J].NASA Langley Research Center,1997: 325-432.

    • 20

      刘国昭,张树道. 气相爆轰高阶中心差分‑WENO组合格式自适应网格方法[J]. 计算物理, 2008,25(4): 387-395.

      LIU Guo‑zhao, ZHANG Shu‑dao. High order hybrid central‑WENO AMR method for gaseous detonation[J]. Cinese Journal of Computational Physics, 2008,25(4): 387-395.

    • 21

      Kuhl A L,Bell J B,Beckner V E,et al.Numerical simulations of thermobaric explosions[C]//Proceedings of the 37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe, Germany, 2007.

    • 22

      Miller P J. A Reactive Flow Model with Coupled Reaction Kinetics for Detonation and Combustion in Non‑Ideal Explosives [J]. Mrs Online Proceedings Library Archive,1995,418: 413.

    • 23

      钟巍,田宙,赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算[J]. 爆炸与冲击, 2015, 35(6): 777-784.

      ZHONG Wei, TIAN Zhou, ZHAO Yang. Calculation of the quasi‑static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products[J]. Explosion and Shock Waves, 2015,35(6): 777-784.

    • 24

      Edri I,Feldgun V R,Karinski Y S,et al. Afterburning aspects in an internal TNT explosion[J]. International Journal of Protective Structures, 2013,4(1): 97-116.

    • 25

      张三慧. 大学物理学.第二册:热学 [M]. 清华大学出版社. 1991: 109-113.

      ZHANG San‑hui. University physics. Book two: thermology[M]. Tsinghua University Press. 1991:109-113.

    • 26

      Sugiyama Y,Homae T,Wakabayashi K,et al. Numerical simulations of blast wave characteristics with a two‑dimensional axisymmetric room model[J]. Shock Waves,2017,27(4): 1-8.