-
1 引 言
炸药、推进剂、发射药等均属于含能材料,其为武器装备的可靠使用以及有效毁伤提供了能量源,这些含能材料主要由粘合剂、含能组分以及功能添加剂等成分组成;其中,功能添加剂的含量一般不高,但它们对含能材料性能的影响却是巨大
的[1,2,3] 。大量研究显示,以纳米级金属粉和金属氧化物等纳米材料作为功能添加剂,可有效促进单质含能组分的热分解,提升推进剂等含能材料的燃烧性能[4,5] 。但是,大的表面能使得纳米功能添加剂在应用的过程中易于团聚,团聚后催化性能大幅降低[6] 。具有巨大理论比表面积的二维石墨烯基材料作为载体时可有效分散所负载的纳米金属催化剂,因此,石墨烯基材料作为催化剂载体在促进含能材料热分解和提升推进剂燃烧性能方面具有较好的应用前景。除能量特性外,热稳定性、机械感度及力学性能也是影响高能炸药应用的重要指标。惰性材料(石墨、硬脂酸和聚合物等)的添加虽然可在一定程度上降低炸药的机械感度,但也影响了炸药的能量输
出[7,8] 。石墨烯基材料(如氧化石墨烯和硝化石墨烯)自身发生歧化反应或分解反应过程中能够释放一定量的化学能,可视为潜在的含能材料;此外,石墨烯基材料所具有的众多优异特性(优异的导电、导热和力学性能以及巨大的理论比表面积等)使得其相较于其它材料在含能材料领域中具有更好的应用优势[9,10,11,12] 。目前,石墨烯基材料作为添加
剂[13,14,15,16] 、催化剂载体[17,18,19,20] 和钝感剂[21,22,23] 等已被用于含能材料领域,也有将杂原子(N、S和B等)掺杂石墨烯基材料用于爆炸物检测的相关研究[24,25,26] ,甚至还出现了石墨烯基含能化合物[27] 。本文从石墨烯基材料的制备出发,梳理总结了其对含能组分热分解特性、推进剂燃烧性能(燃速、压强指数和点火延迟性能等)和炸药性能(热稳定性、机械性能和力学性能)的影响,并对掺杂石墨烯用于爆炸物检测的相关研究进行了综述,以期为相关的研究提供参考(如图1所示)。 -
2 石墨烯基材料对含能材料热分解性能的影响
含能组分的热分解特性在很大程度上影响着推进剂等含能材料的性能,明确添加剂对含能组分热分解特性的影响是探究其对推进剂燃烧性能影响的基
础[13,28] 。本节从氧化剂和高能添加剂两个方面,系统综述了石墨烯(Gr)、氧化石墨烯(GO)、还原氧化石墨烯(rGO)、功能化石墨烯(FGSs)、石墨烯气凝胶(GA)和石墨烯-金属复合物等多种石墨烯基材料的引入对含能组分热分解特性的影响。 -
2.1 石墨烯基材料对氧化剂热分解性能的影响
氧化剂是推进剂的重要组分,提供推进剂自持燃烧所需要的氧。高氯酸铵(AP)在大气环境下是不吸湿的,其不含金属、含氧量高(氧的质量分数为0.545),分解后可产生大量气体,是固体火箭推进剂中常用的氧化
剂[6,29] 。AP的热分解包含一个吸热和两个放热过程,吸热过程对应于AP由斜方晶到立方晶的晶型转变过程,该过程无质量损失,放热反应发生在607~720 K,伴随有质量损失。目前,石墨烯基材料影响AP热分解性能的相关研究较多,如表1所示,石墨烯基材料的引入对AP的晶型转变峰没有影响,但会显著降低AP的高、低温分解峰温,甚至使低温分解放热峰消失,在DSC曲线上表现为一个放热
峰[30-31] 。这表明,石墨烯基材料的引入可有效促进AP的热分解,归因于二维石墨烯基材料所具有的巨大理论比表面积,可有效分散所负载的纳米级催化剂(如图2所示),提供更多的催化活性位点,因而对AP的热分解具有显著的促进作用[20] 。此外,石墨烯基材料所具有的优异导电、导热性能以及独特的能带结构可加速AP低温及高温分解过程中速率控制步骤(速控步)的电子转移(AP低温分解的速控步为电子由ClO4 -转移到NH4 +,高温分解的速控步为电子由O2 转移到超氧化物O2 -),有效提高反应速率(如图3所示)[17,18] 。因此,石墨烯基材料(Gr和GO等)的引入有助于AP的热分解。图3 石墨烯基材料促进AP热分解机理示意图
Fig.3 Schematic illustration of graphene‑based materials promote thermal decomposition of AP
图2 氧化石墨烯负载纳米F
e2 O3 催化剂前后的SEM图Fig.2 SEM images of nanometer F
e2 O3 catalyst before and after graphene oxide loading表1 石墨烯基材料对AP热分解特性的影响
Table 1 Effect of graphene‑based materials on thermal decomposition properties of AP
graphene‑based materials preparation
method
combination
method
effect on thermal decomposition
properties of AP
ref. GO 快速碰撞法 重结晶法 GO可提升传热,促进AP热分解 [13] GA 溶胶‑凝胶法 — GA对AP的热分解具有明显的催化作用 [14] 改良Hummers法、超临界C O2 干燥溶胶凝胶法 AP的低温分解峰消失,高温分解峰温(HTP)降低,
总表观分解热增加
[15] 溶液自组装、溶胶凝胶法、超临界C O2 干燥溶胶凝胶法 使AP的高温热分解速率加快,
放热量剧烈增加
[16] rGO/Ni 溶剂热法 物理混合 HTP提前,低温和高温分解放热峰重叠 [12] Gr/M n3 O4 溶剂热法 — 显著促进AP的低温及高温热分解过程 [17] Gr/F e2 O3 水热法 — Gr/F
e2 O3 较Fe2 O3 、Gr对AP的热分解具有更好的催化活性
[18] Gr/F e2 O3 溶胶凝胶法、
超临界C
O2 干燥— 显著增加了AP的放热量并使分解温度降低 [19] Gr/CuO 原位合成法 — 显著降低了AP的高温分解温度和活化能 [20] Al/Gr/CuO 超声分散法 Gr/Ti O2 (GTNC)超声、微波法 — GTNC加速了AP的分解 [28] GO/F e2 O3 — 溶胶凝胶法、溶剂反溶剂法 F e2 O3 /GO/AP复合材料的HTP降低了93.8℃[30] GO/MgF e2 O4 装载 — 使AP的HTP显著降低,能量释放增加 [31] GO/MgF e2 O4 涂覆 GO‑CoO 物理混合 物理混合 溶剂热法制备的GO/CoO复合物
对AP热分解的催化性能最好
[32] GO/CoO 溶剂热法 GO/C o3 O4 溶剂热法 GO/CoF e2 O4 溶剂热法 除AP外,也有一些研究涉及于石墨烯基材料对硝酸铵(AN)和硝酸钾(KN
O3 )等氧化剂热分解性能的影响。这些研究表明,石墨烯基材料的引入可有效促进AN和KNO3 的热分解,使它们的热分解峰温降低[33,34] 。兰元飞等[33] 通过溶胶凝胶法和超临界二氧化碳干燥法制备了GA/AN纳米复合含能材料,复合后AN的热分解峰温提前了33.68 ℃,表观分解热增加了532.78 J·g-1 ,说明GA对AN的热分解具有明显的促进作用。 -
2.2 石墨烯基材料对高能添加剂热分解性能的影响
六硝基六氮杂异伍兹烷(CL‑20,HNIW)、1′1‑二羟基‑5′5‑联四唑二羟铵盐(TKX‑50)、环四亚甲基四硝胺(奥克托今,HMX)和环三次甲基三硝胺(黑索今,RDX)等是炸药、推进剂和发射药的重要能量组分,有助于能量特性的提升,这些高能组分的热分解特性对炸药、推进剂和发射药的性能具有显著影
响[35,36,37,38] 。研究表明石墨烯基材料的引入可有效促进这些高能组分的热分解(如表2所示),赵凤起等[38] 通过水热法和溶剂热法制备了rGO/Fe2 O3 复合材料,rGO/Fe2 O3 对TKX‑50的热分解具有显著的促进作用,使TKX‑50的低温分解峰温降低,表观分解热增加,这是因为Fe2 O3 负载于石墨烯后,分散性显著提升,在催化过程中可提供更多的活性位点以促进TKX‑50分解。Lan Y等[39] 的研究表明与GA复合后,RDX的热分解温度降低、分解速度加快,这是因为高比表面积的GA可吸附许多还原性气相产物,有助于RDX完全反应。表2 石墨烯基材料对高能组分热分解特性的影响
Table 2 Effect of graphene‑based materials on thermal decomposition properties of high energy components
graphene‑based materials preparation method energetic
components
combination method effect on thermal decomposition
properties of energetic materials
ref. GO 市售 CL‑20 超声法 CL-20的起始分解温度、
峰值分解温均降低
[37] F e2 O3 ‑rGO水热法、溶剂热法 TKX‑50 物理混合 通过溶剂热法制备对TKX‑50的热分解
具有更好的催化活性
[38] GA 溶胶‑凝胶、超临界C O2 干燥RDX 溶胶‑凝胶法 GA对RDX的热分解具有优异的催化效果 [39] GO‑B i2 WO6 超声 - 具有较好的催化活性 [40] MgW O4 /GO超声混合 超声、干燥 可有效促进RDX热分解 [35] MgW O4 /GO超声混合 HMX 超声、干燥 可有效促进HMX热分解 GO 改良Hummers法 超声混合法 具有明显的催化作用 [36] GO 改良Hummers法 硝化棉NC 溶剂混合、真空干燥 GO不改变NC的分解机理,
但使分解活化能和热稳定性增加
[41] FGSs - 硝基甲烷NM Ab初始动力学模拟 促进NM及其衍生物的热分解 [7] 从头算分子动力学
模拟AIMD研究
催化活性来自于晶格缺陷,特别是
含氧官能团功能化的空位
[42] 负载纳米金属钨酸盐的石墨烯基材料也被用于催化RDX和HMX等含能材料的热分解。Zhang Y
等[40] 将GO作为活性纳米金属氧化物钨酸铋(Bi2 WO6 )的载体,GO与Bi2 WO6 复合后可有效抑制Bi2 WO6 聚结,并且形成的优异电荷转移路径促使RDX的放热分解峰温和活化能降低、放热量增加。Zu Y等[35] 的研究表明钨酸镁/氧化石墨烯复合物(MgWO4 /GO)对RDX和HMX的催化特性优于单组分GO或MgWO4 ,归因于GO与MgWO4 间的协同效应。基于石墨烯基材料促进单质含能材料热分解的相关研究(见表1和表2)可见,在石墨烯基材料中, GO、GA和FGSs更适用于作为反应的前驱体负载纳米金属氧化物。这是因为GO和FGSs表面和边缘含有大量的含氧官能团,这些官能团有助于它们与纳米金属氧化物复合,复合后可显著提升纳米金属氧化物的分散性,提供更多活性位点以促进含能材料热分解,并且FGSs的缺陷结构和GA的纳米孔结构也有助于含能组分的分
解[39,42] ;而Gr、rGO与纳米金属氧化物间的结合力较弱(静电引力),不利于纳米金属氧化物的负载和分散,因此通常不作为反应的前驱体[40] 。此外研究还表明,与石墨烯基材料不同的结合方式对含能组分的热分解性能具有较大的影响。相较于简单的机械混合,通过重结晶或溶胶凝胶等方法制备的石墨烯/含能组分复合物的热分解峰温显著降低,表明形成复合物后可有效促进含能组分的热分解。李家宽
等[34] 研究表明,与GO不同的混合方式对KNO3 的热分解特性具有较大的影响,相较于中和法和溶剂反溶剂法,通过重结晶法制备的KNO3 /GO复合材料的热分解反应最剧烈。 -
3 石墨烯基材料对AP/HTPB复合推进剂性能的影响
固体推进剂是火箭和导弹发动机的动力源,其性能直接影响导弹武器的作战效能和生存能
力[43,44] 。由晶态AP颗粒和端羟基聚丁二烯(HTPB)组成的复合推进剂是目前应用最广泛的一类推进剂,这主要是因为该类推进剂具有较高的能量,同时还具有很好的物理化学稳定性。相关研究表明(表3),石墨烯基材料的引入有助于AP/HTPB复合推进剂燃速的提升以及燃速压强指数的降低,这是因为石墨烯基材料对复合推进剂主要组分AP热分解的促进作用(见2.1节)[29] 。此外,石墨烯基材料的引入也可提升AP/HTPB复合推进剂的延展性及点火延迟时间,添加1%的边缘功能化氧化石墨烯(EFGO)到含塑化剂和不含塑化剂的AP/HTPB复合推进剂(AP含量85%)中,燃速相较于基准推进剂分别提升3.9%(含塑化剂)和6.4%(不含塑化剂),点火延迟时间分别增加81.4%(含塑化剂)和120%(不含塑化剂)[45] 。表3 石墨烯基材料对AP/HTPB复合推进剂燃烧性能的影响
Table 3 Effect of graphene‑based materials on combustion properties of AP/HTPB propellants
graphene‑based
materials
preparation
method
combination
method
effect on combustion performances
of AP/HTPB composite propellants
ref. GO 快速碰撞法 重结晶法 GO可提升传热,进而提高推进剂的燃速 [13] Ti O2 /Gr (GTNC)超声、微波法 - GTNC使AP/HTPB推进剂的活化能、
最终分解温度降低,机械性能增加
[28] S O3 H‑Gr/APS‑Fe3 O4 静电自组装 包覆 包覆法可获得更高的燃速 [6] N H2 ‑Gr/APS‑Fe3 O4 物理混合 Gr/F e2 O3 超声、微波法 - 燃速增加、活化能降低、压力指数降低 [29] EFGO - 物理混合 添加EFGO显著提升延展性及点火延迟时间 [45] 研究也表明AP与石墨烯基材料不同的混合方式(包覆、物理混合)对AP/HTPB复合推进剂的燃速具有较大的影响,包覆方法较简单的物理混合可更好的提升复合推进剂的燃速。Isert S
等[6] 制备了NH2 和SO3 H功能化的石墨烯(SO3 H‑Gr、NH2 ‑Gr),并通过静电自组装负载了氨丙基三乙氧基硅烷(APS)改性的Fe3 O4 纳米粒子(APS‑Fe3 O4 ),所制备的SO3 H‑Gr/APS‑Fe3 O4 和NH2 ‑Gr/APS‑Fe3 O4 可有效提高AP/HTPB复合推进剂的燃速。但他们也指出,虽然石墨烯/金属氧化物复合材料对AP/HTPB复合推进剂的燃烧具有较好的催化效果,但由于降低了金属氧化物的含量,包覆石墨烯基复合物在AP/HTPB推进剂中不如直接包覆金属氧化物的效果好。虽然AP类复合推进剂具有众多优异的特性,但是AP燃烧时会产生大量的氯化氢气体,对发动机喷管具有极大的腐蚀性,并且该气体排出后会与空气中的水蒸汽反应形成对环境有很大危害的盐酸。因此,使用新型高能无氯氧化剂(二硝酰胺铵ADN等)替代AP制备燃气清洁的新型推进剂,即所谓的绿色推进是必然的发展趋
势[46,47] ,而目前,石墨烯基材料较少的应用于ADN等新型绿色氧化剂的热分解中,这可作为下一步的研究方向。 -
4 石墨烯基材料对炸药性能的影响
-
4.1 石墨烯基材料与炸药的相容性研究
除了能量指标外,热稳定性、机械感度及力学性能等均是评估炸药性能的重要指标。石墨烯基材料引入高能混合炸药后,对炸药的热稳定性、机械感度和力学性能等均会产生影响,如表4所示。而探究石墨烯基材料影响炸药的性能之前,需明确它们与炸药组分间的相容性,通过表征石墨烯基材料添加前后炸药的热分解温度变化可判断它们与炸药组分间的相容性(热分解温度相差小于2 ℃,表示具有较好的相容性
)[48] 。 -
4.2 石墨烯基材料对炸药热稳定性的影响
炸药的热稳定性与其生产、运输和使用过程中的安全性密切相关。Li R
等[48] 通过计算研究了GO对HMX热稳定性的影响,结果表明GO的引入可显著增加HMX的活化能,使HMX的热稳定性提升,这可能是因为GO和rGO的阻燃特性,归因于制备GO的过程中使用了大量的KMnO4 和NaNO3 [23]。Lan Yu等[8] 的研究表明,CL‑20/551胶/GO和CL‑20/551胶/rGO基高聚物粘结炸药(PBXs)表现出适当增加的分解热和优异的热稳定性,而rGO更适用于作为CL‑20/551胶基PBXs的钝感剂,归因于还原后减少的含氧官能团使得rGO的热稳定性增加。表4 石墨烯基材料对炸药性能的影响
Table 4 Effect of graphene‑based materials on the performances of explosives
graphene‑based
materials
preparation
method
explosives combination
method
effect on performances of explosives ref. rGO、GO 液相剥离法 CL‑20 重结晶法 rGO更适用于作为PBXs配方的钝感剂 [8] 富勒烯、
碳纳米管、石墨烯
- 机械共混 相较于富勒烯和碳纳米管,石墨烯对CL‑20的感度
降低的程度更高
[49] 石墨烯泡沫(GF) - 重结晶法 CL‑20/GF复合材料的感度显著降低,爆炸能量和
速率略有降低
[50] GO - 球磨法 GO/CL‑20复合物的晶粒尺寸降低,热稳定性增加,
冲击感度降低
[51] UDD、Gr - RDX 机械混合法 撞击感度:UDD/RDX>Gr/RDX
摩擦感度:UDD/RDX>Gr/RDX
[52] GO 改良Hummers法 HMX 重结晶法 分解活化能和热稳定性提升 [48] Gr - TATB 计算 石墨烯通过强的π‑π堆积作用分散单分子层的TATB炸药 [53] Gr/NPBA - TATB基PBXs - NPBA提升了TATB基PBXs的抗蠕变性以及抗拉、抗压强度 [54] GNPs - 三硝基间苯二酚铅(LS) 改性 GNPs (1%)改性LS复合材料(GLS)具有最佳的热稳定性 [22] 硝化石墨烯
(NGO)
硝化GO NC 溶剂‑非溶剂法 NC的表观分解热和放热峰提高,热稳定性提升 [21] -
4.3 石墨烯基材料对炸药机械感度的影响
炸药的感度较高会造成其在生产、储存及运输过程中的危险。目前多通过添加不敏感物质,如石蜡、硬脂酸、聚合物和石墨等来降低炸药的感
度[48] ,但是这些钝感剂的钝感效果并不理想,同时由于非含能物质的比例增加使炸药的输出性能降低。Lan Yu等[8] 通过再结晶方法制备了不同粒度的CL‑20,并通过乳液聚合法涂覆粘结剂551胶,粘结剂与CL‑20具有较好的相容性,使CL‑20的机械感度降低,但同时分解焓也会降低。掺杂石墨、GO或rGO到CL‑20/551胶PBXs配方中,均可使CL‑20/551胶的机械感度降低,但是,掺杂石墨会使CL‑20的能量输出减弱,而掺杂GO不仅促进了PBXs分解,还显著提升了分解热。随着碳纳米材料的发展,富勒烯、碳纳米管、纳米金刚石和石墨烯等纳米材料均被用于降低炸药感度。研究表明,相较于富勒烯、碳纳米管和纳米金刚石,石墨烯基材料可有效降低CL‑20和RDX等炸药的感度,使RDX的撞击感度和摩擦感度显著降
低[49,52] 。Baoyun Ye等[51] 在CL‑20的水相悬浮液中将石墨剥离为石墨烯,并通过球磨法制备了CL‑20/石墨烯基复合材料(CL‑20/GEMs)。相较于CL‑20,CL‑20/GEMs的冲击感度降低,这是因为石墨烯基材料优异的导热和润滑作用可有效降低CL‑20内部的折叠、位错和热点。此外,不同石墨烯基材料的作用效果也不相同,rGO可降低炸药感度,硝化石墨烯可降低点火药的静电感度并避免能量输出降低。 -
4.4 石墨烯基材料对炸药力学性能的影响
石墨烯是已知强度最高的材料,同时还具有很好的韧性,理论杨氏模量高达1.07 TPa,固有的拉伸强度为130 GP
a[55] 。基于石墨烯的优异力学性能,将石墨烯基材料应用于炸药中可能会对炸药的力学性能产生影响。Lin C等[54] 的研究证实了石墨烯和聚合物黏结剂(NPBA)的引入可显著提升三氨基三硝基苯(TATB)基PBXs的抗蠕变性以及抗拉、抗压强度,这可能是因为石墨烯降低了聚合物链的可移动性,NPBA提升了TATB与聚合物之间的相互作用。 -
5 基于石墨烯基材料的爆炸物检测
随着人们对反恐怖主义的重视程度不断提高,有选择性的超敏感炸药感应器受到了越来越多的关注
[25] 。通过光致发光(PL)猝灭效应,许多发光材料(石墨烯、聚芳香族碳氢化合物、过渡金属二硫化物量子点等)被用于炸药的检测。然而具有低检测限、高选择性的PL猝灭仍然缺乏,掺杂异质原子是获得高选择性的一种有效方法[24] 。掺杂异质原子后,石墨烯的电化学特性显著提升,产生了更多的缺陷催化位点,可用于爆炸物的检测(如表5所示
)[24,56] 。Xu Y等[26] 的研究表明,硼掺杂石墨烯(B‑GE)的优异特性(大比表面积、高导电性以及硼掺杂碳片与多氮化合物之间的强吸引力)可加速从电解质到电极界面的电子转移过程,对HMX具有显著的催化活性,故硼掺杂石墨烯改性剥离碳电极(B‑GE/GCE)可用于HMX的检测,这种电极具有低成本、可重复使用、高选择性及稳定的优异特性。 -
6 总结与展望
石墨烯基材料众多的优异性能使其作为催化剂载体或添加剂时可有效促进单质含能组分的热分解、提升复合含能材料(推进剂的燃烧性能以及混合炸药的热稳定性、安全性能和力学性能等)的应用性能。此外,石墨烯基材料独特的电子能带结构赋予其作为爆炸物传感器的特殊应用。石墨烯基材料在含能材料领域中的应用前景不可小觑,以下几方面可作为今后研究的重点方向:
(1)石墨烯基材料负载纳米级金属和金属氧化物可起到很好的催化作用,但制备方法及最佳制备条件仍需扩展和探究。
(2)功能化和氧化石墨烯的表面含有大量的含氧官能团,可作为活性位点接枝含能基团,制备含能纳米石墨烯基材料。
(3)含能材料(推进剂和高能炸药等)在最优性能下的各组分配比的确定,纳米催化剂与石墨烯基材料间结合方式以及石墨烯基材料对含能材料性能影响的作用机理仍需进一步研究。
-
参考文献
-
1
Li X, Liu X, Cheng Y, et al. Thermal decomposition properties of double‑base propellant and ammonium perchlorate[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(1):887-894.
-
2
Zhang L, Zhi S, Shen Z. Research on tensile mechanical properties and damage mechanism of composite solid propellants[J]. Propellants,Explosives,Pyrotechnics, 2018, 43(3), 234-240.
-
3
Keshavarz M H, Abadi Y H, Esmaeilpour K, et al. A novel class of nitrogen‑rich explosives containing high oxygen balance to use as high performance oxidizers in solid propellants[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(10).
-
4
Dave P N, Ram P N, Chaturvedi S. Transition metal oxide nanoparticles: Potential nano‑modifier for rocket propellants[J]. Particulate Science & Technology, 2015, 34(6):676-680.
-
5
Dubey R, Chawla M, Siril P F, et al. Bi‑metallic nanocomposites of Mn with very high catalytic activity for burning rate enhancement of composite solid propellants[J]. Thermochimica Acta, 2013, 572(43):30-38.
-
6
Isert S, Xin L, Xie J, et al. The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants[J]. Combustion & Flame, 2017, 183:322-329.
-
7
Liu L M, Car R, Selloni A, et al. Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: ab initio molecular dynamics simulations[J]. Journal of the American Chemical Society, 2012, 134(46):19011-19016.
-
8
Yu L, Ren H, Guo X Y, et al. A novel ε‑HNIW‑based insensitive high explosive incorporated with reduced graphene oxide[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(3):1187-1199.
-
9
叶宝云, 王晶禹, 安崇伟,等.CL‑20基复合含能材料的制备及性能[J]. 固体火箭技术, 2017, 40(2):199-203.
YE Bao‑yun, WANG Jing‑yu, AN Chong‑wei, et al. Preparation and thermal properties of CL‑20/GO nano‑composite energetic materials [J]. Journal of Solid Rocket Technology, 2017, 40(2):199-203.
-
10
兰元飞,李霄羽,罗运军.石墨烯在含能材料中的应用研究进展[J]. 火炸药学报, 2015, 38(1):1-7.
LAN Yuan‑fei, LI Xiao‑yu, LUO Yun‑jun. Research progress on application of graphene in energetic materials[J]. Chinese Journal of Explosives & Propellants, 2015, 38(1):1-7.
-
11
Niu C, Jin B, Peng R, et al. Preparation and characterization of insensitive HMX/rGO/G composites via in situ reduction of graphene oxide[J]. Rsc Advances, 2017, 7(51):32275-32281.
-
12
Li N, Cao M, Wu Q, et al. A facile one‑step method to produce Ni/graphene nanocomposites and their application to the thermal decomposition of ammonium perchlorate[J]. Crystengcomm, 2011, 14(2):428-434.
-
13
Memon N K, Mcbain A W, Son S F. Graphene oxide/ammonium perchlorate composite material for use in solid propellants[J]. Journal of Propulsion & Power, 2016, 32(3):1-5.
-
14
王学宝, 李晋庆, 罗运军.干燥方式对高氯酸铵/石墨烯复合材料的结构和热分解行为的影响[J]. 物理化学学报, 2013, 29(10):2079-2086.
WANG Xue‑bao, LI Jin‑qing, LUO Yun‑jun. Effect of drying methods on the structure and thermal decomposition behavior of ammonium perchlorate/graphene composites[J]. Acta Physico‑Chimica Sinica, 2013, 29(10):2079-2086.
-
15
王学宝, 李晋庆, 罗运军.高氯酸铵/石墨烯纳米复合材料的制备及热分解行为[J]. 火炸药学报, 2012, 35(6):76-80.
WANG Xue‑bao, LI Jin‑qing, LUO Yun‑jun. Preparation and thermal decomposition behaviour of ammonium perchlorate/graphene aerogel nanocomposites[J]. Chinese Journal of Explosives & Propellants, 2012, 35(6):76-80.
-
16
Wang X, Li J, Luo Y, et al. A novel ammonium perchlorate/graphene aerogel nanostructured energetic composite: preparation and thermal decomposition[J]. Science of Advanced Materials, 2014, 6(3):530-537.
-
17
Li N, Geng Z, Cao M, et al. Well‑dispersed ultrafine Mn3O4, nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate[J]. Carbon, 2013, 54(2):124-132.
-
18
Yuan Y, Wei J, Wang Y, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303(6):354-359.
-
19
Lan Y, Li X, Li G, et al. Sol‑gel method to prepare graphene/Fe2O3, aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate[J]. Journal of Nanoparticle Research, 2015, 17(10):1-9.
-
20
Fertassi M A, Alali K T, Liu Q, et al. Catalytic effect of CuO nanoplates, a graphene(G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate[J]. Rsc Advances, 2016, 6: 74155-74161.
-
21
袁申, 李兆乾, 段晓惠,等.NGO/NC复合含能材料的制备及热分解性能[J]. 含能材料, 2017, 25(3):203-208.
YUAN Shen, LI Zhao‑qian, DUAN Xiao‑hui, et al. Preparation and thermal decomposition properties of NGO/NC energetic composites[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(3):203-208.
-
22
Li Y, Zhao W Y, Mi Z H, et al. Graphene‑modified explosive lead styphnate composites[J]. Journal of Thermal Analysis & Calorimetry, 2016, 124(2):683-691.
-
23
Shi Y, Li L J. Chemically modified graphene: flame retardant or fuel for combustion?[J]. Journal of Materials Chemistry, 2011, 21(10):3277-3279.
-
24
Mondal T K, Dinda D, Saha S K. Nitrogen, sulphur co‑doped graphene quantum dot: An excellent sensor for nitro explosives[J]. Sensors & Actuators B Chemical, 2018, 257:586-593.
-
25
Zhu P C, Luo L N, Cen P Q, et al. Three‑dimensional nanographene based on triptycene for detection of nitroaromatic explosives[J]. Tetrahedron Letters, 2014, 55(45):6277-6280.
-
26
Xu Y, Lei W, Han Z, et al. Boron‑doped graphene for fast electrochemical detection of HMX explosive[J]. Electrochimica Acta, 2016, 216:219-227.
-
27
Cohen A, Yang Y, Yan Q L, et al. Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide‑Cu(Ⅱ) complex[J]. Chemistry of Materials, 2016, 28(17),6118-6126.
-
28
Dey A, Nangare V, More P V, et al. A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant[J]. Rsc Advances, 2015, 5(78):63777-63785.
-
29
Dey A, Athar J, Varma P, et al. Graphene‑iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant[J]. Rsc Advances, 2015, 5(3):723-724.
-
30
兰元飞, 邓竞科, 罗运军.高氯酸铵/Fe2O3/石墨烯纳米复合材料的制备及其热性能研究[J]. 纳米科技, 2015(6):14-18.
LAN Yuan‑fei, DENG Jing‑ke, LUO Yun‑jun. Preparation and characterization of graphene aerogel/Fe2O3/ammonium perchlorate nanostructured energetic composite[J]. Journal of Sol‑Gel Science and Technology, 2015, 74(1):161-167.
-
31
Zu Y, Zhao Y, Xu K, et al. Preparation and comparison of catalytic performance for nano MgFe2O4, GO‑loaded MgFe2O4, and GO‑coated MgFe2O4, nanocomposites[J]. Ceramics International, 2016 (42): 18844-18850.
-
32
兰兴旺.石墨烯基复合物制备及其催化性能研究[D]. 南京:南京理工大学, 2013.
LAN Xing‑wang. Study on graphene based composites and their catalytic properties[D]. Nanjing: Nanjing University of Science&Technology, 2013.
-
33
兰元飞, 罗运军.GA/AN纳米复合含能材料的制备与表征[J]. 火炸药学报, 2015, 35(2):15-18.
LAN Yuan‑fei, LUO Yun‑jun. Preparation and characterization of graphene aerogel/ammonium nitrate nano composite energetic materials[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2):15-18.
-
34
李家宽, 马小霞, 胡艳,等.KNO3/GO复合含能材料的制备与表征[J]. 爆破器材, 2016, 45(2):1-5.
LI Jia‑kuan, MA Xiao‑xia, HU Yan, et al. Preparation and characterization of KNO3/GO composite energetic materials[J]. Explosive Materials, 2016, 45(2):1-5.
-
35
Zu Y, Zhang Y, Xu K, et al. A graphene oxide‑MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX[J]. Rsc Advances, 2016, 6(37):31046-31052.
-
36
Zeng G Y, Zhou J H, Lin C M. The thermal decomposition behavior of graphene oxide/HMX composites[J]. Key Engineering Materials, 2015, 645-646:110-114.
-
37
于佳莹, 王建华, 刘玉存,等.CL‑20/GO纳米复合含能材料的制备与性能研究[J]. 科学技术与工程, 2017, 17(12):93-96.
YU Jia‑ying, WANG Jian‑hua, LIU Yu‑cun, et al. Preparation and thermal properties of CL‑20/GO nano‑composite energetic materials[J]. Science Technology & Engineering, 2017,17(12):93-96.
-
38
张建侃, 赵凤起, 徐司雨,等.两种Fe2O3@rGO纳米复合物的制备及其对TKX‑50热分解的影响[J]. 含能材料, 2017, 25(7):564-569.
ZHANG Jian‑kan, ZHAO Feng‑qi, XU Si‑yu, et al. Preparation of Fe2O3@rGO nanocomposites and their effect on the thermal decomposition of TKX‑50[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(7):564-569.
-
39
Lan Y, Wang X, Luo Y. Preparation and characterization of GA/RDX nanostructured energetic composites[J]. Bulletin of Materials Science, 2016, 39(7):1-7.
-
40
Zhang Y, Xiao L, Xu K, et al. Graphene oxide‑enveloped Bi2WO6 composites as a highly efficient catalyst for the thermal decomposition of cyclotrimethylenetrinitramine[J]. Rsc Advances, 2016, 6(48):42428-42434.
-
41
Zhang X, Hikal W M, Zhang Y, et al. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites[J]. Applied Physics Letters, 2013, 102(14):5428.
-
42
Chehroudi B. Applications of graphene in fuel propellant combustion chehroudi[M]// Graphene Science Handbook Applications and Industrialization. CRC Press, 2016:91-397.
-
43
Jain S, Park W, Chen Y P, et al. Flame speed enhancement of a nitrocellulose monopropellant using graphene microstructures[J]. Journal of Applied Physics, 2016, 120(17):370-418.
-
44
Sabourin J L, Dabbs D M, Yetter R A, et al. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion[J]. Acs Nano, 2009, 3(12):3945-3954.
-
45
Dillier C A, Demko A R, Sammet T, et al. Burning rate and ignition delay times of AP/HTPB‑based solid rocket propellants containing graphene[C]//Aiaa/sae/asee Joint Propulsion Conference. Orlando, FL, 2015.
-
46
Guan H S, Li G X, Zhang N Y. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant[J]. Acta Astronautica, 2018, 144:119-125.
-
47
Pan J, Li H, Qin Y, et al. Study on synthesis and properties of new high‑energy oxidizers[J]. Chemistry, 2017, 80(2),139-145.
-
48
Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants ,Explosives ,Pyrotechnics, 2013, 38(6):798-804.
-
49
金振华.碳纳米材料改性HNIW的对比研究[D]. 北京:北京理工大学, 2016.
JIN Zhen‑hua. Comparative research on properties of the HNIW modified by nano‑carbon materials[D]. Beijing: Beijing Institute of Technology, 2016.
-
50
Li Z, Wang Y, Zhang Y, et al. CL‑20 hosted in graphene foam as a high energy material with low sensitivity[J]. Rsc Advances, 2015, 5(120):98925-98928.
-
51
Ye B, An C, Zhang Y, et al. One‑step ball milling preparation of nanoscale CL‑20/graphene oxide for significantly reduced particle size and sensitivity.[J]. Nanoscale Research Letters, 2018, 13(1):42.
-
52
胡菲.添加剂对RDX感度和性能的影响研究[D]. 太原:中北大学, 2014.
HU Fei.Study on the influence of addition on RDX sensitivity and performance[D]. Taiyuan:North University of China, 2014.
-
53
Zhang C, Cao X, Xiang B. Sandwich complex of TATB/graphene: an approach to molecular monolayers of explosives[J]. Journal of Physical Chemistry C, 2010, 114(51):22684-22687.
-
54
Lin C, He G, Liu J, et al. Enhanced non‑linear viscoelastic properties of polymer bonded explosives based on graphene and a neutral polymeric bonding agent[J]. Central European Journal of Energetic Materials, 2017, 14(4):788-805.
-
55
Kumar H G P, Xavior M A, Joel A P, et al. Effect of flake reinforcement on mechanical properties of AA 6061 nano composite with secondary nano platelet‑Graphene processed through powder metallurgy[J]. Materials Today Proceedings, 2018, 5(2):6626-6634.
-
56
Zhang R, Adsetts J R, Nie Y, et al. Electrochemiluminescence of nitrogen‑ and sulfur‑doped graphene quantum dots[J]. Carbon, 2018, 129:45-53.
-
1
摘要
从石墨烯基材料的制备出发,系统综述了其对含能材料的热分解性能、燃烧性能、力学性能和安全性能的影响、以及掺杂石墨烯用于爆炸物检测方面的研究。石墨烯基材料在促进单质含能组分热分解和提升复合含能材料应用性能等方面表现出了较好的应用前景。对石墨烯基材料在含能材料领域中的发展方向和趋势进行了梳理,指出以下几点是今后研究的重点方向:石墨烯及其衍生物负载纳米级金属催化剂的制备及结合方式的探究;在功能化或氧化石墨烯表面接枝含能官能团,制备含能纳米石墨烯基材料;石墨烯基材料提升含能材料性能的作用机理研究。
Abstract
Due to numerous excellent properties of graphene, including large surface area, high conductivity, thermal conductivity, etc., graphene‑based materials have been used as additive, catalyst carrier and component of energetic materials. Effects of graphene‑based materials on thermal decomposition, combustion, mechanical and safety performances of energetic materials are systematically reviewed. Besides, researches of the application of doped graphene for explosive detection are also summarized. Graphene‑based materials can significantly promote the thermal decomposition of energetic materials, reduce the thermal decomposition temperature of energetic components, and thus improve the combustion performance of propellants. Additionally, graphene‑based materials are also used for enhancing thermal stability as well as reducing mechanical sensitivity of explosives. To sum up, graphene‑based materials have wide application prospects in the field of energetic material. However, the interaction force between graphene‑based‑materials and nanometer metal catalyst, optimal component ratio and fabrication conditions of energetic composites are still needed to be further explored. Preparation of energetic graphene material by grafting energetic groups on functionalized graphene is also the focus of further research.