CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
YangZ, DingL, WuP, et al. Fabrication of RDX, HMX and CL‑20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal, 2015, 268: 60-66.
参考文献 2
NairU R, SivabalanR, GoreG M, et al. Hexanitrohexaazaisowurtzitane (CL‑20) and CL‑20‑based formulations (review)[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 121-132.
参考文献 3
张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.
ZHANGChao‑yang. On the energy & safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 2-10.
参考文献 4
冀威, 李小东, 王晶禹, 等. 纳米ε‑CL‑20/Estane制备与表征[J]. 含能材料, 2015, 23(11): 1084-1088.
JIWei, LIXiao‑dong, WANGJing‑yu, et al. Preparation and characterization of nano‑ε‑CL‑20/Estane explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(11): 1084-1088.
参考文献 5
叶宝云, 王晶禹, 安崇伟, 等. CL‑20基复合含能材料的制备及性能[J]. 固体火箭技术, 2017, 40(2): 199-203.
YEBao‑yun, WANGJing‑yu, ANChong‑wei, et al. Preparation and properties of CL‑20 based composite energetic material[J]. Journal of Solid Rocket Technology, 2017, 40(2): 199-203.
参考文献 6
魏华, 焦清介, 郭学永. 石蜡/Estane5703复合钝感包覆CL‑20的研究[J]. 含能材料, 2017, 25(4): 321-325.
WEIHua, JIAOQing‑jie, GUOXue‑yong. Desensitizing technology of CL‑20 by coating wax and Estane5703[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(4): 321-325.
参考文献 7
王晶禹, 高康, 徐文峥, 等. 硬脂酸钙对CL‑20/Estane复合粒子性能的影响[J]. 火炸药学报, 2015, 38(4): 22-26.
WANGJing‑yu, GAOKang, XUWen‑zheng, et al. Effect of calcium stearate on the characteristics of CL‑20/Estane composite particles[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 22-26.
参考文献 8
陈鲁英, 赵省向, 杨培进, 等. CL‑20炸药的包覆钝感研究[J]. 含能材料, 2006, 14(3): 171-173.
CHENLu‑ying, ZHAOSheng‑xiang, YANGPei‑jin, et al. The coating and desensitization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3): 171-170.
参考文献 9
杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.
YANGZhi‑jian, LIUXiao‑bo, HEGuan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017.
参考文献 10
YangZ, LiJ, HuangB, et al. Preparation and properties study of core‑shell CL‑20/TATB composites[J]. Propellants,Explosives,Pyrotechnics, 2014, 39(1): 51-58.
参考文献 11
TappanB C, BrillT B. Thermal decomposition of energetic materials 86. cryogel synthesis of nanocrystalline CL‑20 coated with cured nitrocellulose[J]. Propellants ,Explosives ,Pyrotechnics, 2003, 28(5): 223-230.
参考文献 12
边红莉. CL‑‑20基核‑壳结构颗粒的制备及其性能表征[D]. 太原:中北大学, 2017.
BIANHong‑li. Preparation and characterization of CL‑20 based core‑shell structure particle[D]. Taiyuan: North University of China, 2017.
参考文献 13
徐容, 田野, 刘春. TATB对CL‑20降感研究[J]. 含能材料, 2003, 11(4): 219‑221.
XURong, TIANYe, LIUChun. Study on the desensitization of CL‑20 with TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(4): 219-221.
参考文献 14
TrzcińskiW A, BelaadaA. 1,1‑Diamino‑2,2‑dinitroethene (DADNE, FOX‑7)‑properties and formulations (a review)[J]. Central European Journal of Energetic Materials, 2016, 13(2): 527-544.
参考文献 15
HelteA, CarlssonT E, EldsäterC, et al. Performance of FOX‑7 (1,1‑diamino‑2, 2‑dinitroethylene) in shaped charge applications[C]//23rd International Symposium on Ballistics, Tarragona. 2007.
参考文献 16
DanielM A, DaviesP J, LochertI J. FOX‑7 for insensitive boosters[R]. Defence Science and Technology Organisation Edinburgh (Australia) Weapons Systems DIV, 2010.
参考文献 17
TrzcińskiW A, CudziłoS, ChyłekZ, et al. Detonation properties and thermal behavior of FOX‑7‑based explosives[J]. Journal of Energetic Materials, 2013, 31(1): 72-85.
参考文献 18
ChyłekZ, JurkiewiczR. Investigation of the properties of polymer bonded explosives based on 1,1‑diamino‑2,2‑dinitroethene(FOX‑7) and 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane(HMX)[J]. Central European Journal of Energetic Materials, 2016, 13(4): 859-870.
参考文献 19
赵凤起, 高红旭, 徐司雨, 等. 含1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)的钝感微烟推进剂能量参数和燃烧特性[J]. 火炸药学报, 2010, 33(4): 1-4.
ZHAOFeng‑qi, GAOHong‑xu, XUSi‑yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4): 1-4.
参考文献 20
刘国涛, 刘少武, 于慧芳, 等. 含FOX‑7发射药的燃烧性能[J]. 火炸药学报, 2012, 35(2): 82‑85.
LIUGuo‑tao, LIUShao‑wu, YUHui‑fang, et al. Combustion performance of propellant containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 82-85.
参考文献 21
张阔, 罗亚军, 陈晓明, 等. 一种含FOX‑7的发射药燃烧性能研究[J]. 兵工自动化, 2013(11): 60-62.
ZHANGKuo, LUOYa‑jun, CHENXiao‑ming, et al. Study on combustion performance of gun propellant containing FOX‑7[J]. Ordnance Industry Automation, 2013(11): 60-62.
参考文献 22
LempertD B, DorofeenkoE M, ShuY. Energy potential of solid composite propellants based on 1,1‑diamino‑2,2‑dinitroethylene[J]. Russian Journal of Physical Chemistry B, 2016, 10(3): 483-489.
参考文献 23
宋原.降感CL‑20制备工艺技术研究[D].太原:中北大学, 2016.
SONGYuan. The technology of the preparation process of insensitivity CL‑20[D]. Taiyuan: North University of China, 2016.
参考文献 24
南海, 王晓峰. FOX‑7的表面能研究[J]. 含能材料, 2006, 14(5): 388-390.
HaiNAN, WANGXiao‑feng. Surface energy of FOX‑7[J]. Chinese Journal of Energetic Materials Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 388-387.
参考文献 25
石晓峰, 李小东, 王晶禹, 等. RDX基超细球形包覆粒子的制备及热性能表征[J]. 固体火箭技术, 2015(3):383-386.
SHIXiao‑feng, LIXiao‑dong, WANGJing‑yu, et al. Preparation and thermal properties of RDX based ultrafine spherical coated particles[J]. Journal of Solid Rocket Technology, 2015, 38(3): 383-386.
参考文献 26
JiaX, HouC, TanY, et al. Fabrication and Characterization of PMMA/HMX‑based microcapsules via in situ polymerization[J]. Central European Journal of Energetic Materials, 2017, 14(3): 559-572.
参考文献 27
KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.
参考文献 28
OzawaT. A new method of analyzing thermogravimetric data[J]. Bulletin of the chemical society of Japan, 1965, 38(11): 1881-1886.
参考文献 29
StarinkM J. Analysis of hydrogen desorption from linear heating experiments: Accuracy of activation energy determinations[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6632-6641.
参考文献 30
ZhangT, HuR, XieY, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non‑isothermal DSC[J]. Thermochimica Acta, 1994, 244(244): 171-176.
参考文献 31
YeB, AnC, ZhangY, et al. One‑Step Ball Milling Preparation of Nanoscale CL‑20/graphene oxide for significantly reduced particle size and sensitivity[J]. Nanoscale research letters, 2018, 13(1): 42.
参考文献 32
SinditskiiV P, LevshenkovA I, EgorshevV Y, et al. Study on combustion and thermal decomposition of 1,1‑diamino‑2,2‑dinitroethylene (FOX‑7)[C]//30th International Pyrotechnics Seminar (Europyro), 2003.
参考文献 33
韩早, 王伯良. 混合炸药爆速预报的新方法[J]. 爆炸与冲击, 2014, 34(4): 421-426.
HANZao, WANGBo‑liang. A new method for predicting detonation velocity of composite explosive[J]. Explosion & Shock Waves, 2014, 34(4): 421-426.
参考文献 34
王保国, 张景林, 陈亚芳, 等. HMX/TATB基高聚物粘结传爆药的研究[J]. 含能材料, 2007, 15(1): 9-11.
WANGBao‑guo, ZHANGJing‑lin, CHENYa‑fang, et al. PBX booster explosive based on HMX/TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(1): 9-11.
目录 contents

    摘要

    为提高六硝基六氮杂异伍兹烷(CL‑20)的安全性能,并保持其较高能量,以聚氨酯高聚物Estane为包覆剂,1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)为含能降感成分,利用水悬浮包覆法制备了三种不同配比的CL‑20/FOX‑7基高聚物粘结炸药。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、撞击感度测试仪以及摩擦感度测试仪对样品的形貌结构、晶型、热分解特性以及样品的机械感度进行测试分析,用电测法对三种配比高聚物粘结炸药(PBX)爆速进行测试。结果表明,CL‑20/FOX‑7基炸药颗粒包覆效果较好,且CL‑20和FOX‑7均未发生转晶。三种CL‑20/FOX‑7基PBX表观活化能比细化CL‑20分别提高了17.12,32.87 kJ·mol-1和40.24 kJ·mol-1;活化焓(ΔH)较CL‑20也明显提高;特性落高由细化CL‑20的27.5 cm分别提高到58.3,56.5,54.2 cm。三种配比CL‑20/FOX‑7基PBX实测爆速分别为8474,8503,8577 m·s-1,与PBXN‑5相当,但特性落高较PBXN‑5提升了48.5%以上,炸药安全性能明显提升。

    Abstract

    To improve the safety performance of hexanitrohexaazaisowurtzitane (CL‑20) and maintain its higher energy, three kinds of CL‑20/FOX‑7 polymer bonded explosives(PBXs) with different formulation proportions were prepared by water suspension coating method using polyurethane polymer Estane as coating agent and 1,1‑diamino‑2,2‑dinitroethene(FOX‑7) as energetic sensitivity‑reducing component. The morphology structure, crystal form, thermal decomposition characteristic and impact and friction sensitivity of samples were tested and analyzed by scanning electron microscopy (SEM), X‑ray diffractometer (XRD), differential scanning calorimeter (DSC), impact sensitivity tester and friction sensitivity tester. The detonation velocity of three kinds of PBXs was tested by an electrical measurement method. The results show that the explosive particles based on CL‑20/FOX‑7 have better coating effect, and neither CL‑20 nor FOX‑7 has crystal transformation. The apparent activation energy of three kinds of PBXs are increased by 17.12, 32.87 and 40.24 kJ·mol-1 compared with refined CL‑20. The enthalpies of activation (ΔH) of PBX samples are also significantly improved compared with CL‑20. The characteristic drop height increases from 27.5 cm of refine CL‑20 to 58.3, 56.5 cm and 54.2 cm, respectively, compared with CL‑20. The actual detonation velocities of three kinds of PBXs with different formulation proportions are 8474, 8503 m·s-1 and 8577 m·s-1 ,respectively, which is equivalent to the detonation velocity of PBXN‑5, but the characteristic drop height increases by more than 48.5% compared with PBXN‑5, the safety performance of explosives is significantly improved.

  • 1 引 言

    六硝基六氮杂异伍兹烷(CL‑20)作为一种具有独特笼状结构的高能材料,是目前综合性能最好的含能材料之[1,2],但其拥有高能量的同时伴随着自身感度较高、安全性较差等问[3]。目前包覆降感作为CL‑20降感最有效的方法之一被广泛研究和使[4,5,6]。包覆降感中高聚物粘结剂的加入使CL‑20感度明显降[7,8],也可以改善其力学性能及加工成型性;但粘结剂含量过多往往会导致含能复合体系能量损失,不利于炸药维持高能量水[9]。为降低CL‑20炸药感度并减少体系能量损失,国内外众多研究者采用了低感炸药包覆CL‑20的方法实现该目标。杨志[10]通过制备CL‑20/TATB核壳结构,使复合颗粒的热稳定性和钝感性能较CL‑20明显提高,实现了复合颗粒的高能钝感。Tappan B C[11]通过溶胶凝胶法合成出表面包覆有硝化纤维素的CL‑20颗粒,有效改善CL‑20热分解特性。边红[12]采用喷雾结晶工艺制备CL‑20/NQ微球,微球热稳定性较CL‑20明显提升,机械感度显著降低。徐[13]对TATB的粒径和含量在CL‑20降感中的影响进行了研究。通过添加钝感高能材料制备多组分炸药,实现降低CL‑20炸药感度并减少体系能量损失,已经成为解决炸药能量与安全性矛盾的重要思路。

    1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)作为一种高能钝感炸药,具有较高能量,对多种外界刺激均不敏感,且与多种材料相容性[14]。目前国内外研究者对FOX‑7用于不敏感高能炸药和固体推进剂进行了一些研究。瑞典研制了FOF系列FOX‑7基不敏感混合炸[15],这一系列混合炸药均表现出明显的钝感特性;澳大利亚则对FOX‑7用于不敏感传爆[16]进行了研究。Trzciński W A[17]和Zbigniew Chylek[18]等人制备了FOX‑7/HMX基混合炸药并对其性能进行表征,研究表明该混合炸药具有高爆轰性能,对热刺激和机械刺激均钝感,可以满足高能量高稳定性的要求。西安近代化学研究所对FOX‑7用于固体推进剂各项性能影响进行了系统的研[19,20,21,22],发现FOX‑7的加入使固体推进剂稳定性明显提高,并对其他性能也有不同程度提升。但目前FOX‑7基混合炸药输出能量仍然较低,无法满足武器弹药不断提高的能量要求。

    为了得到兼具钝感与高能特性的含能材料,本研究以CL‑20、FOX‑7为含能成分,采用水悬浮包覆法制备了不同配比的CL‑20/FOX‑7基高聚物粘结炸药造型粉颗粒,并对其结构、形貌、热分解特性、机械感度及爆速进行了分析。

  • 2 实验部分

  • 2.1 试剂与仪器

    材料:CL‑20,辽宁庆阳化学工业有限公司;FOX‑7,甘肃银光化学工业集团有限公司;Estane5702,路博润特种化工制造有限公司;1,2‑二氯乙烷,分析纯,天津福晨化学试剂厂;蒸馏水,自制。

    仪器:DX‑2700型X射线粉末衍射系统,丹东浩元有限公司;Tescan Mira 3 LMH型场发射扫描电镜,捷克Tescan公司;DSC‑500型差示扫描量热仪,上海盈诺精密仪器公司。

  • 2.2 CL‑20/FOX‑7基PBX制备

    将CL‑20原料溶解于乙酸乙酯中,利用喷雾细化装置将其雾化,使该溶液喷入快速搅拌的正庚烷中,得到白色悬浊液;悬浊液经过滤、洗涤、冷冻干燥等处理过程得到细化CL‑20[23]

    将一定质量细化CL‑20和FOX‑7加入蒸馏水中,并超声搅拌15min,使颗粒充分润湿分散;将质量分数为5%的Estane溶液逐滴加入悬浮液中,水浴温度60℃,调节搅拌速度、真空压力,直至形成密实的炸药颗粒;经过滤、洗涤、干燥得到3种不同配比CL‑20/FOX‑7基PBX造型粉,具体配比见表1

    表1 CL‑20/FOX‑7基PBX配比

    Table 1 CL‑20/FOX‑7 polymer bonded explosive formulations%

    samplemass fraction
    CL‑20FOX‑7
    1#4550
    2#5540
    3#6530

    将CL‑20、FOX‑7、粘结剂按照与1#配方相同的比例置于研钵中研磨,制备得CL‑20/FOX‑7机械混合样品,并与CL‑20/FOX‑7基PBX(1#)感度进行对比。

  • 2.3 性能测试

    使用场发射扫描电镜对CL‑20、FOX‑7和CL‑20/FOX‑7基PBX造型粉进行形貌表征;使用DX‑2700型X射线粉末衍射系统对CL‑20、FOX‑7和CL‑20/FOX‑7基PBX进行物相结构和晶型表征,步进角度为5°~50°,电压40 kV,电流30 mA,Cu Kα射线;采用差示扫描量热仪对样品分别在5、10、15、20 ℃·min-1加热速率下的热分解特性进行表征,每个样品质量≤0.7 mg;按照GJB772A-1997中601.3及601.4的方法测试样品的撞击感度和摩擦感度,撞击感度测试采用12型落锤仪,以50%发生爆炸的高度确定为特性落高,落锤(2.500±0.002) kg,环境温度为20~30 ℃,样品质量为(35±1) mg;摩擦感度测试条件为摆角90°,压力3.92 MPa,样品质量为(20±1) mg;按照GJB772A-1997中电测法测试爆速,通过探针和时间间隔测定仪确定爆轰波在CL‑20/FOX‑7基PBX药柱传播时间,进一步计算得药柱爆速,测试装置如图1所示。

    图1
                            爆速测试装置示意图

    图1 爆速测试装置示意图

    Fig.1 Schematic diagram of the experimental arrangement used to test detonation velocity

  • 3 结果与讨论

  • 3.1 SEM分析

    图2为细化CL‑20、FOX‑7及三种不同配比的CL‑20/FOX‑7基PBX造型粉的扫描电镜图。

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F003.png

    a. refine CL‑20

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F004.png

    b. raw FOX‑7

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F005.png

    c. CL‑20/FOX‑7 (1#)

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F006.png

    d. CL‑20/FOX‑7 (2#)

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F007.png

    e. CL‑20/FOX‑7 (3#)

    图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图

    Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders

    图2a可以看出细化CL‑20颗粒大小均匀,粒径约10 μm,晶体结晶致密,没有空洞,缺陷较少;图2b中FOX‑7原料颗粒为短棒状晶体,大小均匀,粒径为50~100 μm,部分颗粒存在FOX‑7典型的层状晶体结构。图2c是CL‑20/FOX‑7(1#)造型粉,颗粒呈椭球状,直径在800 μm~2 mm,包覆完全,没有颗粒外漏,部分颗粒表面略有凹陷。分析原因认为,FOX‑7与HMX、RDX等炸药相比具有较低的表面[24],当粘结剂表面张力相同时,FOX‑7炸药颗粒与高聚物的界面粘附功较小,即炸药颗粒与高聚物的单位面积界面作用较小,不利于粘结剂润湿涂覆于FOX‑7颗粒表面;该配比中FOX‑7含量较大,导致部分颗粒表面出现小的凹陷。图2d是CL‑20/FOX‑7(2#)造型粉颗粒,呈密实球形,表面较为光滑,形成完整包覆层,颗粒之间没有黏连,流散性好。与CL‑20/FOX‑7(1#)配方相比,炸药颗粒表面形貌有明显改善,说明FOX‑7含量对复合颗粒的形貌有一定影响。图2e中CL‑20/FOX‑7(3#)颗粒呈球状或椭球状,表面较为光滑,没有脱粘现象。

  • 3.2 XRD分析

    图3为细化CL‑20、FOX‑7以及三种不同配比的CL‑20/FOX‑7基PBX的XRD图。

    图3
                            细化CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的XRD衍射图谱

    图3 细化CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的XRD衍射图谱

    Fig.3 The X‑ray diffraction spectra of refine CL‑20, FOX‑7 and CL‑20/FOX‑7 based PBX molding powders

    图3可知,细化CL‑20在12.5°、13.75°、25.8°和30.3°出现了CL‑20特征衍射峰,与标准卡片(00‑050‑2045)对比可知细化CL‑20为ε晶型。FOX‑7分别在26.95°、28.1°、20.15°均有明显特征峰,分别对应着晶体的(0 2 0)(0 2 1)(1 1 1)晶面。同时可以发现细化CL‑20较FOX‑7的衍射强度明显较弱,这是由于X射线衍射峰会随着颗粒粒度减小而减[25],细化CL‑20粒径相对较小,衍射强度因此弱化。CL‑20/FOX‑7基PBX则兼有两种原料的特征峰,说明造型粉颗粒中CL‑20和FOX‑7的晶型均未改变,制备过程中粒子仅发生了物理变化。CL‑20/FOX‑7基PBX特征峰衍射强度与两种单质炸药颗粒相比也有所降低,分析认为PBX中Estane高聚物具有明显的非晶体特性,其在空间分布上呈现无规则周期性排布,削弱了CL‑20和FOX‑7的衍射特征峰强[26],所以CL‑20/FOX‑7炸药颗粒特征峰位置与原料基本相同但特征峰强度稍有减弱。

  • 3.3 热性能分析

    图4为细化CL‑20、FOX‑7、CL‑20/FOX‑7基PBX在不同升温速率下的DSC曲线。

    html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F010.png

    a. refine CL‑20

    html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image009.png

    b. raw FOX‑7

    html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image010.png

    c. CL‑20/FOX‑7(1#)

    html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image011.png

    d. CL‑20/FOX‑7(2#)

    html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image012.png

    e. CL‑20/FOX‑7(3#)

    图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图

    Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX

    图4可以看出,细化CL‑20、FOX‑7、CL‑20/FOX‑7基PBX随着升温速率的增加分解峰温提高,同时分解热有所增加。对比不同样品的分解峰温,可以发现CL‑20/FOX‑7基PBX分解峰温较FOX‑7分别提高1.4 K、3.9 K、5.6 K,这说明CL‑20/FOX‑7基PBX中CL‑20和高聚物成分降低了FOX‑7热分解速度,延缓了其分解过程,使得CL‑20/FOX‑7基PBX分解峰温有所提高。

    利用不同样品在不同升温速率下的分解峰温,分别根据Kissinger[27]、Ozawa[28]和Starink[29]计算出细化CL‑20、FOX‑7和CL‑20/FOX‑7(1#)、CL‑20/FOX‑7(2#)、CL‑20/FOX‑7(3#)的表观活化能,并计算平均值,得到每个样品的平均表观活化能,计算结果见表2

    表2 不同样品活化能和热爆炸临界温度

    Table 2 Activation energy and critical temperature of thermal explosion for different samples

    sampleEa / kJ·mol-1

    E¯a

    / kJ·mol-1

    Tp0

    / K

    Tb

    / K

    KissingerOzawaStarink
    refine CL‑20186.16194.88187.03189.36503.45515.10
    raw FOX‑7220.02228.33220.89223.07487.45496.64
    1#203.42211.76204.25206.48495.55505.85
    2#219.16227.54220.00222.23498.05507.69
    3#226.52234.92227.36229.60498.25507.58

    利用计算得到的样品平均表观活化能和公式(1)、(2[30]可知该样品的热爆炸临界温度Tb和升温速率趋近于0时的分解峰温Tp0,结果一并列于表2

    Tp0=Tpi-bβi-cβi2
    (1)
    Tb=Ea-Ea2-4REaTp02R
    (2)

    式中,Tp0为升温速率趋近于0时的分解峰温,K;b,c为常数;Tb为热爆炸临界温度,K。

    表2可知,三种不同配比的CL‑20/FOX‑7基PBX与细化CL‑20相比表观活化能分别提高了17.12,32.87 kJ·mol-1和40.24 kJ·mol-1,CL‑20/FOX‑7基PBX在分解时比CL‑20需要更高能量激活,进一步提高了炸药的安全性。

    根据以上计算的数据,借助公式(3)、(4)、(5[31]可以计算得到每个样品的活化能ΔH、活化熵ΔS和Gibbs自由能ΔG,结果如表3所示。

    表3 不同样品的热力学参数

    Table 3 Thermodynamic parameters for different samples

    sampleΔG / kJ·mol-1ΔH / kJ·mol-1ΔS / J·mol-1·K-1
    refine CL‑20162.68181.9738.33
    raw Fox‑7126.66215.97183.21
    1#125.74199.30148.44
    2#126.18215.02178.38
    3#126.42222.38192.60

    NOTE: ΔG is the free energy of activation; ΔH is the enthalpy of activation; ΔS is the entropy of activation.

    ΔH=Ea-RTp
    (3)
    ΔS=RlnA-lnKBTph
    (4)
    ΔG=ΔH-TpΔS
    (5)

    式中,KBh分别为玻尔兹曼常数和普朗克常数,KB=1.381×10-23K-1h=6.626×10-34s-1Tp为放热峰温,K,此处取升温速度趋近于0时的分解峰温为放热峰温。

    表3可以发现,所有样品的ΔG均大于0,说明所有样品的活化反应均无法自发进行,在正常储存下样品均处于稳定状态。CL‑20/FOX‑7基PBX的ΔH明显大于CL‑20原料,有利于炸药的安全储存和使用。ΔS随着CL‑20/FOX‑7比例的增大而升高,说明CL‑20含量的增加使PBX反应过程中的分解产物增多。

  • 3.4 机械感度分析

    测试得到CL‑20、CL‑20/FOX‑7基PBX及混合样品的机械感度,结果如表4所示。

    表4 CL‑20、CL‑20/Estane、CL‑20/FOX‑7基PBX及CL‑20/FOX‑7混合样品的机械感度

    Table 4 Impact and friction sensitivity of CL‑20, CL‑20/Estane, CL‑20/FOX‑7 PBXs and CL‑20/FOX‑7 mixture

    sample

    drop height H50

    / cm

    friction sensitivity / %
    refine CL‑2027.596
    CL‑20/Estane[4]35.868
    1#58.328
    2#56.532
    3#54.236
    CL‑20/FOX‑7 mixture42.156

    表4可以发现CL‑20/FOX‑7基PBX的1#2#3#配方特性落高较细化CL‑20分别提高30.8,29.0 cm和26.7 cm,摩擦感度也显著降低。CL‑20/FOX‑7基PBX与文献中CL‑20/Estane(95/5)高聚物粘结炸[4]相比,特性落高提高了51.4%~62.9%,摩擦感度也明显降低,表明FOX‑7的降感效果明显。这是由于FOX‑7具有含较多分子内和分子间氢键的分子堆叠结构,使之具有明显的钝感特[32];CL‑20/FOX‑7基PBX中添加的FOX‑7提高了炸药体系缓冲外界刺激的能力。与常见钝感传爆药PBXN‑5特性落高(36.5 cm)相比至少提升了48.5%。同时,CL‑20/FOX‑7(1#)造型粉的撞击感度和摩擦感度较同比例CL‑20/FOX‑7机械混合样品明显降低,这是由于Estane包覆填充在炸药颗粒之间有效避免炸药颗粒之间接触,并减少炸药颗粒的裂痕和瑕疵,起到缓冲保护的作用,因此有效减少了体系内热点的形成,降低炸药机械感度。

  • 3.5 爆速分析

    根据GJB772A-1997测试三种不同配比CL‑20/FOX‑7基PBX药柱爆速,得到实测爆速,根据Urizar公[33]计算出不同配比CL‑20/FOX‑7基PBX的最大理论密度下的爆速,结果见表5

    表5 CL‑20/FOX‑7基PBX爆速

    Table 5 Detonation velocities of CL‑20/FOX‑7 polymer bonded explosive

    sample

    density

    / g·cm-3

    theoretical velocity / m·s-1actual velocity / m·s-1
    1#1.76788588474
    2#1.77889178503
    3#1.80689778577
    PBXN‑5[34]1.896-8525

    表5可以发现,配方实际爆速与PBXN‑5爆速相当,达到8500 m·s-1左右,相同爆轰能量输出,CL‑20/FOX‑7基炸药安全性能较后者显著提高。

  • 4 结 论

    (1)采用水悬浮法制备了CL‑20/FOX‑7基PBX造型粉粒径为800 μm~2 mm,颗粒包覆效果较好,且CL‑20和FOX‑7晶型均未改变。

    (2)CL‑20/FOX‑7(1#)、CL‑20/FOX‑7(2#)和CL‑20/FOX‑7(3#)表观活化能比细化CL‑20分别提高了17.12,32.87 kJ·mol-1和40.24 kJ·mol-1,热安定性较CL‑20有一定提高;分解峰温较FOX‑7分别提高1.4,3.9,5.6 K,这说明PBX中CL‑20和高聚物降低了FOX‑7热分解速度,延缓了其分解过程。

    (3)CL‑20/FOX‑7基PBX与CL‑20/Estane(95/5)炸药相比,特性落高至少提高了51.4%,且PBX钝感特性随着FOX‑7含量增加而提高,说明FOX‑7可以明显改善PBX感度,使PBX安全性提高,有利于炸药的安全贮存和使用。

    (4)CL‑20/FOX‑7基PBX(65/30/5)实测爆速可以达到8577 m·s-1,与PBXN‑5爆速相当,但该配方较PBXN‑5特性落高至少提升了48.5%。

    (责编:张 琪)

  • 参考文献

    • 1

      Yang Z, Ding L, Wu P, et al. Fabrication of RDX, HMX and CL‑20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal, 2015, 268: 60-66.

    • 2

      Nair U R, Sivabalan R, Gore G M, et al. Hexanitrohexaazaisowurtzitane (CL‑20) and CL‑20‑based formulations (review)[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 121-132.

    • 3

      张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.

      ZHANG Chao‑yang. On the energy & safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 2-10.

    • 4

      冀威, 李小东, 王晶禹, 等. 纳米ε‑CL‑20/Estane制备与表征[J]. 含能材料, 2015, 23(11): 1084-1088.

      JI Wei, LI Xiao‑dong, WANG Jing‑yu, et al. Preparation and characterization of nano‑ε‑CL‑20/Estane explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(11): 1084-1088.

    • 5

      叶宝云, 王晶禹, 安崇伟, 等. CL‑20基复合含能材料的制备及性能[J]. 固体火箭技术, 2017, 40(2): 199-203.

      YE Bao‑yun, WANG Jing‑yu, AN Chong‑wei, et al. Preparation and properties of CL‑20 based composite energetic material[J]. Journal of Solid Rocket Technology, 2017, 40(2): 199-203.

    • 6

      魏华, 焦清介, 郭学永. 石蜡/Estane5703复合钝感包覆CL‑20的研究[J]. 含能材料, 2017, 25(4): 321-325.

      WEI Hua, JIAO Qing‑jie, GUO Xue‑yong. Desensitizing technology of CL‑20 by coating wax and Estane5703[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(4): 321-325.

    • 7

      王晶禹, 高康, 徐文峥, 等. 硬脂酸钙对CL‑20/Estane复合粒子性能的影响[J]. 火炸药学报, 2015, 38(4): 22-26.

      WANG Jing‑yu, GAO Kang, XU Wen‑zheng, et al. Effect of calcium stearate on the characteristics of CL‑20/Estane composite particles[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 22-26.

    • 8

      陈鲁英, 赵省向, 杨培进, 等. CL‑20炸药的包覆钝感研究[J]. 含能材料, 2006, 14(3): 171-173.

      CHEN Lu‑ying, ZHAO Sheng‑xiang, YANG Pei‑jin, et al. The coating and desensitization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3): 171-170.

    • 9

      杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.

      YANG Zhi‑jian, LIU Xiao‑bo, HE Guan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017.

    • 10

      Yang Z, Li J, Huang B, et al. Preparation and properties study of core‑shell CL‑20/TATB composites[J]. Propellants,Explosives,Pyrotechnics, 2014, 39(1): 51-58.

    • 11

      Tappan B C, Brill T B. Thermal decomposition of energetic materials 86. cryogel synthesis of nanocrystalline CL‑20 coated with cured nitrocellulose[J]. Propellants ,Explosives ,Pyrotechnics, 2003, 28(5): 223-230.

    • 12

      边红莉. CL‑‑20基核‑壳结构颗粒的制备及其性能表征[D]. 太原:中北大学, 2017.

      BIAN Hong‑li. Preparation and characterization of CL‑20 based core‑shell structure particle[D]. Taiyuan: North University of China, 2017.

    • 13

      徐容, 田野, 刘春. TATB对CL‑20降感研究[J]. 含能材料, 2003, 11(4): 219‑221.

      XU Rong, TIAN Ye, LIU Chun. Study on the desensitization of CL‑20 with TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(4): 219-221.

    • 14

      Trzciński W A, Belaada A. 1,1‑Diamino‑2,2‑dinitroethene (DADNE, FOX‑7)‑properties and formulations (a review)[J]. Central European Journal of Energetic Materials, 2016, 13(2): 527-544.

    • 15

      Helte A, Carlsson T E, Eldsäter C, et al. Performance of FOX‑7 (1,1‑diamino‑2, 2‑dinitroethylene) in shaped charge applications

      [C]//23rd International Symposium on Ballistics, Tarragona. 2007.

    • 16

      Daniel M A, Davies P J, Lochert I J. FOX‑7 for insensitive boosters[R]. Defence Science and Technology Organisation Edinburgh (Australia) Weapons Systems DIV, 2010.

    • 17

      Trzciński W A, Cudziło S, Chyłek Z, et al. Detonation properties and thermal behavior of FOX‑7‑based explosives[J]. Journal of Energetic Materials, 2013, 31(1): 72-85.

    • 18

      Chyłek Z, Jurkiewicz R. Investigation of the properties of polymer bonded explosives based on 1,1‑diamino‑2,2‑dinitroethene(FOX‑7) and 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane(HMX)[J]. Central European Journal of Energetic Materials, 2016, 13(4): 859-870.

    • 19

      赵凤起, 高红旭, 徐司雨, 等. 含1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)的钝感微烟推进剂能量参数和燃烧特性[J]. 火炸药学报, 2010, 33(4): 1-4.

      ZHAO Feng‑qi, GAO Hong‑xu, XU Si‑yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4): 1-4.

    • 20

      刘国涛, 刘少武, 于慧芳, 等. 含FOX‑7发射药的燃烧性能[J]. 火炸药学报, 2012, 35(2): 82‑85.

      LIU Guo‑tao, LIU Shao‑wu, YU Hui‑fang, et al. Combustion performance of propellant containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 82-85.

    • 21

      张阔, 罗亚军, 陈晓明, 等. 一种含FOX‑7的发射药燃烧性能研究[J]. 兵工自动化, 2013(11): 60-62.

      ZHANG Kuo, LUO Ya‑jun, CHEN Xiao‑ming, et al. Study on combustion performance of gun propellant containing FOX‑7[J]. Ordnance Industry Automation, 2013(11): 60-62.

    • 22

      Lempert D B, Dorofeenko E M, Shu Y. Energy potential of solid composite propellants based on 1,1‑diamino‑2,2‑dinitroethylene[J]. Russian Journal of Physical Chemistry B, 2016, 10(3): 483-489.

    • 23

      宋原.降感CL‑20制备工艺技术研究[D].太原:中北大学, 2016.

      SONG Yuan. The technology of the preparation process of insensitivity CL‑20[D]. Taiyuan: North University of China, 2016.

    • 24

      南海, 王晓峰. FOX‑7的表面能研究[J]. 含能材料, 2006, 14(5): 388-390.

      NAN Hai, WANG Xiao‑feng. Surface energy of FOX‑7[J]. Chinese Journal of Energetic Materials Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 388-387.

    • 25

      石晓峰, 李小东, 王晶禹, 等. RDX基超细球形包覆粒子的制备及热性能表征[J]. 固体火箭技术, 2015(3):383-386.

      SHI Xiao‑feng, LI Xiao‑dong, WANG Jing‑yu, et al. Preparation and thermal properties of RDX based ultrafine spherical coated particles[J]. Journal of Solid Rocket Technology, 2015, 38(3): 383-386.

    • 26

      Jia X, Hou C, Tan Y, et al. Fabrication and Characterization of PMMA/HMX‑based microcapsules via in situ polymerization[J]. Central European Journal of Energetic Materials, 2017, 14(3): 559-572.

    • 27

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.

    • 28

      Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the chemical society of Japan, 1965, 38(11): 1881-1886.

    • 29

      Starink M J. Analysis of hydrogen desorption from linear heating experiments: Accuracy of activation energy determinations[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6632-6641.

    • 30

      Zhang T, Hu R, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non‑isothermal DSC[J]. Thermochimica Acta, 1994, 244(244): 171-176.

    • 31

      Ye B, An C, Zhang Y, et al. One‑Step Ball Milling Preparation of Nanoscale CL‑20/graphene oxide for significantly reduced particle size and sensitivity[J]. Nanoscale research letters, 2018, 13(1): 42.

    • 32

      Sinditskii V P, Levshenkov A I, Egorshev V Y, et al. Study on combustion and thermal decomposition of 1,1‑diamino‑2,2‑dinitroethylene (FOX‑7)[C]//30th International Pyrotechnics Seminar (Europyro), 2003.

    • 33

      韩早, 王伯良. 混合炸药爆速预报的新方法[J]. 爆炸与冲击, 2014, 34(4): 421-426.

      HAN Zao, WANG Bo‑liang. A new method for predicting detonation velocity of composite explosive[J]. Explosion & Shock Waves, 2014, 34(4): 421-426.

    • 34

      王保国, 张景林, 陈亚芳, 等. HMX/TATB基高聚物粘结传爆药的研究[J]. 含能材料, 2007, 15(1): 9-11.

      WANG Bao‑guo, ZHANG Jing‑lin, CHEN Ya‑fang, et al. PBX booster explosive based on HMX/TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(1): 9-11.

李小东

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

邮 箱:lixd78@126.com

作者简介:李小东(1978-),男,副教授,主要从事火工药剂技术研究。e‑mail:lixd78@126.com

张锡铭

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

杨武

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

孙红燕

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

宋昌贵

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

王晶禹

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

samplemass fraction
CL‑20FOX‑7
1#4550
2#5540
3#6530
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F001.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F003.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F004.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F005.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F006.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F007.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F008.png
html/hncl/CJEM2018242/alternativeImage/740ee024-aa55-4a7e-8a77-ef8d8f1de027-F010.png
html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image009.png
html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image010.png
html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image011.png
html/hncl/CJEM2018242/media/740ee024-aa55-4a7e-8a77-ef8d8f1de027-image012.png
sampleEa / kJ·mol-1

E¯a

/ kJ·mol-1

Tp0

/ K

Tb

/ K

KissingerOzawaStarink
refine CL‑20186.16194.88187.03189.36503.45515.10
raw FOX‑7220.02228.33220.89223.07487.45496.64
1#203.42211.76204.25206.48495.55505.85
2#219.16227.54220.00222.23498.05507.69
3#226.52234.92227.36229.60498.25507.58
sampleΔG / kJ·mol-1ΔH / kJ·mol-1ΔS / J·mol-1·K-1
refine CL‑20162.68181.9738.33
raw Fox‑7126.66215.97183.21
1#125.74199.30148.44
2#126.18215.02178.38
3#126.42222.38192.60
sample

drop height H50

/ cm

friction sensitivity / %
refine CL‑2027.596
CL‑20/Estane[4]35.868
1#58.328
2#56.532
3#54.236
CL‑20/FOX‑7 mixture42.156
sample

density

/ g·cm-3

theoretical velocity / m·s-1actual velocity / m·s-1
1#1.76788588474
2#1.77889178503
3#1.80689778577
PBXN‑5[34]1.896-8525

表1 CL‑20/FOX‑7基PBX配比

Table 1 CL‑20/FOX‑7 polymer bonded explosive formulations%

图1 爆速测试装置示意图

Fig.1 Schematic diagram of the experimental arrangement used to test detonation velocity

图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图 -- a. refine CL‑20

Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders -- a. refine CL‑20

图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图 -- b. raw FOX‑7

Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders -- b. raw FOX‑7

图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图 -- c. CL‑20/FOX‑7 (1#)

Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders -- c. CL‑20/FOX‑7 (1#)

图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图 -- d. CL‑20/FOX‑7 (2#)

Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders -- d. CL‑20/FOX‑7 (2#)

图2 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX造型粉的SEM图 -- e. CL‑20/FOX‑7 (3#)

Fig.2 SEM images of CL‑20, FOX‑7 and CL‑20/FOX‑7 molding powders -- e. CL‑20/FOX‑7 (3#)

图3 细化CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的XRD衍射图谱

Fig.3 The X‑ray diffraction spectra of refine CL‑20, FOX‑7 and CL‑20/FOX‑7 based PBX molding powders

图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图 -- a. refine CL‑20

Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX -- a. refine CL‑20

图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图 -- b. raw FOX‑7

Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX -- b. raw FOX‑7

图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图 -- c. CL‑20/FOX‑7(1#)

Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX -- c. CL‑20/FOX‑7(1#)

图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图 -- d. CL‑20/FOX‑7(2#)

Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX -- d. CL‑20/FOX‑7(2#)

图4 CL‑20、FOX‑7及CL‑20/FOX‑7基PBX的DSC图 -- e. CL‑20/FOX‑7(3#)

Fig.4 DSC curves of CL‑20, FOX‑7 and CL‑20/FOX‑7 PBX -- e. CL‑20/FOX‑7(3#)

表2 不同样品活化能和热爆炸临界温度

Table 2 Activation energy and critical temperature of thermal explosion for different samples

表3 不同样品的热力学参数

Table 3 Thermodynamic parameters for different samples

表4 CL‑20、CL‑20/Estane、CL‑20/FOX‑7基PBX及CL‑20/FOX‑7混合样品的机械感度

Table 4 Impact and friction sensitivity of CL‑20, CL‑20/Estane, CL‑20/FOX‑7 PBXs and CL‑20/FOX‑7 mixture

表5 CL‑20/FOX‑7基PBX爆速

Table 5 Detonation velocities of CL‑20/FOX‑7 polymer bonded explosive

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

ΔG is the free energy of activation; ΔH is the enthalpy of activation; ΔS is the entropy of activation.

无注解

无注解

  • 参考文献

    • 1

      Yang Z, Ding L, Wu P, et al. Fabrication of RDX, HMX and CL‑20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal, 2015, 268: 60-66.

    • 2

      Nair U R, Sivabalan R, Gore G M, et al. Hexanitrohexaazaisowurtzitane (CL‑20) and CL‑20‑based formulations (review)[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 121-132.

    • 3

      张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.

      ZHANG Chao‑yang. On the energy & safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 2-10.

    • 4

      冀威, 李小东, 王晶禹, 等. 纳米ε‑CL‑20/Estane制备与表征[J]. 含能材料, 2015, 23(11): 1084-1088.

      JI Wei, LI Xiao‑dong, WANG Jing‑yu, et al. Preparation and characterization of nano‑ε‑CL‑20/Estane explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(11): 1084-1088.

    • 5

      叶宝云, 王晶禹, 安崇伟, 等. CL‑20基复合含能材料的制备及性能[J]. 固体火箭技术, 2017, 40(2): 199-203.

      YE Bao‑yun, WANG Jing‑yu, AN Chong‑wei, et al. Preparation and properties of CL‑20 based composite energetic material[J]. Journal of Solid Rocket Technology, 2017, 40(2): 199-203.

    • 6

      魏华, 焦清介, 郭学永. 石蜡/Estane5703复合钝感包覆CL‑20的研究[J]. 含能材料, 2017, 25(4): 321-325.

      WEI Hua, JIAO Qing‑jie, GUO Xue‑yong. Desensitizing technology of CL‑20 by coating wax and Estane5703[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(4): 321-325.

    • 7

      王晶禹, 高康, 徐文峥, 等. 硬脂酸钙对CL‑20/Estane复合粒子性能的影响[J]. 火炸药学报, 2015, 38(4): 22-26.

      WANG Jing‑yu, GAO Kang, XU Wen‑zheng, et al. Effect of calcium stearate on the characteristics of CL‑20/Estane composite particles[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 22-26.

    • 8

      陈鲁英, 赵省向, 杨培进, 等. CL‑20炸药的包覆钝感研究[J]. 含能材料, 2006, 14(3): 171-173.

      CHEN Lu‑ying, ZHAO Sheng‑xiang, YANG Pei‑jin, et al. The coating and desensitization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3): 171-170.

    • 9

      杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.

      YANG Zhi‑jian, LIU Xiao‑bo, HE Guan‑song, et al. Advances in design and research of composite explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017.

    • 10

      Yang Z, Li J, Huang B, et al. Preparation and properties study of core‑shell CL‑20/TATB composites[J]. Propellants,Explosives,Pyrotechnics, 2014, 39(1): 51-58.

    • 11

      Tappan B C, Brill T B. Thermal decomposition of energetic materials 86. cryogel synthesis of nanocrystalline CL‑20 coated with cured nitrocellulose[J]. Propellants ,Explosives ,Pyrotechnics, 2003, 28(5): 223-230.

    • 12

      边红莉. CL‑‑20基核‑壳结构颗粒的制备及其性能表征[D]. 太原:中北大学, 2017.

      BIAN Hong‑li. Preparation and characterization of CL‑20 based core‑shell structure particle[D]. Taiyuan: North University of China, 2017.

    • 13

      徐容, 田野, 刘春. TATB对CL‑20降感研究[J]. 含能材料, 2003, 11(4): 219‑221.

      XU Rong, TIAN Ye, LIU Chun. Study on the desensitization of CL‑20 with TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(4): 219-221.

    • 14

      Trzciński W A, Belaada A. 1,1‑Diamino‑2,2‑dinitroethene (DADNE, FOX‑7)‑properties and formulations (a review)[J]. Central European Journal of Energetic Materials, 2016, 13(2): 527-544.

    • 15

      Helte A, Carlsson T E, Eldsäter C, et al. Performance of FOX‑7 (1,1‑diamino‑2, 2‑dinitroethylene) in shaped charge applications

      [C]//23rd International Symposium on Ballistics, Tarragona. 2007.

    • 16

      Daniel M A, Davies P J, Lochert I J. FOX‑7 for insensitive boosters[R]. Defence Science and Technology Organisation Edinburgh (Australia) Weapons Systems DIV, 2010.

    • 17

      Trzciński W A, Cudziło S, Chyłek Z, et al. Detonation properties and thermal behavior of FOX‑7‑based explosives[J]. Journal of Energetic Materials, 2013, 31(1): 72-85.

    • 18

      Chyłek Z, Jurkiewicz R. Investigation of the properties of polymer bonded explosives based on 1,1‑diamino‑2,2‑dinitroethene(FOX‑7) and 1,3,5,7‑tetranitro‑1,3,5,7‑tetraazacyclooctane(HMX)[J]. Central European Journal of Energetic Materials, 2016, 13(4): 859-870.

    • 19

      赵凤起, 高红旭, 徐司雨, 等. 含1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)的钝感微烟推进剂能量参数和燃烧特性[J]. 火炸药学报, 2010, 33(4): 1-4.

      ZHAO Feng‑qi, GAO Hong‑xu, XU Si‑yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4): 1-4.

    • 20

      刘国涛, 刘少武, 于慧芳, 等. 含FOX‑7发射药的燃烧性能[J]. 火炸药学报, 2012, 35(2): 82‑85.

      LIU Guo‑tao, LIU Shao‑wu, YU Hui‑fang, et al. Combustion performance of propellant containing FOX‑7[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 82-85.

    • 21

      张阔, 罗亚军, 陈晓明, 等. 一种含FOX‑7的发射药燃烧性能研究[J]. 兵工自动化, 2013(11): 60-62.

      ZHANG Kuo, LUO Ya‑jun, CHEN Xiao‑ming, et al. Study on combustion performance of gun propellant containing FOX‑7[J]. Ordnance Industry Automation, 2013(11): 60-62.

    • 22

      Lempert D B, Dorofeenko E M, Shu Y. Energy potential of solid composite propellants based on 1,1‑diamino‑2,2‑dinitroethylene[J]. Russian Journal of Physical Chemistry B, 2016, 10(3): 483-489.

    • 23

      宋原.降感CL‑20制备工艺技术研究[D].太原:中北大学, 2016.

      SONG Yuan. The technology of the preparation process of insensitivity CL‑20[D]. Taiyuan: North University of China, 2016.

    • 24

      南海, 王晓峰. FOX‑7的表面能研究[J]. 含能材料, 2006, 14(5): 388-390.

      NAN Hai, WANG Xiao‑feng. Surface energy of FOX‑7[J]. Chinese Journal of Energetic Materials Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 388-387.

    • 25

      石晓峰, 李小东, 王晶禹, 等. RDX基超细球形包覆粒子的制备及热性能表征[J]. 固体火箭技术, 2015(3):383-386.

      SHI Xiao‑feng, LI Xiao‑dong, WANG Jing‑yu, et al. Preparation and thermal properties of RDX based ultrafine spherical coated particles[J]. Journal of Solid Rocket Technology, 2015, 38(3): 383-386.

    • 26

      Jia X, Hou C, Tan Y, et al. Fabrication and Characterization of PMMA/HMX‑based microcapsules via in situ polymerization[J]. Central European Journal of Energetic Materials, 2017, 14(3): 559-572.

    • 27

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.

    • 28

      Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the chemical society of Japan, 1965, 38(11): 1881-1886.

    • 29

      Starink M J. Analysis of hydrogen desorption from linear heating experiments: Accuracy of activation energy determinations[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6632-6641.

    • 30

      Zhang T, Hu R, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non‑isothermal DSC[J]. Thermochimica Acta, 1994, 244(244): 171-176.

    • 31

      Ye B, An C, Zhang Y, et al. One‑Step Ball Milling Preparation of Nanoscale CL‑20/graphene oxide for significantly reduced particle size and sensitivity[J]. Nanoscale research letters, 2018, 13(1): 42.

    • 32

      Sinditskii V P, Levshenkov A I, Egorshev V Y, et al. Study on combustion and thermal decomposition of 1,1‑diamino‑2,2‑dinitroethylene (FOX‑7)[C]//30th International Pyrotechnics Seminar (Europyro), 2003.

    • 33

      韩早, 王伯良. 混合炸药爆速预报的新方法[J]. 爆炸与冲击, 2014, 34(4): 421-426.

      HAN Zao, WANG Bo‑liang. A new method for predicting detonation velocity of composite explosive[J]. Explosion & Shock Waves, 2014, 34(4): 421-426.

    • 34

      王保国, 张景林, 陈亚芳, 等. HMX/TATB基高聚物粘结传爆药的研究[J]. 含能材料, 2007, 15(1): 9-11.

      WANG Bao‑guo, ZHANG Jing‑lin, CHEN Ya‑fang, et al. PBX booster explosive based on HMX/TATB[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(1): 9-11.