CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
王泽山.含能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 4.
WANGZe‑shan. Introduction of Energetic materials[M]. Harbin, Press of Harbin Institute of Technology, 2006:4.
参考文献 2
LiY C, QiC, LiS H, et al. 1,1'‑Azobis‑1,2,3‑triazole: A high‑nitrogen compound with stable N‑8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.
参考文献 3
GaoH, ShreeveJ M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7336.
参考文献 4
JooY H, ShreeveJ M. Nitroimino‑tetrazolates and oxy‑nitroimino‑tetrazolates[J]. Journal of the American Chemical Society, 2010, 132(42): 15081-15090.
参考文献 5
罗运军, 李生华, 李国平,等.新型含能材料[M]. 北京:国防工业出版社, 2015.
LUOYun‑jun, LISheng‑hua, LIGuo‑ping, et al. Novel energectic Materials[M]. Beijing:National Defence Industry Press, 2015.
参考文献 6
HuangH, ShiY, LiuY, et al. 1,2,4,5‑Dioxadiazine‑functionalized [N‑NO2]‑ furazan energetic salts[J]. Dalton Transactions, 2016, 45(39): 15382-15389.
参考文献 7
YangQ, SongX, ZhangW, et al. Three new energetic complexes with N,N‑bis(1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton Transactions, 2017, 46(8): 2626-2634.
参考文献 8
SethS, McdonaldK A, MatzgerA J. Metal effects on the sensitivity of isostructural metal‑organic frameworks based on 5‑amino‑3‑nitro‑1H‑1,2,4‑triazole[J]. Inorganic Chemistry, 2017, 56(17): 10151-10154.
参考文献 9
KlapötkeT M, KurzM Q, SchmidP C, et al. Energetic improvements by N—O xidation: insensitive amino‑hydroximoyl‑tetrazole‑2N‑oxides[J]. Journal of Energetic Materials, 2015, 33(3): 191-201.
参考文献 10
KlapötkeT M, MartinF A, StierstorferJ. N‑bound primary nitramines based on 1,5‑diaminotetrazole[J]. Chemistry‑A European Journal, 2012, 18(5): 1487-1501.
参考文献 11
LiuL, HeC, LiC, et al. Synthesis and characterization of 5‑amino‑1‑nitriminotetrazole and its salts[J]. Journal of Chemical Crystallography, 2012, 42(8): 816-823.
参考文献 12
WangL, MezeyP G. Predicted high‑energy molecules: Helical all‑nitrogen and helical nitrogen‑rich ring clusters[J]. Journal of Physical Chemistry A, 2005, 36(26): 3241-3243.
参考文献 13
阳世清, 徐松林, 雷永鹏.氮杂环含能化合物的研究进展[J]. 含能材料, 2006, 14(6): 475-484.
YANGShi‑qing, XUSong‑lin, LEIYongpeng. Developmetn on nitrogen heterocyclic energectic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(6): 475-484.
参考文献 14
LiuW, LinQ H, YangY Z, et al. Energetic salts based on an oxygen‑containing cation: 2,4‑diamino‑1,3,5‑triazine‑6‑one[J]. Chemistry‑an Asian Journal, 2014, 9(2): 479-486.
参考文献 15
GaoH, YeC, M. PiekarskiCrystal, et al. Computational characterization of energetic salts[J]. Journal of Physical Chemistry C, 2007, 111(28): 10718-10731.
参考文献 16
JenkinsH D, TudelaD, GlasserL. Lattice potential energy estimation for complex ionic salts from density measurements[J]. Inorganic Chemistry, 2002, 41(9): 2364-2367.

    摘要

    通过C—N键联唑类高氮含能化合物1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑分别与相应的氢氧化物或碳酸盐反应,合成了7种未见报道的1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐。利用元素分析、红外光谱、质谱等对其结构进行了表征,首次培养得到了其中5种金属盐的单晶,测试了其晶体结构。运用差示扫描量热分析(DSC)研究了该系列金属盐的热稳定性,大部分金属盐均具有较好的热稳定性,其中锂盐脱水后的热分解温度最高(258 ℃)。利用等键反应计算了部分金属盐的生成焓,其中两种金属盐的生成焓高于1000 kJ·mol-1。运用EXPLO5软件估算其爆炸性能,并测试了撞击感度和摩擦感度,结果表明该系列金属盐属于钝感含能材料。

    Abstract

    even metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole were synthesized firstly by using the reaction with related hydroxide or carbonate. They are characterized by using EA, IR, NMR technologies. And X‑ray single crystals of five metal salts were obtained. The thermal stability of the metal salts was studied by DSC. Most of them have good thermal stability after the water molecular was lost, and the decomposition temperature of lithium salts is highest with a value of 258 ℃. The enthalpy of formation was calculated by the isometric reaction method. The enthalpy of formation of two metal salts are higher than 1000 kJ·mol-1. The detonation performance was estimated by using EXPLO5 software, and the impact sensitivity and friction sensitivity were tested. The results show that these metal salt are insensitive energetic materials.

  • 1 引言

    1

    含能材料是一类含有爆炸性基团或含有氧化剂和可燃物,能够独立进行化学反应并输出能量的化合物或混合物,主要包括炸药、推进剂、发射药、火工药剂[1,2,3,4]。它是发展新型武器装备的关键材料,是战斗部进行毁伤的威力能源,同样也是航天运载、空间探测和航空救生所用助推、调姿、分离等装置的动力能[5]。新型高氮杂环含能化合物主要是指以含氮杂环为骨架,且氮含量相对较高的有机含能化合物,除少量含一个或两个氮原子的氮杂环以外,主要以含有三个或四个氮原子的五元杂环和六元杂环为主,同时还包括含有多个氮原子的高能量密度笼形化合物,因其能量水平高、综合性能较好、合成工艺逐渐成熟等优点,日益成为新型含能材料领域的研究热点之[6,7,8,9,10,11,12]

    在高氮含能化合物中,三唑、四唑类高氮含能化合物分子结构中都含有大量的N—N、C—N、N N和C N键,具有较高的正生成焓,这也使得其具有较高的化学潜[13]。这些含氮杂环体系的化合物大多都可以形成类似于苯环结构的大π键,该结构有助于降低感度、并增加其热稳定性。同时,高氮含量和相对较低的碳、氢含量使得分子更易于实现氧平衡,提高密度。因此,高氮杂环含能化合物在环境友好型炸药、火箭推进剂和烟火药等领域具有潜在应用前[14]。C—N键联唑类高氮含能化合物具有比C—C键相连唑类含能化合物更高的生成焓,1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑具有良好的热稳定性,是典型的C—N键联高氮含能化合物分子。且其三唑环上的氢原子容易失去、成为良好的含能阴离子,故易和金属氢氧化物或金属碳酸盐反应生成相应金属盐,有望应用于钝感含能材料领域。本研究制备了7种1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑的金属盐,首次得到了其中5种金属盐的晶体,并对其单晶结构、热稳定性、感度性能和爆炸性能进行了研究。

  • 2 实验部分

    2
  • 2.1 试剂和仪器

    2.1

    主要试剂有氢氧化锂、氢氧化钠、氢氧化钾、碳酸铷、碳酸铯、氢氧化镁、氢氧化钙、无水甲醇等,规格均为分析纯试剂。除特别说明外,均是未经处理直接使用的。实验用水为去离子水。

    仪器:德国ELEMENTAR公司的ElementarVario El Ⅲ型元素分析仪,美国尼高力仪器公司的Nicolet Nexus 470 FT‑IR红外光谱仪,分辨率为4 cm-1;美国安捷伦公司的Agilent 500 M质谱仪;德国Bruker公司的SMART‑1000型X‑射线单晶衍射仪;瑞士Mettler公司Mettler DSC‑3型差示扫描量热仪;中国兵器213研究所的CGY‑1型机械撞击感度仪,捷克的BAM FSA‑12型摩擦感度仪。

  • 2.2 合成与理化性质

    2.2

    在室温下将1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑(1)137 mg(1 mmol)加入到无水甲醇中,搅拌均匀后,作底液;取相应的金属氢氧化物(氢氧化锂、氢氧化钠、氢氧化钾,1 mmol)、(氢氧化镁、氢氧化钙,0.5 mmol)和相应碳酸盐(碳酸铷、碳酸铯,0.5 mmol)溶于少量去离子水中作为滴加液;室温下搅拌反应1 h后,过滤,取澄清液在室温下缓慢挥发,培养得到单晶。反应路线见Scheme 1。

    Scheme1 Preparation route of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑锂盐(1-1):IR (KBr,ν/cm-1):3556,3455,3321,3135,1771,1668,1536,1507,1456,1384,1263,1195,1063,1023,989,974。MS(ESI‑):m/z=137.04。Anal.calcd for C 20.10%,H 3.35%,N 54.72%; found: C 20.31%,H 3.26%,N 54.69%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑钠盐(1-2):IR (KBr,ν/cm-1):3372,3149,3095,1700,1554,1527,1511,1453,1385,1335,1203,1175,1054,1099,997,725。MS(ESI‑):m/z=137.04。Anal.calcd for C 18.45%,H 3.08%,N 50.23%; Found:C 18.22%,H 3.16%,N 50.29%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑钾盐(1-3):IR (KBr,ν/cm-1):3439,3372,3303,3139,3100,3043,2986,1718,1680,1550,1531,,1502,1457,1377,1317,1261,1249,1197,1126,1102,1043,984,971。MS(ESI‑):m/z=137.04。Anal.calcd for C 17.05%,H 2.84%,N 46.40%; found :C 17.22%,H 2.80%,N 46.69%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑铷盐(1-4):IR (KBr,ν/cm-1):3405,3157,2958,2652,2096,1646,1629,1559,1524,1399,1260,1190,1135,1102,1052,1002,987,970,861。MS(ESI‑):m/z=137.04。Anal.calcd for C 15.03%,H 1.67%,N 40.90%;found:C 15.12%,H 1.74%,N 41.22%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑铯盐(1-5):IR (KBr,ν/cm-1):3535,3098,2946,2863,2711,1734,1654,1554,1519,1498,1403,1372,1255,1245,1199,1104,1048,1008,990,978,914,870。MS(ESI‑):m/z=137.04。Anal.calcd for C 12.54%,H 1.39%,N 34.15%; found:C 12.21%,H 1.56%,N 34.50%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑镁盐(1-6):IR (KBr,ν/cm-1):3495,3423,3225,3130,2513,1693,1636,1525,1500,1442,1400,1384,1334,1271,1259,1191,1116,1044,991,870。,MS(ESI‑):m/z=137.04。Anal.calcd for C 16.34%,H 4.54%,N 44.48%; found:C 16.54%,H 4.65%,N 44.40%。

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑钙盐(1-7):IR (KBr,ν/cm-1):3416,3138,2986,2916,2729,1880,1644,1552,1530,1509,1488,1457,1377,1325,1283,1271,1198,1179,1091,1063,1018,997,920,830。MS(ESI‑):m/z=137.04。Anal.calcd for C 16.42%,H 4.11%,N 44.71%; found:C 16.49,H 4.06,N 44.98%。

  • 3 结果与讨论

    3
  • 3.1 晶体结构

    3.1

    通过自然挥发法培养得到了1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑的5种金属盐单晶结构,选取尺寸大小合适的晶体在X射线单晶衍射仪上通过ω‑θ方式进行扫描,采用经石墨单色器单色化的MoKα射线(λ=0.71073 Å)衍射收集数据,采用Lp和半经验吸收方法对所收集的衍射点进行了校正。利用SHELXS‑97程序对晶体进行结构解析,并利用SHELXL‑97对数据进行精修,全部的cif文件均通过checkCIF进行检查。金属盐的晶体数据见表1

    表1 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶体结构数据

    Table 1 Crystallographic data of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    compound1-11-41-51-61-7
    empirical formulaC3H6LiN7O2C3H4RbN7OC3H4CsN7OC6H20MgN14O8C6H18CaN14O7
    space groupP‑1P‑1PbcaP121P121/c1
    a7.1420(8)7.2323(6)14.651(4)8.4498(17)13.564(3)
    b7.7322(8)7.6162(7)6.8438(17)7.0313(14)6.6883(13)
    c7.7569(9)7.6654(7)16.066(4)16.406(3)20.290(4)
    α/(°)80.504(2)84.237(2)90.0090.0090.00
    β/(°)63.4710(10)86.226(2)90.00103.73(3)102.29(3)
    γ/(°)83.865(2)63.6890(10)90.0090.0090.00
    V3377.74(7)188.2(6)1610.9(7)946.9(3)1798.5(7)
    Z21824
    Dc /g·cm-31.5752.1142.3501.5461.619
    μ /mm-10.1290.1334.5620.1650.416
    F(000)1842801056460912
    T /K298(2)298(2)298(2)153(2)298(2)
    θ /(°)2.67-25.022.993-27.9752.54-25.013.049-27.4942.0546-27.4700
    H-8-8-8-8-17-11-10-10-17-17
    K-9-9-8-9-8-7-9-7-8-8
    L-9-8-7-9-18-19-17-21-26-26
    reflection measured12971303141321353574
    independent reflection10011136109419844088
    rint0.04170.03610.03530.03300.0705
    parameters118109110133253
    R1(I>2σ(I))0.12770.04420.02350.04520.0956
    wR2(I>2σ(I))0.32510.11450.05170.09910.1802
    R1(all data)0.1395,0.04970.03680.04980.1110
    wR2(all data)0.36080.11690.05770.10170.1881
    resd. dens. /e·Å-3-0.576-0.952-0.978-0.854-0.374-0.651-0.269-0.202-0.500-0.907
    表1
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶体结构数据

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑部分金属盐的晶体结构和晶胞堆积图分别如图1和图2。1-1中,锂离子分别与2个氧原子和2个氮原子进行配位,形成四配位四面体结构。其中,氧原子来自于2个水分子,氮原子分别来自两个阴离子三唑环上N(5)原子和N(6)原子。两个相邻的锂离子通过N原子相互连接在一起并无限延伸,构成了1D链状结构,分子中存在大量氢键,它们对维持这种1D链状结构有至关重要的作用,从而保证了化合物的稳定性。

    图1
                            1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的分子结构图

    图1 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的分子结构图

    Fig.1 The molecular structures of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    图2
                            1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶胞堆积图

    图2 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶胞堆积图

    Fig.2 The packing diagrams of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    化合物1-4中铷离子分别与2个氧原子和6个氮原子进行配位,表现为畸变的八配位四角双锥结构。其中,氧原子来自于2个水分子,氮原子分别来自阴离子唑环上的不同氮原子。1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑在配位结构中是双齿螯合‑桥联配位模式,每个配体中的O(1)和个别氮原子都分别与两个不同的铷离子发生配位。两个相邻的铷离子通过N原子相互连接在一起并无限延伸,构成了3D链状结构,这种结构使得分子更加的稳定。分子中还存在以下两种氢键:O(1)—H(1A)…N(5)和O(1)—H(1B)…N(6),对维持这种3D结构也有至关重要的作用。

    化合物1-5结晶为正交晶系,Pbca空间群,铯离子呈现出11配位,分别与2个氧原子和9个氮原子形成11个配位键。其中,氧原子来自于2个水分子,氮原子分别来自阴离子唑环上的不同氮原子。1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑在配位结构中是双齿螯合‑桥联配位模式,每个配体中的O(1)和个别氮原子都分别与两个不同的铯离子发生配位。两个相邻的铯离子通过N原子相互连接在一起并无限延伸,构成了3D链状结构,这种紧密的结构使得分子更加的稳定,提高了密度。

    化合物1-6表现为单斜晶系,P/21空间群,镁离子是6配位,与6个水分子上的氧发生配位形成八面体结构。在结晶中还有两个结晶水分子。由于存在较多的配位水和结晶水,分子内和分子间形成了大量的氢键,氢键作用将中心镁离子和相邻的阴离子连接起来形成了1D链状结构。

    化合物1-7中钙离子分别与7个水分子上的氧形成七配位单帽八面体结构。由于分子中存在较多的配位水,故而形成了许多的氢键,同1-6相似,这种结构由于分子中含能大量配位水,故其致使化合物的密度有所降低。

  • 3.2 热分析

    3.2

    金属盐1-1~1-7的DSC测试条件为氮气气氛,升温速率为5 ℃·min-1。曲线如图3所示,从图中可知金属盐1-1~1-7的放热分解温度范围为146~258 ℃,大多数分解温度都在200 ℃以上,其中锂盐具有最高的放热分解温度为258 ℃,说明锂盐的热稳定性最好。铯盐的放分解温度最低为146 ℃。所有金属盐的DSC曲线均首先表现为较弱的吸热过程,之后又出现强烈的放热过程。从图中还可以看出,所有金属盐的放热峰形尖锐,说明放热分解过程十分迅速,并放出大量的气体。

    图3
                            1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的DSC曲线

    图3 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的DSC曲线

    Fig.3 DSC curves of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    为进一步研究化合物1-1~1-7的热分解反应过程,分别在5,10,15,20 ℃·min-1四种不同升温速率下,在0~500 ℃范围内对制备的7种金属盐进行热分解DSC测试,得到它们在不同升温速率下的第一放热分解峰的峰温数据,列于表2

    表2 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的放热分解峰温

    Table 2 Peak temperatures of the first exothermic stage at different heating rates of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    compoundTd / ℃
    5 / ℃·min‑110 / ℃·min‑115 / ℃·min‑120 / ℃·min‑1
    1-1258.0264.2269.5276.2
    1-2217.5222.1228.3236.9
    1-3192.5197.4203.5209.8
    1-4170.5177.2183.4188.9
    1-5146.0151.2158.6162.7
    1-6196.2200.8206.3211.9
    1-7231.7236.8241.6247.9
    表2
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的放热分解峰温

    Td is exothermic decomposition temperature.

    根据表2中不同速率下的放热峰温数据计算7种金属盐的放热分解反应活化能Ea(利用Kissinger和Ozawa‑Doyle法两种方法计算得到活化能取平均值)和指前因子A,计算得到的非等温动力学参数列于表3。由表3可知,在1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑的金属盐中,化合物1-1的表观活化能最高(177.5 kJ·mol-1),1-5的表观活化能最低(112.9 kJ·mol-1),说明化合物1-1具有最好的热稳定性,化合物1-5的热稳定性最差,结果与DSC测试结果一致。

    表3 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的非等温反应动力学参数

    Table 3 The kinetic parameters of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    compoundKissingerOzawa
    EK/kJ·mol-1ln(AK/s-1RKEO/kJ·mol-1RO
    1-1177.515.11-0.9771177.5-0.9792
    1-2133.011.99-0.9417134.4-0.9480
    1-3137.513.29-0.9666138.3-0.9700
    1-4120.211.97-0.9880121.5-0.9894
    1-5112.911.93-0.9789114.2-0.9813
    1-6154.915.15-0.9697154.8-0.9726
    1-7176.616.17-0.9695176.0-0.9722
    表3
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的非等温反应动力学参数

    EK is apparent activation energy. AK is pre‑exponential factor. R is molar gas constant.

    由表3可知利用Kissinger和Ozawa‑Doyle法两种方法计算得到1-1~1-7的活化能结果,同时可得其分解过程的Arrhenius方程为:

    1-1: lnk=15.11-177.5×103/(RT)

    1-2: lnk=11.99-133.7×103/(RT)

    1-3: lnk=13.29-137.9×103/(RT)

    1-4: lnk=11.97-120.9×103/(RT) (1)

    1-5: lnk=11.93-113.6×103/(RT)

    1-6: lnk=15.15-154.9×103/(RT)

    1-7: lnk=16.17-176.3×103/(RT)

    式中,R为摩尔气体常量;T为热力学温度。

    为了进一步评估化合物1-1~1-7的热安全性,可通过热爆炸临界温度(Tbp)、活化熵(ΔS)、活化焓(ΔH)和活化吉布斯自由能(ΔG)来初步判定其对热刺激的相应强弱。

    将计算得到的热爆炸临界温度和热力学参数列于表4中,由表可知,1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的爆炸临界温度范围在162.3~262.0 ℃,表明大多数金属盐的安全性较好。其中1-1的Tbp最高为262.0 ℃,1-5的Tbp最低为162.3 ℃,其热安全性由高到低依次排序为1-1>1-7>1-2>1-6>1-3>1-4>1-5。

    表4 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的热爆炸临界温度和热力学参数

    Table 4 The critical temperatures of thermal explosion and thermodynamic parameters of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    compoundTp0 / ℃Tbp / ℃

    ΔS

    / J·mol-1·K-1

    ΔH

    / kJ·mol-1

    ΔG

    / kJ·mol-1

    1-1248.6262.0-123.94173.16237.83
    1-2213.7229.3-149.30128.95201.64
    1-3189.8203.5-138.08133.65197.57
    1-4163.5177.4-148.56116.57181.44
    1-5148.5162.3-148.61109.39172.05
    1-6193.3205.6-122.67151.02208.24
    1-7224.5236.8-114.73172.46229.56
    表4
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的热爆炸临界温度和热力学参数

    Tp0 is exothermic decomposition peak temperature.Tbp is critical temperature for thermal explosion. ΔS is activation entropy. ΔH is activation enthalpy; ΔG is activation Gibbs free energy.

    根据过渡态理论,所有1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的ΔH和ΔG均为正值,说明它们热分解过程是非自发的吸热过程,需要在外界热能作用下发生分解。同时ΔH和ΔG的值越大,说明物质吸收热量分解所需外界能量越大,在同一外界热刺激条件下相对越稳定,因此对于1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐,其热稳定性由高到低为1-1>1-7>1-6>1-2>1-3>1-4>1-5。

  • 3.3 爆炸性能

    3.3

    采用Gaussian 03软件计算1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的生成焓,采用B3LYP/6‑31+G**方法进行分子的结构优化和频率分析,单点能量计算采用MP2/6‑311++G**方法进[15,16]。所有结构优化均在势能面上的真实能量最小点计算,没有虚频。

    ΔHθf(ionic salt,298 K)=ΔHfθ(cation,298 K)+

    ΔHfθ(anion,298 K)-ΔHL(2)

    式中,ΔHL是含能离子盐的晶格能,可以通过Jenkins等提出的公式(3)计算得到,这里的nMnX的取值分别取决于Mp+Xq‑离子,对于单原子离子取值为3,对于线性多原子离子取值为5,对于非线性多原子离子取值为6。这里的UPOT为晶格势能,可以按照公式(4)计算得到。

    ΔHL=UPOT+[p(nM/2‑2)+q(nX/2‑2)]RT (3)

    UPOT=γ(ρm/Mm)1/3+δ (4)

    式中,Mm是金属盐的分子量;ρm为密度,g·cm-3,系数γδ采用文献[16]

    经过上述等键方法计算所得部分金属盐的生成焓列于表5,1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的生成焓范围为16.73~1264.9 kJ·mol-1。用EXPLO5计算了这些金属盐的爆炸性能,爆速范围在6846~7921 m·s-1,爆压范围在13.2~17.1 GPa,其中1-5的爆速和爆压最高(爆速,7921 m·s-1;爆压,16.3 GPa),可能是由于1-5的多配位结构形成了3D结构,这种紧密的堆积结构有助于提高化合物的能量性质。

    表5 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的爆炸性能参数

    Table 5 Energetic properties of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    Compound

    Td

    / ℃

    ρ

    / g·cm-3

    ΔHf

    / kJ·mol-1

    D

    / m·s-1

    p

    / GPa

    1-1258.01.575398764917.3
    1-4170.52.11416.73713713.2
    1-5146.02.3503.95792116.3
    1-6196.21.5461264.9715217.1
    1-7231.71.619867.56684615.0
    表5
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的爆炸性能参数

    1) Td is exothermic decomposition temperature; 2)ρ is density; 3) ΔHf is heat of formation; 4) D isdetonation velocity; 5) p is detonation pressure.

    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的撞击和摩擦感度测试结果见表6。由表6数据可知,金属盐1-1和1-4~1-7的撞击感度均大于40 J,摩擦感度均大于360 N,均属于钝感含能材料。

    表6 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的撞击和摩擦感度测试结果

    Table 6 Sensitivities of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

    compoundIS / JFS / N
    1-1>40>360
    1-2>40>360
    1-3>40>360
    1-4>40>360
    1-5>40>360
    1-6>40>360
    1-7>40>360
    表6
                    1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的撞击和摩擦感度测试结果

    IS is impact sensitivity. FS is friction sensitivity. Test condition: 5 kg drop hammer.

  • 4 结 论

    4

    合成制备了7种1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑的金属盐,其中,1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑的锂盐(1-1)、铷盐(1-4)、铯盐(1-5)、镁盐(1-6)和钙盐(1-7)通过自然挥发法培养得到了单晶。金属盐中1-1和1-2都具有良好的热稳定性,其分解放热温度均大于200 ℃。其余几种金属盐的热分解放热温度接近200 ℃。两种方法测得结果均表明化合物1-7表观活化能最高为176.6 kJ·mol-1,化合物1-5最低为133.6 kJ·mol-1,并且两种方法测出的结果基本一致。大多数金属盐的热爆炸临界温度均高于200 ℃,其中化合物1-1的热爆炸临界温度最高,为262.0 ℃,化合物1-5最低为162.3 ℃,表明1-1的热安全性最好。化合物1-4具有最好的爆炸性能,爆速为7921 m·s-1。所有含能金属盐对撞击和摩擦都十分钝感,属于钝感含能材料。

  • 参考文献

    • 1

      王泽山.含能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 4.

      WANG Ze‑shan. Introduction of Energetic materials[M]. Harbin, Press of Harbin Institute of Technology, 2006:4.

    • 2

      Li Y C, Qi C, Li S H, et al. 1,1'‑Azobis‑1,2,3‑triazole: A high‑nitrogen compound with stable N‑8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.

    • 3

      Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7336.

    • 4

      Joo Y H, Shreeve J M. Nitroimino‑tetrazolates and oxy‑nitroimino‑tetrazolates[J]. Journal of the American Chemical Society, 2010, 132(42): 15081-15090.

    • 5

      罗运军, 李生华, 李国平,等.新型含能材料[M]. 北京:国防工业出版社, 2015.

      LUO Yun‑jun, LI Sheng‑hua, LI Guo‑ping, et al. Novel energectic Materials[M]. Beijing:National Defence Industry Press, 2015.

    • 6

      Huang H, Shi Y, Liu Y, et al. 1,2,4,5‑Dioxadiazine‑functionalized [N‑NO2] furazan energetic salts[J]. Dalton Transactions, 2016, 45(39): 15382-15389.

    • 7

      Yang Q, Song X, Zhang W, et al. Three new energetic complexes with N,N‑bis(1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton Transactions, 2017, 46(8): 2626-2634.

    • 8

      Seth S, Mcdonald K A, Matzger A J. Metal effects on the sensitivity of isostructural metal‑organic frameworks based on 5‑amino‑3‑nitro‑1H‑1,2,4‑triazole[J]. Inorganic Chemistry, 2017, 56(17): 10151-10154.

    • 9

      Klapötke T M, Kurz M Q, Schmid P C, et al. Energetic improvements by N—O xidation: insensitive amino‑hydroximoyl‑tetrazole‑2N‑oxides[J]. Journal of Energetic Materials, 2015, 33(3): 191-201.

    • 10

      Klapötke T M, Martin F A, Stierstorfer J. N‑bound primary nitramines based on 1,5‑diaminotetrazole[J]. Chemistry‑A European Journal, 2012, 18(5): 1487-1501.

    • 11

      Liu L, He C, Li C, et al. Synthesis and characterization of 5‑amino‑1‑nitriminotetrazole and its salts[J]. Journal of Chemical Crystallography, 2012, 42(8): 816-823.

    • 12

      Wang L, Mezey P G. Predicted high‑energy molecules: Helical all‑nitrogen and helical nitrogen‑rich ring clusters[J]. Journal of Physical Chemistry A, 2005, 36(26): 3241-3243.

    • 13

      阳世清, 徐松林, 雷永鹏.氮杂环含能化合物的研究进展[J]. 含能材料, 2006, 14(6): 475-484.

      YANG Shi‑qing, XU Song‑lin, LEI Yongpeng. Developmetn on nitrogen heterocyclic energectic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(6): 475-484.

    • 14

      Liu W, Lin Q H, Yang Y Z, et al. Energetic salts based on an oxygen‑containing cation: 2,4‑diamino‑1,3,5‑triazine‑6‑one[J]. Chemistry‑an Asian Journal, 2014, 9(2): 479-486.

    • 15

      Gao H, Ye C, Crystal M. Piekarski, et al. Computational characterization of energetic salts[J]. Journal of Physical Chemistry C, 2007, 111(28): 10718-10731.

    • 16

      Jenkins H D, Tudela D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements[J]. Inorganic Chemistry, 2002, 41(9): 2364-2367.

吴乐

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

邮 箱:wule1222@163.com

作者简介:吴乐(1986-),男,博士研究生,含能材料合成研究。e‑mail:wule1222@163.com

何飘

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

梅豪正

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

张建国

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

角 色:通讯作者

Role: Corresponding author

邮 箱:zjgbit@bit.edu.cn

作者简介:张建国(1974-),男,教授,博士生导师,主要从事含能材料的理论与应用研究。e‑mail:zjgbit@bit.edu.cn

compound1-11-41-51-61-7
empirical formulaC3H6LiN7O2C3H4RbN7OC3H4CsN7OC6H20MgN14O8C6H18CaN14O7
space groupP‑1P‑1PbcaP121P121/c1
a7.1420(8)7.2323(6)14.651(4)8.4498(17)13.564(3)
b7.7322(8)7.6162(7)6.8438(17)7.0313(14)6.6883(13)
c7.7569(9)7.6654(7)16.066(4)16.406(3)20.290(4)
α/(°)80.504(2)84.237(2)90.0090.0090.00
β/(°)63.4710(10)86.226(2)90.00103.73(3)102.29(3)
γ/(°)83.865(2)63.6890(10)90.0090.0090.00
V3377.74(7)188.2(6)1610.9(7)946.9(3)1798.5(7)
Z21824
Dc /g·cm-31.5752.1142.3501.5461.619
μ /mm-10.1290.1334.5620.1650.416
F(000)1842801056460912
T /K298(2)298(2)298(2)153(2)298(2)
θ /(°)2.67-25.022.993-27.9752.54-25.013.049-27.4942.0546-27.4700
H-8-8-8-8-17-11-10-10-17-17
K-9-9-8-9-8-7-9-7-8-8
L-9-8-7-9-18-19-17-21-26-26
reflection measured12971303141321353574
independent reflection10011136109419844088
rint0.04170.03610.03530.03300.0705
parameters118109110133253
R1(I>2σ(I))0.12770.04420.02350.04520.0956
wR2(I>2σ(I))0.32510.11450.05170.09910.1802
R1(all data)0.1395,0.04970.03680.04980.1110
wR2(all data)0.36080.11690.05770.10170.1881
resd. dens. /e·Å-3-0.576-0.952-0.978-0.854-0.374-0.651-0.269-0.202-0.500-0.907
html/hncl/CJEM2018239/alternativeImage/923fcfd7-be2d-438f-bea2-eec7b4283f45-F002.jpg
html/hncl/CJEM2018239/alternativeImage/923fcfd7-be2d-438f-bea2-eec7b4283f45-F003.jpg
html/hncl/CJEM2018239/alternativeImage/923fcfd7-be2d-438f-bea2-eec7b4283f45-F004.jpg
compoundTd / ℃
5 / ℃·min‑110 / ℃·min‑115 / ℃·min‑120 / ℃·min‑1
1-1258.0264.2269.5276.2
1-2217.5222.1228.3236.9
1-3192.5197.4203.5209.8
1-4170.5177.2183.4188.9
1-5146.0151.2158.6162.7
1-6196.2200.8206.3211.9
1-7231.7236.8241.6247.9
compoundKissingerOzawa
EK/kJ·mol-1ln(AK/s-1RKEO/kJ·mol-1RO
1-1177.515.11-0.9771177.5-0.9792
1-2133.011.99-0.9417134.4-0.9480
1-3137.513.29-0.9666138.3-0.9700
1-4120.211.97-0.9880121.5-0.9894
1-5112.911.93-0.9789114.2-0.9813
1-6154.915.15-0.9697154.8-0.9726
1-7176.616.17-0.9695176.0-0.9722
compoundTp0 / ℃Tbp / ℃

ΔS

/ J·mol-1·K-1

ΔH

/ kJ·mol-1

ΔG

/ kJ·mol-1

1-1248.6262.0-123.94173.16237.83
1-2213.7229.3-149.30128.95201.64
1-3189.8203.5-138.08133.65197.57
1-4163.5177.4-148.56116.57181.44
1-5148.5162.3-148.61109.39172.05
1-6193.3205.6-122.67151.02208.24
1-7224.5236.8-114.73172.46229.56
Compound

Td

/ ℃

ρ

/ g·cm-3

ΔHf

/ kJ·mol-1

D

/ m·s-1

p

/ GPa

1-1258.01.575398764917.3
1-4170.52.11416.73713713.2
1-5146.02.3503.95792116.3
1-6196.21.5461264.9715217.1
1-7231.71.619867.56684615.0
compoundIS / JFS / N
1-1>40>360
1-2>40>360
1-3>40>360
1-4>40>360
1-5>40>360
1-6>40>360
1-7>40>360

表1 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶体结构数据

Table 1 Crystallographic data of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

图1 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的分子结构图

Fig.1 The molecular structures of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

图2 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的晶胞堆积图

Fig.2 The packing diagrams of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

图3 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的DSC曲线

Fig.3 DSC curves of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

表2 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的放热分解峰温

Table 2 Peak temperatures of the first exothermic stage at different heating rates of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

表3 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的非等温反应动力学参数

Table 3 The kinetic parameters of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

表4 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的热爆炸临界温度和热力学参数

Table 4 The critical temperatures of thermal explosion and thermodynamic parameters of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

表5 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的爆炸性能参数

Table 5 Energetic properties of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

表6 1‑(1H‑1,2,4‑三唑‑3‑基)‑1H‑四唑金属盐的撞击和摩擦感度测试结果

Table 6 Sensitivities of metal salts based on the 1‑(1H‑1,2,4‑triazole‑3‑yl)‑1H‑tetrazole

image /

无注解

无注解

无注解

无注解

Td is exothermic decomposition temperature.

EK is apparent activation energy. AK is pre‑exponential factor. R is molar gas constant.

Tp0 is exothermic decomposition peak temperature.Tbp is critical temperature for thermal explosion. ΔS is activation entropy. ΔH is activation enthalpy; ΔG is activation Gibbs free energy.

1) Td is exothermic decomposition temperature; 2)ρ is density; 3) ΔHf is heat of formation; 4) D isdetonation velocity; 5) p is detonation pressure.

IS is impact sensitivity. FS is friction sensitivity. Test condition: 5 kg drop hammer.

  • 参考文献

    • 1

      王泽山.含能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 4.

      WANG Ze‑shan. Introduction of Energetic materials[M]. Harbin, Press of Harbin Institute of Technology, 2006:4.

    • 2

      Li Y C, Qi C, Li S H, et al. 1,1'‑Azobis‑1,2,3‑triazole: A high‑nitrogen compound with stable N‑8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.

    • 3

      Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7336.

    • 4

      Joo Y H, Shreeve J M. Nitroimino‑tetrazolates and oxy‑nitroimino‑tetrazolates[J]. Journal of the American Chemical Society, 2010, 132(42): 15081-15090.

    • 5

      罗运军, 李生华, 李国平,等.新型含能材料[M]. 北京:国防工业出版社, 2015.

      LUO Yun‑jun, LI Sheng‑hua, LI Guo‑ping, et al. Novel energectic Materials[M]. Beijing:National Defence Industry Press, 2015.

    • 6

      Huang H, Shi Y, Liu Y, et al. 1,2,4,5‑Dioxadiazine‑functionalized [N‑NO2] furazan energetic salts[J]. Dalton Transactions, 2016, 45(39): 15382-15389.

    • 7

      Yang Q, Song X, Zhang W, et al. Three new energetic complexes with N,N‑bis(1H‑tetrazole‑5‑yl)‑amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX[J]. Dalton Transactions, 2017, 46(8): 2626-2634.

    • 8

      Seth S, Mcdonald K A, Matzger A J. Metal effects on the sensitivity of isostructural metal‑organic frameworks based on 5‑amino‑3‑nitro‑1H‑1,2,4‑triazole[J]. Inorganic Chemistry, 2017, 56(17): 10151-10154.

    • 9

      Klapötke T M, Kurz M Q, Schmid P C, et al. Energetic improvements by N—O xidation: insensitive amino‑hydroximoyl‑tetrazole‑2N‑oxides[J]. Journal of Energetic Materials, 2015, 33(3): 191-201.

    • 10

      Klapötke T M, Martin F A, Stierstorfer J. N‑bound primary nitramines based on 1,5‑diaminotetrazole[J]. Chemistry‑A European Journal, 2012, 18(5): 1487-1501.

    • 11

      Liu L, He C, Li C, et al. Synthesis and characterization of 5‑amino‑1‑nitriminotetrazole and its salts[J]. Journal of Chemical Crystallography, 2012, 42(8): 816-823.

    • 12

      Wang L, Mezey P G. Predicted high‑energy molecules: Helical all‑nitrogen and helical nitrogen‑rich ring clusters[J]. Journal of Physical Chemistry A, 2005, 36(26): 3241-3243.

    • 13

      阳世清, 徐松林, 雷永鹏.氮杂环含能化合物的研究进展[J]. 含能材料, 2006, 14(6): 475-484.

      YANG Shi‑qing, XU Song‑lin, LEI Yongpeng. Developmetn on nitrogen heterocyclic energectic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(6): 475-484.

    • 14

      Liu W, Lin Q H, Yang Y Z, et al. Energetic salts based on an oxygen‑containing cation: 2,4‑diamino‑1,3,5‑triazine‑6‑one[J]. Chemistry‑an Asian Journal, 2014, 9(2): 479-486.

    • 15

      Gao H, Ye C, Crystal M. Piekarski, et al. Computational characterization of energetic salts[J]. Journal of Physical Chemistry C, 2007, 111(28): 10718-10731.

    • 16

      Jenkins H D, Tudela D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements[J]. Inorganic Chemistry, 2002, 41(9): 2364-2367.