1 引 言
六硝基六氮杂异伍兹烷(CL‑20)是一种具有笼状结构的多硝胺含能化合物,具有多种晶型(α,β,γ,ε)结
构[1,2,3,4,5] ,不同晶型在一定条件下可以相互转化,例如在受热条件下,稳态ε‑CL‑20可以向亚稳态γ‑CL‑20进行转变[6] ,这种热致相变以及进一步的热分解是一个连续而复杂的过程,原位傅里叶变换红外光谱(in‑situ FT‑IR)是研究这一过程的有效手段,利用样品腔的原位升温环境,in‑situ FT‑IR可以在分子尺度上连续地捕获材料的结构演化信息[7,8,9,10] 。例如,Sui等[11] 通过in‑situ FT‑IR研究了TATB在升温过程中基团振动光谱的变化,利用氢键相关的振动频移效应重新确定了TATB各基团的红外吸收峰归属;刘学涌等[7] 基于in‑situ FT‑IR研究了HMX在升温条件下的热分解过程,结果表明C‑N键断裂是HMX的主要断键方式;肖和淼等[12] 采用In‑situ FT‑IR对ε‑CL‑20的热分解过程进行了研究,结果表明从转晶至155.4 ℃温度区间内, 六元环上的硝基均裂引发缓慢的裂解自氧化反应;随后五元环上的硝基均裂引发第二种自氧化反应并开始氧化骨架双键上的碳原子。然而,由于ε‑CL‑20在热分解之前要经历相变过程,对于相变过程中ε‑CL‑20在分子层次上的结构变化仍然缺乏认识,同时,对于ε‑CL‑20的热膨胀‑热致相变‑热分解全过程,其分子骨架内、外基团各自的温度响应特点乃至响应规律,目前仍缺少深入的理解。为此,本研究拟利用in‑situ FT‑IR,结合差示扫描量热(DSC),尝试对ε‑CL‑20骨架内外基团的温度响应进行定量比较分析,从而揭示ε‑CL‑20在升温过程中与相变‑热分解过程密切关联的分子结构演化规律。
2 实验部分
2.1 试剂与仪器
ε‑CL‑20粉末(纯度99.5%)来源于中国工程物理研究院化工材料研究所;KBr粉末(纯度99.995%)购自Thermo Scientific公司,所有样品均未做进一步纯化处理。
In‑situ FT‑IR测试在PerKinElmer,Frontier型红外光谱仪上进行,并通过Specac,GS5855型红外光谱仪控制系统进行升温程序控制及红外光谱采集。DSC测试在PerKinElmer,DSC 8500型差示扫描量热分析仪上进行。
2.2 实验过程
2.2.1 原位红外实验
称取(1.0±0.02) mg ε‑CL‑20与KBr粉末(质量比 1∶100)混合后置于研钵中研磨,之后将研磨均匀的混合物压制成直径12 mm,厚1 mm的样品薄片。样品光谱采集前以纯KBr薄片为背景图谱进行了背景扣除。ε‑CL‑20样品薄片固定于样品台后,设置升温程序开始加热样品,并在升温过程中连续采集样品图谱,图谱分辨率为1 c
m-1 ,波数范围为3500~600 cm-1 ,同时记录其对应温度,整个过程中通过连续抽真空保持腔体真空度为0.1 Pa。升温程序为:首先由25 ℃以10 ℃·min-1 的温升速率快速升温至100 ℃;然后以温升速率为1 ℃·min-1 升温至231 ℃,随后停止升温程序。原位加热所采集的样品图谱均自动扣除背景图谱,每张图谱为连续4次扫描后的综合结果。在对红外吸收峰进行分析时,选择特征峰的峰值相较于基线的高度差作为红外特征吸收峰强度,并以特征峰强度作为描述各基团变化的参量。2.2.2 DSC实验
称取1.5 mg ε‑CL‑20粉末置于铝制坩埚中,通过高压坩埚压片机将盛有CL‑20样品的铝坩埚压制成密封状态;实验气氛为高纯氮气(99.999%),载气流量为30 mL·mi
n-1 ;升温速率为1 ℃·min-1 。3 结果与讨论
3.1 ε‑CL‑20的原位红外光谱实验结果
CL‑20的原位红外光谱实验结果如图1所示,同时参照文献报
道[13] ,将各基团的红外吸收特征峰进行归属,如表1所示。并在此基础上,分别按照分子骨架外(—NO2、 C—H基团)和骨架内(C—C、C—N)基团的顺序,对其各自的温度响应特点进行分析。表1 ε‑CL‑20中各主要基团红外吸收特征峰归属
Table 1 Assignment of the infrared characteristic peaks of major functional groups of ε‑CL‑20
groups wavenumber of characteristic peaks / c m-1 asymmetric stretching of —N O2 1607-1608 symmetric stretching of —N O2 1329-1330 C—H stretching 3046-3047 C—N stretching 884 C—C stretching 831,820 3.2 CL‑20骨架外基团温度响应特性
3.2.1 ─NO2基团随温度的变化
首先对CL‑20骨架外—N
O2 基团随温度的变化情况进行考察。如图2a所示,—NO2 基团的反对称伸缩振动吸收峰位于约1608 cm-1 附近,与文献报道一致[13] ;在25~135 ℃范围内,—NO2 反对称伸缩振动的吸收峰频率由1608 cm-1 向低波数移动了约1 cm-1 ,在更高温度范围内不再发生移动。—NO2 基团的反对称伸缩振动吸收峰向低波数位移可能是—NO2 参与的分子内或分子间氢键受热由强变弱,使氢键上的电子云移向硝基,N—O间电子云密度变大,表现在硝基伸缩振动蓝移现象,但由于CL‑20晶体中氢键作用力很弱,因此其蓝移不明显,仅约1 cm-1 ,之后在更高温度范围内几乎没有再发生偏移。为定量了解—NO2 基团吸收峰随温度变化的详细过程,对图2a中—NO2 反对称伸缩振动吸收峰的峰值强度进行提取,并作出峰强‑温度关系曲线(图2b)。由图2b可以发现,—NO2 反对称伸缩振动的峰强‑温度变化过程可分为三个阶段:(i)在较低温度范围ZⅠ (25~152 ℃),峰强随温度升高呈现线性下降的趋势;(ii)在较高温度范围ZⅡ 区域(152~191 ℃),峰值强度经历了加速减弱的过程,吸收峰强度快速下降了约19.2%;(iii)在更高的ZⅢ 温区范围(191~231 ℃),峰强出现了第二次加速降低的过程,吸收峰强度进一步快速下降约8.1%。为了更加清晰地认识上述三阶段变化过程,将图2b中曲线进行一阶微分,获得峰强变化速率与温度关系曲线(图2c)。由图2c可见,在ZI 范围内,随着温度升高,峰强的变化速率基本保持不变;而在ZⅡ 温区,峰强变化速率明显增加,并在182 ℃附近达到极值点;在ZⅢ 温区,峰强变化速率再次显著增加,并在约211 ℃达到第二个极值点。为了理解上述峰强‑温度关系发生三个阶段变化的内在原因,对ε‑CL‑20样品进行了DSC测试,结果如图2d所示。由图2d可以看到,在50~150 ℃,ε‑CL‑20晶体不存在明显的吸热与放热过程,这一温区主要为晶体的热膨胀过程;在156 ℃附近,开始出现一个明显的吸热峰,据文献[14,15]报道,该吸热峰来自CL‑20由ε晶型转变为γ晶型过程的相变吸热,而更高温度的放热峰来源于CL‑20的热分解。可以发现,CL‑20相变吸热峰(DSC曲线,图1c)的起始温度(156 ℃)与ZⅡ 温区的起始温度(152 ℃,图2b)一致性较好,因此可以判断ZⅡ 温区内—NO2 吸收峰峰强发生第一次加速降低应与CL‑20的ε‑γ相变存在密切关联,而ZⅢ 温区的峰强下降为CL‑20分子发生热分解,—NO2 基团断键从骨架上脱落所致。值得注意的是,根据已报道的ε‑CL‑20及其晶体结构,以及基于变温XRD对CL‑20晶体中ε‑γ相变的研究结果[16,17] ,可以发现CL‑20晶体在经历ε‑γ相变过程中其—NO2 基团的指向发生了明显变化,即相变伴随着—NO2 基团的方向扭转。结合图2b,可以发现CL‑20在相变过程中—NO2 的反对称伸缩振动模式并未发生变化(吸收峰波数几乎不变),因此在晶体尺度上—NO2 基团的指向变化可能是引起该基团红外吸光系数改变,进而导致其峰强发生加速降低的内在原因。图2 —N
O2 反对称伸缩振动温度变化趋势(a. 原位红外峰实验结果;b. 吸收峰峰值强度随温度变化曲线;c. 峰强变化速率与温度关系;d. DSC曲线)Fig.2 Temperature variation trend of —N
O2 asymmetric stretching vibration(a. Experimental results of in‑situ IR peaks; b. Change curves of absorption peak intensity vs. temperature; c. Relationship of peak intensity change rate vs. temperature; d. DSC curve)综合上述分析,在整个升温过程中—N
O2 反对称伸缩振动共经历了三个变化阶段:ZⅠ 温区为晶体的热膨胀导致对红外吸收能力改变,引起吸收峰强度线性下降;ZⅡ 温区内的晶体相变引起—NO2 峰强发生第一次加速降低,这种ε‑γ相变前后吸收峰强度的显著下降可能与两相内—NO2 基团的指向不同有关;最后,ZⅢ 温区CL‑20分子发生热分解,—NO2 基团快速断键而脱离分子骨架,体现为峰强的第二次加速降低。图3a为25~231 ℃范围内ε‑CL‑20的—N
O2 对称伸缩振动的原位红外谱图,该特征峰位于约1329 cm-1[13,18] 。对图3a中吸收峰强度进行提取得到图3b,并通过微分进一步获得峰强变化速率与温度关系曲线(图3c),可以发现—NO2 对称伸缩振动的变化情况与—NO2 反对称伸缩振动的变化规律基本一致,同样由三个阶段,即ZⅠ :线性变化阶段;ZⅡ :晶型转变阶段;ZⅢ :热分解阶段组成,且各阶段起始温度与变化速率极值点对应的温度点基本一致。图3 —N
O2 对称伸缩振动温度变化趋势(a. 原位红外峰实验结果; b. 吸收峰峰值强度随温度变化曲线; c. 峰强变化速率与温度关系)Fig.3 Temperature variation trend of —N
O2 symmetric stretching vibration(a. Experimental results of in‑situ IR peaks; b. Change curves of absorption peak intensity vs. temperature; c. Relationship of peak intensity change rate vs. temperature)3.2.2 C—H伸缩振动的温度响应规律
C—H伸缩振动的原位红外结果如图4所示。C—H伸缩振动吸收峰位于约3047 c
m-1 附近,与文献报道一致[14,19] ,由图4a可见,吸收峰频率在较低温度范围(25~135 ℃)内向低波数移动约2 cm-1 ,而在更高温度下几乎未再发生偏移,且C—H伸缩振动的红外吸收强度随温度升高不断降低。通过分析峰强‑温度关系,由图4b及图4c可发现,虽然随温度升高,C—H伸缩振动也经历了三个阶段:ZⅠ 线性变化阶段;ZⅡ 晶型转变阶段;ZⅢ 热分解阶段,但其起始温度均有所提高(图4c),说明C—H键较—NO2 更稳定。图4 C—H伸缩振动温度变化趋势(a. 原位红外峰实验结果; b. 吸收峰峰值强度随温度变化曲线; c. 峰强变化速率与温度关系)
Fig.4 Temperature variation trend of C—H symmetric stretching vibration(a. Experimental results of in‑situ IR peaks; b. Change curve of absorption peak intensity vs. temperature; c. Relationship of peak intensity change rate vs. temperature)
3.3 CL‑20骨架内基团的温度响应特性
3.3.1 C—N键随温度的变化特性
进一步考察了CL‑20分子骨架内C—N与C—C键随温度的变化情况。图5a为C—N伸缩振动(约884 c
m-1 )随温度变化的原位红外光谱,C—N伸缩振动吸收频率向低波数偏移了约7 cm-1 ,同时C—N伸缩振动的红外吸收强度随温度升高而明显降低,直至221 ℃左右C—N键的吸收峰完全消失。图5 C—N伸缩振动温度变化趋势(a. 原位红外峰实验结果; b. 吸收峰峰值强度随温度变化曲线; c. 峰强变化速率与温度关系)
Fig.5 Temperature variation trend of C—N stretching vibration(a. Experimental results of in‑situ IR peaks; b. Change curves of absorption peak intensity vs. temperature; c. Relationship of peak intensity change rate vs. temperature)
图5b为基于C—N伸缩振动原位红外光谱(图5a)进行峰强提取后,得到的吸收强度随温度变化的趋势图,可发现C—N伸缩振动的峰强‑温度变化过程大致也分为三个阶段:(i)在较低温度范围
ZⅠ (25~162 ℃),峰强随温度升高呈线性下降趋势;(ii)在较高温度范围ZⅡ 区域(162~197 ℃),峰值强度发生了加速减弱的过程,吸收峰强度快速下降了约47.0%;(iii)在更高的ZⅢ 温区范围(197~231 ℃),峰强出现了第二次加速降低的过程,吸收峰强度进一步快速下降约85.7%。为了更加清晰地认识上述C—N伸缩振动峰强‑温度的多阶段变化过程,将图5b中曲线进行一阶微分,获得峰强变化速率与温度的关系,如图5c所示,可以发现,在ZⅠ 范围内,随着温度升高,峰强的变化速率基本保持不变;而在ZⅡ 区域,峰强变化速率发生明显增加,并在182 ℃附近达到极大值;在ZⅢ 温区,峰强变化速率再次发生了显著增加,并在约214 ℃达到极大值。结合图5b、图5c,可发现在整个升温过程中CL‑20在884 cm-1 附近C—N伸缩振动的变化情况大致也经历三个阶段,加热过程中的热膨胀现象引发CL‑20中的C—N键经历第一阶段,即ZⅠ :线性变化阶段;C—N伸缩振动发生变化的第二阶段ZⅡ :晶型转变阶段,可能是由ε‑CL‑20晶型向γ‑CL‑20晶型转变过程中C—N键的吸光系数变小造成;高温下的热分解使得C—N键发生断裂致使CL‑20中的C—N键经历第三个阶段ZⅢ :热分解阶段。3.3.2 C—C键随温度的变化特性
如图6a所示,位于831 c
m-1 和820 cm-1 附近的两个特征峰可归属于ε‑CL‑20分子骨架内的C—C伸缩振动,随着温度的升高,ε‑CL‑20的C-C特征峰强度逐渐下降,并且在约834 cm-1 处出现一个明显的新特征吸收峰,据文献[12]报道,该吸收峰可归属于γ‑CL‑20分子骨架内的C—C伸缩振动。这种变化特点与骨架外基团(—NO2 、C—H)存在显著的差异:对于—NO2 和C—H等骨架外基团,在整个升温过程中其吸收峰波数始终未发生明显移动(图2a、图3a和图4a),表明无论是在相变还是热分解过程,—NO2 和C—H基团的振动模式并未发生改变,而在相变温区中,分子骨架内C—C振动出现新的吸收峰,意味着相变过程引起了骨架内基团振动模式的改变。图6 C—C伸缩振动随温度变化趋势(a. C—C伸缩振动随温度变化实验结果; b. 部分温度点下C—C键的分峰结果; c. ε‑CL‑20内C—C键的峰面积绝对值及其所占比例随温度的变化关系)
Fig.6 Temperature variation trend of C—C stretching vibration(a. Experimental results for change of C—C stretching vibrationwithtemperature; b. Peak splitting results of C—C bond at partial temperature points; c. The change relation of absolute value of peak area of C—C bonding in ε‑CL‑20 and its proportion vs. temperature)
由于两相的C—C特征峰叠加在一起,为更深入地认识C—C键变化过程,对图6a中的峰形进行了分峰处理,如图6b所示。由图6b可见,低于176 ℃时,基本为ε‑CL‑20的C—C伸缩振动(约831,820 c
m-1 ),在176 ℃时出现了明显的γ晶型C—C伸缩特征峰(约834 cm-1 ),随着温度的升高,ε晶型的C—C特征峰峰强不断下降,而γ晶型C—C特征峰不断增强,且位于约820 cm-1 的特征峰在172~231 ℃温度范围内不断向高波数移动,可能是在相变及热分解过程中,C—C键转变或骨架外基团脱落导致骨架张力不断增加所致。图6c进一步给出了ε‑CL‑20内C—C键的峰面积绝对值及其所占比例随温度的变化关系。由图6c可见,随温度升高,ε‑CL‑20中C—C伸缩振动在176 ℃附近出现明显的拐点,C—C伸缩振动开始发生转化,且在192~193 ℃左右CL‑20中C—C键开始发生断键分解,相应的其红外吸光度开始降低,同时此温度点附近ε‑CL‑20的C—C伸缩振动约占约40%。结合图6a与图6b,可以判断CL‑20的ε‑γ相变过程实际上引起了其骨架内基团出现了新的振动模式(C—C伸缩振动从约831 cm-1 与820 cm-1 变化为约834 cm-1 ),且这种振动模式的改变在热分解过程中仍在不断进行。表2总结了CL‑20各基团随温度的变化情况。由表2可以看到,CL‑20的骨架内、外基团的温度的响应存在明显差异。对于骨架外基团—N
O2 与C—H,其相变相关的起始温度(TPT)和热分解起始温度(Td)相对于骨架外基团(C—N、C—C)明显较低,表明无论是热致相变还是热分解过程,骨架外基团对温度更为敏感,对温度的响应总是提前于骨架内基团,而在更高的温度下,骨架内的基团才会对温度产生响应。但有趣的是,无论骨架内还是骨架外各基团,在晶型转变区域内其峰强变化率达到最大值时所对应的温度点(TMR1)十分接近,且在热分解阶段峰强变化最剧烈时对应的温度点(TMR2)同样具有很好的一致性。表2 CL‑20中各基团随温度变化的趋势比较
Table 2 Comparison of the changing trend of various functional groups in CL‑20 with temperature
groups TPT
/ ℃
TMR1
/ ℃
Td
/ ℃
TMR2
/ ℃
asymmetric stretching of —N O2 152 182 191 211 symmetric stretching of —N O2 152 181 193 211 C—H stretching 155 182 195 214 C—N stretching 162 182 197 214 C—C stretching 176 184 - - NOTE: TPT is the phase transition temperature. Td is the decomposition temperature. TMR1and TMR2 are the temperature at maximum peak intensity change rate in
ZⅡ andZⅢ , respectively.最后,我们对ε‑γ晶型转变后的CL‑20降至室温进行红外光谱表征,并与其在初始室温状态下的红外光谱进行了比较,如图7所示。由图7可以发现,骨架外各基团的特征峰位置未发生移动,而骨架内C—C伸缩振动发生了明显变化(从约831 c
m-1 与820 cm-1 变化为约834 cm-1 ),这表明ε‑γ晶型转变在降至室温后仍可保持。4 结 论
基于in‑situ FT‑IR研究了ε‑CL‑20在升温过程中分子结构演化,重点考察了CL‑20分子骨架内、外基团的温度响应规律。
(1)随着温度升高,CL‑20分子骨架外基团(—N
O2 、C—H)的红外吸收特性经历三个不同的变化过程:在较低温度范围内,红外吸收峰强度发生线性下降(ZI ),对应于晶体热膨胀;随后由于热致相变,红外峰强度加速降低(ZⅡ );并在热分解过程中体现出第二次加速降低(ZⅢ )。(2)发现分子骨架内的C—N伸缩振动同样经历了线性下降(
ZⅠ )、加速降低(ZⅡ )和第二次加速降低(ZⅢ )三个阶段,但其中ZII 、ZIII 的起始温度高于骨架外基团(—NO2 、C—H)的起始温度,这意味着骨架外基团对温度更为敏感,在热致相变和热分解过程均会较骨架内基团提前响应。(3)骨架内C—C伸缩振动对温度的响应规律更为复杂:在升温过程中,C—C伸缩振动首先出现与ε‑γ晶型转变密切相关的新的红外特征峰,意味着分子骨架内C—C键的振动模式发生了显著变化,而与之不同的是,晶体转变过程并未改变分子骨架外基团的振动模式;更高温度范围内的原位红外结果表明,骨架内C—C伸缩振动模式的变化在热分解结束前仍未停止。
(责编:王艳秀)
参考文献
- 1
Geetha M, Nair U R, Sarwade D B, et al. Studies on CL‑20: The most powerful high energy material[J]. Journal of Thermal Analysis & Calorimetry, 2003, 73(3): 913-922.
- 2
Dumas S, Gauvrit J Y, Lanteri P. Development of quantitative analytical methods to measure the polymorphic composition of CL‑20(Hexanitrohexaazaisowurtzitane‑HNIW) with FTIR‑NIR or FTIR‑MIR spectroscopy using PLS regression[J]. Propellants, Explosives, Pyrotechics, 2012, 37(3): 288-301.
- 3
Pavlov J, Christodoulatos C, Sidhoum M, et al. Hydrolysis of hexanitrohexaazaisowurtzitane (CL‑20)[J]. Journal of Energetic Materials, 2007, 25(1): 1-18.
- 4
Li Jun, Brill T B. Kinetics of solid polymorphic phase transitions of CL‑20[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(4): 327-330.
- 5
ZHANG Jing‑yuan, GUO Xue‑yong, JIAO Qing‑jie, et al. Effects of desensitizers on phase transitions, thermal behavior, and sensitivity of ε‑CL‑20[J]. Journal of Energetic Materials, 2018, 36(1): 111-120.
- 6
Turcotte R, Vachon M, Kwok Q S M, et al. Thermal study of HNIW(CL‑20)[J]. Thermochimica Acta,2005,433(1): 105-115.
- 7
刘学涌, 王晓川, 黄奕刚, 等. 原位红外光谱法研究HMX炸药的热分解过程[J]. 光谱学与光谱分析, 2006, 26(2): 251-254.
LIU Xue‑yong, WANG Xiao‑chuan, HUANG Yi‑gang, et al. Study on thermal decomposition of HMX energetic materials by In‑situ FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2006, 26(2): 251-254.
- 8
WU Wei‑qiang, Savereide L M, Notestein J, et al. In‑situ IR spectroscopy as a probe of oxidation/reduction of Ce in nanostructured CeO2[J]. Applied Surface Science,2018,45(1):548-574.
- 9
McPherson I J, Ash P A, Jones L, et al. Electrochemical CO oxidation at platinum on carbon studied through analysis of anomalous in situ IR spectra[J]. The Journal of Physical Chemistry C,Nanomaterials and Interfaces, 2017,121(32): 17176-17187.
- 10
SUI He‑liang, JU Xin, LIU Xue‑yong, et al. Primary thermal degradation effects on the polyurethane film[J]. Polymer Degradation & Stability, 2014, 101(1): 109-113.
- 11
SUI He‑liang, ZHONG Fa‑chun, CHENG Ke‑mei, et al. IR vibrational assignments for 1,3,5‑triamine‑2,4,6‑trinitrobenzene (TATB) based on the temperature‑dependent frequency shifts[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 114(10): 137-143.
- 12
肖和淼, 杨荣杰, 潘清. HNIW热分解的原位红外光谱研究[J]. 含能材料, 2005, 13(2): 84-89.
XIAO He‑miao, YANG Rong‑jie, PAN Qing. Study on thermal decomposition of HNIW by In‑situ FTIR spectroscopy[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(2): 84-89.
- 13
AN Chong‑wei, LI He‑qun, YE Bao‑yun, et al. Nano‑CL‑20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017(5): 1-7.
- 14
ZHU Yan‑fang, LU Yue‑wen, GAO Bing, et al. Ultrasonic‑assisted emulsion synthesis of well‑distributed spherical composite CL‑20@PNA with enhanced high sensitivity[J]. Materials Letters, 2017, 205: 94-97.
- 15
冀威, 李小东, 王晶禹,等. 纳米ε‑CL‑20/Estane制备与表征[J]. 含能材料, 2015, 23(11): 1084-1088.
JI Wei , LI Xiao‑dong, WANG Jing‑yu, et al. Preparation and characterization of nano‑ε‑CL‑20/estane explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 23(11): 1084-1088.
- 16
徐金江, 蒲柳, 刘渝,等. HTPB基粘结体系中ε‑CL‑20的晶型转变规律[J]. 含能材料, 2015, 23(2): 113-119.
XU Jin‑jiang, PU Liu, LIU Yu, et al. Polymorphic transformation of ε‑Cl‑20 in different HTPB‑based composite systems[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2): 113-119.
- 17
徐金江, 孙杰, 焦清介, 等. 复合体系ε‑CL‑20的晶型转变规律研究[C]//2013年第二届全国危险物质与安全应急技术研讨会论文集. 北京: 中国学术期刊电子出版社, 2013: 86-93.
XU Jin‑jiang, SUN Jie, JIAO Qing‑jie, et al. The polymorphic transformation of ε‑Cl‑20 in different composite systems[C]//Proceedings of the second National Symposium on emergency technologies for hazardous substances and safety in 2013. Beiijing: China Academic Journal Electronic Publishing House, 2013: 86-93.
- 18
LIU Ke, ZHANG Gao, LUAN Jie‑yu, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL‑20/DNT[J].Journal of Molecular Structure,2016,1110:91-96.
- 19
GUO Chang‑yan, ZHANG Hao‑bing, WANG Xiao‑chuan, et al. Crystal structure and explosive performance of a new CL‑20/caprolactam cocrystal[J]. Journal of Molecular Structure, 2013, 1048: 267-273.
- 1
摘要
为深入认识ε晶型六硝基六氮杂异伍兹烷(ε‑CL‑20)分子的骨架内、外基团在升温过程中的结构演化规律,采用原位傅里叶变换红外光谱(in‑situ FT‑IR),结合差示扫描量热(DSC),对ε‑CL‑20骨架内外基团的温度响应规律进行了定量比较分析。结果表明,ε‑CL‑20骨架外基团(—N
Abstract
To further understand the structural evolution law of internal and external groups of ε‑phase 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane (ε‑CL‑20) molecule skeleton during the heating process, the temperature response law of internal and external groups of ε‑CL‑20 skeleton was quantitatively compared and analyzed by in‑situ Fourier transform infrared spectroscopy (in‑situ FT‑IR) and differential scanning calorimetry (DSC). Results show that the infrared absorption peak intensity of external groups (—N