1 引 言
硝化纤维素(Nitrocellulose,NC)是一种热塑性材料,其分子链属于半刚性高分子链,其玻璃化转变温度高于其分解温度,NC基制品常常表现出低温变脆、高温变软的特点,通过硝化度调节难以解决NC基火药的力学性能与能量性能之间的矛盾问题。目前改进热塑性材料力学性能的方法主要有化学接枝、物理共混、物理交联和添加纳米材料。
通过化学接枝改性的方式,利用接枝的支链产生内增塑作用可以改善高分子的柔顺性,这是一种成本低且有效的方法。早在20世纪,Данилов С Н
等[1,2] 就制备了热塑性良好的甲氧基纤维素甘油醚,并以此压制出了性能优良的火药;Лопотенок А А等[3,4] 制备了氯代甘油羟乙基纤维素醚的硝化物;Рогов、Мочаловаи、Шилова、Лобашова等[5,6,7,8] 利用热塑性纤维素醚为基材压制了系列无烟均质发射药与推进剂,并对其综合性能进行了系统的探索。邵自强等[9,10,11,12,13] 通过化学接枝改性,制成柔性化的改性NC,在火炸药组分中全部或部分替代现有NC以提高其力学性能,并获得了显著的改善效果。物理共混[14,15] 是指在NC基发射药或推进剂中引入玻璃化温度低、柔性好的高分子,以此来改善力学性能。物理交联[16,17] 可通过改变材料中硬质链与软质链的长度分布来改善无定型高分子力学性能受温度影响大的缺点,也是一种改善NC基火药高温力学性能缺陷的有效方法。相较于NC的制备,化学接枝与物理交联制备工艺更加复杂,物理共混需要添加大量其他材料。添加纳米材料也可以显著提高热塑性材料的力学性能[18,19] ,直接添加纳米碳管、石墨烯及其与芳纶纤维的复合物材料可以获得良好的复合材料增强效果[20,21,22,23] ,但纳米碳材料制备工艺复杂、价格昂贵。对于发射药、推进剂等军品,在制备过程中引入更多操作上难以准确控制的因素和提高制备操作的复杂性是不利于战时生产与作战使用的。NC在发射药与推进剂中主要用作粘合剂,但是由于硝胺发射药与改性双基推进剂在研制过程中添加了固体高能成分,因此降低了作为粘合剂的NC含量,导致力学性能下
降[24] 。以往的工作大多通过提高NC含氮量或添加增塑剂来改善其力学性能[25,26] ,操作复杂且增塑剂添加量大,而效果却不如添加少量纳米材料明显,尤其是使用化学结构与NC相似且价格更加低廉的纤维素纳米材料对NC进行增强增韧。Akira Isogai[27] 等首先利用2,2,6,6‑四甲基哌啶‑1‑氧基自由基(TEMPO)在温和的TEMPO/NaBr/NaClO氧化体系中制备出了纳米纤维素纤维(CNFs),其直径为3~5 nm,长度可达数微米,这一制备方法及材料性能研究目前受到广泛关注[28,29,30] 。CNFs杨氏模量可达140 GPa,抗拉强度可达1.7 GPa,同时其继承了纤维素材料无污染、可降解的优点,因此作为一种复合材料的性能增强组分受到了比较广泛的研究。有研究[31,32] 显示添加了3.5%改性纤维素纳米晶须制备的NC复合膜抗拉强度提高了21.7%,拉伸模量提高了32.7%,断裂伸长率提高了123.6%,力学性能提升显著。张云华等[33] 将NC质量的1%替换为CNFs,使某型改性双基推进剂在20,50 ℃和-40 ℃条件下,抗拉强度分别提高18%、34%和27%,断裂伸长率分别提高45%、35%和18%,获得了低温不脆、高温不软的综合性能提高。夏勇等[34] 在现役制式太根发射药中添加0.5%NC质量的CNFs,使太根发射药在-40 ℃和20 ℃时的抗冲击强度分别提高30.4%和8.9%,为火炮系统的安全性与可靠性起到了提升作用。由于推进剂、发射药等材料的特殊性,不仅需要保证其性能稳定可靠,也要求制备工艺相对简单、制备成本增加少,因此有必要进一步探求更简单有效的NC基材料增强手段。纤维素纳米材料作为近年来的新兴材料,其高强
度[35] 、低密度、低热胀系数[36] 等优点引人注目,具有很大的开发前景。基于此,本研究选用价格低廉的竹浆为原材料,通过TEMPO氧化法制备CNFs。在不对CNFs进行更多复杂处理的前提下将其应用于NC膜的力学性能改进。根据NC属于亲油性硝酸酯、CNFs属于多羟基的亲水性多糖的化学结构特点,研究与优化了DMF/
H2 O混合分散剂体系的组成比例,以蒸发分散剂的方式制得NC/CNFs复合膜。同时进一步研究了CNFs在NC膜中的最佳复合方法,通过酸化处理对比考察了CNFs羧基形态差异(羧酸钠与羧酸)对复合膜的力学性能影响,以探索使用纤维素纳米材料改善NC基火药的简单新途径。2 实验部分
2.1 试剂与仪器
湿竹浆(聚合度780,纤维素含量大于85%),北京北方世纪纤维素技术开发有限公司;2,2,6,6‑四甲基哌啶‑1‑氧化物(TEMPO),分析纯,阿拉丁试剂;溴化钠、氢氧化钠、次氯酸钠溶液(1.15 mol·
L-1 )、盐酸(36%~37%)、N,N‑二甲基甲酰胺(DMF),均为分析纯,北京化工厂;硝化纤维素粉末(含氮量13.32%,安定性2.35 NO mL·g-1 ),四川北方硝化棉股份有限公司。LG10‑2.4A型医用离心机,北京医用离心机厂;Scientz‑IID型超声波细胞粉碎仪,宁波新芝生物科技股份有限公司;Instion 1185万能材料试验机,英国Instion国际有限公司;Physica MCR301旋转流变仪,奥地利Anton Paar公司;JEM 1200EX透射电子显微镜,日本JEOL公司;Nicolet iS10傅里叶红外光谱仪,美国赛默飞公司;STA 449F3同步热分析仪,德国耐驰公司;Brucker D8型X射线粉末衍射仪,德国Brucker公司。
2.2 实验过程
2.2.1 CNFs水分散液制备
参考文献[27],采用TEMPO氧化法制备纤维素纳米纤维。准确称取0.5 g TEMPO以及5 g NaBr,加入2000 mL去离子水中在室温下充分搅拌溶解。再向反应体系中加入42 g湿竹浆(其中干竹浆质量分数为20.53%)。待纤维素分散均匀后,向分散液中滴加1.15 mol·
L-1 的NaClO溶液90 g,通过控制NaClO溶液的加入速度使反应体系的pH值保持在10~10.5。待NaClO溶液滴加完毕后,继续不断滴加0.5 mol·L-1 的NaOH溶液以保持分散液的pH值稳定,直至分散液pH值不再因反应而下降为止。过滤分散液,收集不溶物并用去离子水洗3~5次,得到TEMPO氧化纤维素。将TEMPO氧化纤维素配制成质量分数约1%的水分散液,在超声细胞粉碎仪中超声处理15 min,随后将得到的分散液经过20 min、10000 r·min-1 的离心处理,取上层清液,即得到CNFs水分散液。2.2.2 CNFs酸化处理及其DMF分散液制备
参考文献[37],在搅拌的条件下,向所得CNFs水分散液中缓慢滴加 0.5 mol·
L-1 的盐酸,调节pH至2,连续搅拌12 h直至pH值稳定不变,得到凝胶状的、酸化的CNFs水分散液;准确称量质量相同的酸化纳米纤维素的水分散液两份,使用孔径0.45 μm过滤膜进行减压抽滤,抽滤过程中持续搅拌,且在该过程中分别加入丙酮、DMF充分置换,最后将丙酮和DMF两份分散体系使用细胞粉碎仪在400 W功率下处理10 min,即得CNFs的DMF分散液。2.2.3 NC/CNFs复合膜制备
NC可以在丙酮、DMF等溶剂中溶解,而CNFs是亲水性强且难溶解的材料,因此需要采用特定处理方式得到均匀的NC/CNFs混合分散液,并进一步蒸发分散液后获得复合膜。图1为复合膜制备流程示意图。
2.2.3.1 DMF分散液制膜
(1)称取两份质量为的1 g的干燥NC样品,分别放在两个干燥后的烧杯中,再分别加入20 mL DMF,搅拌24 h至充分溶解。
(2)另取两个烧杯分别加入适量CNFs水分散液和酸化的CNFs水分散液,保持二者中的CNFs含量一致,再分别添加25 ml去离子水,并在超声细胞粉碎仪中于400 W功率下处理5 min,待烧杯中的材料分散均匀后,分别再添加25 mL DMF。
(3)在70 ℃水浴条件下进行旋蒸驱水,获得分散剂全部为DMF的CNFs分散液。
(4)将两种CNFs的DMF分散液添加至溶解完全的NC溶液中,搅拌24 h。
(5)将NC/CNFs分散液倒入培养皿中水平放置,在80 ℃条件下烘干24 h,完全蒸发溶剂后获得NC/CNFs复合膜。
2.2.3.2 DMF/H2O分散液制膜
(1)称取质量为1 g的干燥NC样品,加入20 mL DMF,搅拌24 h至充分溶解,随后将其分成若干小份以便于测试。
(2)按照一定的含水比例分别配制酸化和未酸化CNFs的DMF分散液,其中CNFs的含量均为0.01 g。
(3)将总体积为25 ml的CNFs分散液在功率400 W的超声细胞粉碎仪中处理5 min。
(4)将分散均匀的CNFs分散液分别添加至NC的DMF溶液中,观察是否有NC析出。
(5)取NC未析出的最大含水量混合溶液作为酸化和未酸化CNFs的分散液,将其与配置好的NC的DMF溶液混合,搅拌24 h至混合均匀。
(6)将NC/CNFs分散液倒入培养皿中水平放置,在80 ℃条件下烘干24 h,完全蒸发溶剂后获得NC/CNFs复合膜。
2.2.4 力学性能测试
NC/CNFs复合膜静态力学性能使用Instion 1185万能材料试验机测定,将被测NC/CNFs复合膜样品裁剪为尺寸30.0 mm×4.0 mm×0.02mm的试样,测试温度20 ℃,湿度50%,拉伸速率为5 mm·mi
n-1 ,测试跨距为20 mm;同时,使用Physica MCR 301智能流变仪,对NC/CNFs复合膜样品进行动态力学性能测试,测定复合膜的储能模量随温度增加发生的变化。测试条件为:升温速度为5 ℃·min-1 ,间距20 mm,频率为1 Hz,测试温度0~180 ℃。每个样品测试5次取平均值。3 结果与讨论
3.1 CNFs结构与性能表征
采用用透射电镜(TEM)、傅里叶红外光谱(FT‑IR)、热重(TG)以及X射线衍射(XRD)图谱对CNFs的结构和性能进行分析,如图2所示。由图2a可知,利用TEMPO氧化法制备的CNFs,直径为5~10 nm,长度为500~3000 nm。从图2b可以看出,CNFs在3305(O—H)、2875(—CH—)、1597 c
m-1 (C O)处均出现红外特征吸收峰,1402~1313 cm-1 处的吸收峰由C—H的伸缩振动产生,1159~1018 cm-1 处的吸收峰为C—O的伸缩振动峰和O—H的弯曲振动峰,与竹浆原料的红外谱图对照可断定CNFs上出现了羧基。从图2c可以看出,与竹浆原料在290 ℃时开始分解不同,CNFs热降解温度降低到225 ℃,原因是纤维素原料经过TEMPO氧化处理后结晶区受到破坏,结晶度的下降致使材料的热稳定性变差[38] 。从图2d可以看出,CNFs与竹浆原料的XRD特征峰位置基本一致,出现在大约16°、23°和35°三处,分别对应于典型纤维素Ⅰ型结构的(1 1 0)、(2 0 0)和(0 0 4)反射平面[39] 。其结晶度根据Segal等[40] 提出的经验方法计算后分别是76.3%、62.1%。3.2 CNFs分散剂优化
CNFs在丙酮和DMF中的分散状态如图3所示。由图3可知,无论CNFs酸化与否在丙酮中均会出现明显团聚并沉降,这是由于纤维素材料的自身特性造成的,纤维素大分子表面大量羟基之间的氢键作用使其通过有序组合的方式形成稳固的超分子结构,同时其相对较大的比表面积也使其具有更高的表面能,因而难以溶解在水和多数有机溶剂中并且有显著的聚集趋势,这一实验结果也证明丙酮不是CNFs的良分散剂。而无论CNFs酸化与否在DMF中都可均匀分散,DMF分子能与CNFs表面发生特殊的聚合物‑溶剂相互作用,是为数不多的能够较好分散纤维素纳米材料的分散液之
一[41] 。据此向DMF分散剂中增加适量水,以探索减少高沸点有机溶剂用量的可行性。表1为DMF分散剂体系水的加入量与CNFs分散稳定性间的关系。由表1可知,当水的体积分数达到20%时,CNFs分散液体系均出现了CNFs团聚现象,当水的体积分数低于20%时,则样品状态稳定。这是因为纤维素纳米材料相对于DMF亲水性更强,在足量水存在时会与水分子结合形成类似胶体的水化颗粒并均匀分散在水
中[42] ,当加水量足以形成水化颗粒但却不够保持其分散时,类似胶体的体系就会发生聚沉。因此在NC/CNFs复合膜的制备过程中,考察含水体积分数为15%的DMF/H2 O混合分散液的成膜效果,既能实现工艺上最大化减少高沸点有机溶剂的目的,又能防止纤维素纳米材料形成水化颗粒,保持稳定分散。表1 不同配比的CNFs分散剂及其分散效果
Table 1 Different proportions of dispersants and their dispersion effect on CNFs
No. volume fraction of water added to DMF / % mass of CNFs / g dispersion stability unacidified acidified a 5 0.01 0 clarification b 5 0 0.01 clarification c 10 0.01 0 clarification d 10 0 0.01 clarification e 15 0.01 0 clarification f 15 0 0.01 clarification g 20 0.01 0 precipitation h 20 0 0.01 precipitation 3.3 NC/CNFs复合膜静态力学性能测试
图4为使用酸化和未酸化CNFs在不同的制备流程下制备的NC/CNFs复合膜的应力‑应变曲线。表2为不同条件下制备的NC/CNFs复合膜抗拉强度σ及断裂伸长率εmax。
图4 不同制备条件下NC/CNFs复合膜的应力‑应变曲线
Fig.4 Stress‑strain curves of NC/CNFs composite membranes prepared under different conditions
表2 不同制备条件下NC/CNFs复合膜的抗拉强度以及断裂伸长率
Table 2 Tensile strength and elongation at break of NC/CNFs composite membranes prepared under different conditions
sample preparation condition σ
/ MPa
εmax / % 1 blank sample 36.6 8.4 2 unacidified CNFs dispersed in DMF 47.5 5.2 3 acidified CNFs dispersed in DMF 52.0 10.4 4 unacidified CNFs dispersed in DMF/ H2 O61.8 6.2 5 acidified CNFs dispersed in DMF/ H2 O30.0 4.3 NOTE: σ is the tensile strength, εmax is the elongation.
由图4和表2可见,所有样品的杨氏模量均高于空白样。样品5没有产生复合膜力学性能增强的作用,其屈服强度、抗拉强度、断裂伸长率均低于空白样;样品2、4不出现屈服,抗拉强度均高于空白样,断裂伸长率低于空白样;样品3屈服强度、抗拉强度、断裂伸长率均高于空白样,整体增强效果最佳。
CNFs作为纤维状增强填料,其在NC中的增强原理近似于混凝土中钢筋对水泥的增强作用。在DMF分散剂中制备的复合膜即样品2、3相对于空白样抗拉强度提升幅度比较接近,但CNFs酸化和未酸化导致的复合膜断裂伸长率显著不同,样品2韧性较差。在相同的无水分散条件下,样品3中酸化后的CNFs表面出现完整的羧基,更易于与NC中大分子上的硝基相互作用形成氢键,在大分子间发生滑移时也易于重新生成新的氢
键[43] ,NC与CNFs之间的黏着力增大,因而导致样品3相比于样品2表现出更好的韧性。旋转蒸发过程中容器不断旋转产生的搅拌作用也有利于成膜液更加均匀,也更能保证膜材料的均匀性,减少内部微小缺陷带来力学性能下降。在混合分散剂中制备的复合膜即样品4、5抗拉强度显著不同,而断裂伸长率比较接近。对于样品4,亲水性的CNFs更易于分散在含水的混合分散剂中,CNFs自身的高强度导致其增强后的复合膜抗拉强度提升、断裂伸长率下降,同时也因为其CNFs表面没有完整的羧基,不易与NC产生氢键作用,与样品2同样表现出韧性变差的特征。样品5中酸化后的CNFs与水的亲和力加强,同时在水分子的诱导与氢键作用下更易聚
结[37] ,聚结后的CNFs成为复合模结构缺陷,导致复合膜力学性能下降[44] 。3.4 NC/CNFs复合膜动态力学性能测试
图5为不同条件下制备出的NC/CNFs复合膜储能模量(E′)的温度依赖曲线。从图5可以看出,25 ℃时,在DMF中分散酸化、未酸化CNFs制备的复合膜储能模量分别为15.2 GPa和 18.9 GPa,在DMF/
H2 O中分散的酸化、未酸化CNFs制备的复合膜储能模量分别为17.2 GPa和15.5 GPa,均高于NC空白样(6.45 GPa)。随着温度逐渐上升,复合膜储能模量逐渐下降,这是由于温度的上升使膜材料中的主要成分NC大分子链段热运动加剧,松弛过程加快,模量和强度下降[45] 。在常温~180 ℃内,NC/CNFs膜的模量均高于纯的NC膜,超过180 ℃,全部膜的模量均迅速下降,这是NC开始热分解导致的[46] 。图5 不同制备条件下NC/CNFs复合膜的储能模量‑温度曲线
Fig.5 Storage modulus‑temperature curves of NC/CNFs composite membranes prepared under different conditions
显而易见的是,CNFs的加入使得材料在彻底流动之前,相较于空白样均有储能模量的提升,且CNFs的引入不影响NC的热分解性能。
4 结 论
以速生、廉价的竹浆为原料制备的TEMPO氧化纤维素纳米纤维(CNFs),在DMF或DMF/
H2 O混合分散剂体系中分散并与NC混合制备复合膜。(1) DMF/
H2 O分散剂中水的体积分数小于20%时可用作亲水性CNFs与油溶性NC相混的介质。DMF/H2 O分散剂中的水分有利于CNFs的均匀分散,并且使用DMF/H2 O分散剂条件下制备的NC/CNFs复合膜抗拉强度提升,但断裂伸长率下降。(2)在DMF中分散CNFs,在将CNFs与NC混合之前需要对CNFs水分散液进行分散剂置换,将分散剂全部换为DMF。以此体系制备的NC/CNFs复合膜抗拉强度有所提升,但其中的CNFs与NC不易产生氢键作用,发生相对滑移之后难以再生氢键,因此复合膜断裂伸长率下降。
(3)在DMF中分散预先酸化的CNFs,酸化后的CNFs表面出现完整的羧基,更易于与NC中大分子上的硝基相互作用形成氢键,在大分子间发生滑移时也易于重新生成新的氢键,CNFs与NC之间黏着力增大,以此体系制备的NC/CNFs复合膜在CNFs添加质量为1%NC时,复合膜抗拉强度为52.0 MPa,断裂伸长率为10.4%,显著高于空白样(36.6 MPa,8.4%)。
(4)使用亲水性的CNFs增强亲油性的NC基体时,DMF可作为优选分散剂,对基体韧性有增强需求时可对CNFs做预先的酸化处理。而对基体韧性无增强需求,仅需提高基体抗拉强度时,可使用含水体积分数15%的DMF作为CNFs的分散液,以此减少DMF的用量。
以上结果对以NC为粘合剂成分的发射药、推进剂、可燃药具等材料的力学性能提升具有一定参考意义。
(责编:高 毅)
参考文献
- 1
C H Данилов и др. Метоксиглицериновые эфиры целлюлозы и пороха на их основе[J]. Труды ЛТИ, 1957, спец.вып. 9, с. 105-110.
- 2
С Н Данилов.Пороха на основе термопластичных нитроглицериновых эфиров целлюлозы[J]. Труды ЛТИ, 1963, спец.вып. 14, с. 121-127.
- 3
А А Лопатенок и др. Термопластичные хлорглицериновые, азидоокси‑ этиловые эфиры целлюлозы и их нитраты[J]. Труды,1980, 30, с.261-266.
- 4
А А Лопатенок и др. Каталитический способ получения термопластичных нитратов простых эфиров целлюлозы[J]. Труды, 1980, спец. вы. 30, с.267-269.
- 5
Д А Шилова и др. Разработа соствов сгорающей гильзы насновокси‑ алкиловых эфиров целлюлозы[J]. Труды,1977, 28, с.142-144.
- 6
Н Г Рогов и др. Исследования в области баллистических порохов[J],Труды, 1980, спец.вып. 31, с.77-85.
- 7
А И Мочаловаи др. Синтез простых эфиров целлюлозы и 3,3‑бис‑(азидо‑метил)‑оксациклобутана и их нитратов[J]. Деп. ВИНИТИ, 1976, 9001. 11с.
- 8
Г А Лобашова и др. Нитраты оксиалкильных эфиров целлюлозы как компоненты ТРТ баллиститного типа[J], СХ и СТ, 1977, вып.9, с.44-47.
- 9
邵自强, 张有德, 杨斐霏, 等. 新型含能黏合剂羟烷基纤维素醚硝酸酯分子设计及合成[J]. 含能材料, 2008,16(5):609-613.
SHAO Zi‑qiang, ZHANG You‑de, YANG Fei‑fei, et al. Molecular design and synthesis of hydroxyalkyl cellulose ether nitrate as novel energetic adhesive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5): 609-613.
- 10
邵自强, 张有德, 吴嫚丽, 等. 高性能黏合剂中间体纤维素甘油醚取代度的测定[J], 含能材料, 2009, 17(3): 330-333.
SHAO Zi‑qiang, ZHANG You‑de, WU Man‑li, et al. Quantitative analysis of molar substitution of cellulose glycerol ether as intermediate of energetic binder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(3): 330-333.
- 11
张有德, 邵自强, 李博, 等. NGEC的热行为和热分解机理[J], 含能材料, 2010 ,18(5):568‑573.
ZHANG You‑de, SHAO Zi‑qiang, LI Bo, et al. Thermal behavior and thermal decomposition mechanism of nitrate glycerol ether cellulose[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010 ,18(5):568-573.
- 12
Zhang Y, Shao Z, Gao K, et al. Rheological characteristics of nitrate glycerol ether cellulose gel based on phase separation in ternary system[J]. Cellulose, 2014, 21(6): 4135-4143.
- 13
Zhang Y, Wang F, Gao K, et al. Alcogel and aerogel of nitrocellulose formed in nitrocellulose/acetone/ethanol ternary system[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2016, 65(8): 377-383.
- 14
Gerald G B. Thermoplastic elastomer having alternate crystalline structure for using as high energy binders[P]. USP 5210153,1993.
- 15
Niehaus M. Compounding of glycidyl azide polymer with nitrocellulose and its influence on the properties of propellants[J]. Propellants Explosives Pyrotechnics, 2000, 25(5):236-240.
- 16
丁海琴, 菅晓霞, 肖乐勤,等. 聚叠氮缩水甘油醚改性NC的制备与性能[J]. 火炸药学报, 2013, 36(3): 78-82.
DING Hai‑qin, JIAN Xiao‑xia, XIAO Le‑qin, et al. Preparation and properties of glycidyl azide polymer modified NC[J]. Chinese Journal of Explosives & Propellants,2013, 36(3): 78-82.
- 17
吴艳光, 罗运军, 葛震. GAP型交联改性双基推进剂黏合剂的力学性能[J]. 火炸药学报, 2012, 35(2): 66-69.
WU Yan‑guang, LUO Yun‑jun, GE Zhen. Mechanical properties of the binder for GAP based cross‑linked modified double‑base propellant[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 66-69.
- 18
贾玉. 碳纳米管/热塑性聚合物复合材料的制备及蠕变行为研究[D]. 合肥:中国科学技术大学, 2012.
JIA Yu. Study on preparation and creep behavior of carbon nanotubes‑reinforced thermoplastic nanocomposites[D]. Hefei: University of Science and Technology of China, 2012.
- 19
鹿海军, 梁国正, 陈祥宝,等. 高性能树脂基纳米复合材料的发展新动向[J]. 航空材料学报, 2004, 24(4): 57-62.
LU Hai‑jun, LIANG Guo‑zheng, CHEN Xiang‑bao, et al. New trends of research and development of high performance resin nanocomposites[J]. Journal of Aeronautical Materials, 2004, 24(4): 57-62.
- 20
Wu Q, Henriksson M, Liu X, et al. A high strength nanocomposite based on microcrystalline cellulose and polyurethane[J]. Biomacromolecules, 2007, 8(12): 3687-3692.
- 21
Habibi Y, Goffin A L, Schiltz N, et al. Bionanocomposites based on poly(ε‑caprolactone)‑grafted cellulose nanocrystals by ring‑opening polymerisation[J]. Journal of Materials Chemistry, 2008, 18(41): 5002-5010.
- 22
Bulota M, Vesterinen A H, Hughes M, et al. Mechanical behavior, structure, and reinforcement processes of TEMPO‐oxidized cellulose reinforced poly(lactic) acid[J]. Polymer Composites, 2013, 34(2): 173-179.
- 23
Zhou C, Wu Q, Yue Y, et al. Application of rod‑shaped cellulose nanocrystals in polyacrylamide hydrogels[J]. Journal of Colloid & Interface Science, 2011, 353(1): 116-123.
- 24
杨春盛.双基推进剂硝胺脱湿及其键合剂分子设计[J].火炸药学报,1997,20(3): 25-28.
YANG Chunsheng. Molecular design of the bonding agent for double base propellant[J]. Chinese Journal of Explosives & Propellants,1997,20(3): 25-28.
- 25
赵毅, 黄振亚, 刘少武,等. 改善高能硝胺发射药力学性能研究[J]. 火炸药学报, 2005, 28(3):1-3.
ZHAO Yi, HUANG Zhen‑ya, LIU Shao‑wu, et al. Study of improving mechanical performance of high‑energy nitroamine propellant[J]. Chinese Journal of Explosives & Propellants,2005, 28(3): 1-3.
- 26
徐皖育, 何卫东, 王泽山. JMZ发射药力学性能研究[J]. 含能材料, 2007, 15(3): 235-239.
XU Wan‑yun, HE Wei‑dong, WANG Ze‑shan. Mechanical properties of JMZ gun propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3): 235-239.
- 27
Isogai A, Saito T, Fukuzumi H. TEMPO‑oxidized cellulose nanofibers.[J]. Nanoscale, 2011, 3(1): 71-85.
- 28
Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO‑mediated oxidation of native cellulose.[J]. Biomacromolecules, 2007, 8(8):2485.
- 29
Sun B, Gu C, Ma J, et al. Kinetic study on TEMPO‑mediated selective oxidation of regenerated cellulose[J]. Journal of Donghua University Natural Science, 2004, 12(1): 59-66.
- 30
Rattaz A, Mishra S P, Chabot B, et al. Cellulose nanofibres by sonocatalysed‑TEMPO‑oxidation[J]. Cellulose, 2011, 18(3):585-593.
- 31
王文俊, 冯蕾, 邵自强,等. 纳米纤维素晶须/硝化纤维素复合材料的制备与力学性能研究[J]. 兵工学报, 2012, 33(10):1173-1177.
WANG Wen‑jun, FENG Lei, SHAO Zi‑qiang, et al. Preparation and mechanical properties of cellulose nanowhisker/nitrocellulose nanocomposites[J]. Acta Armamentarii, 2012, 33(10): 1173-1177.
- 32
王文俊, 崔小月, 朱海东,等. 纳米纤维素纤维的表面改性及其对硝化纤维素膜力学性能的影响[J]. 兵工学报, 2016, 37(2):260-264.
WANG Wen‑jun, CUI Xiao‑yue, ZHU Hai‑dong, et al. Surface modification of cellulose nano‑fiber and its effect on mechanical properties of nitrocellulose film[J]. Acta Armamentarii, 2016, 37(2): 260-264.
- 33
张云华. 改性硝化纤维素基固体推进剂及其凝胶/复合凝胶研究[D].北京: 北京理工大学, 2015.
ZHANG Yun‑hua. Study on solid propellant based on modified nitrocellulose and its gel/composite gel[D]. Beijing: Beijing Institute of Technology, 2015.
- 34
夏勇,梁昊,何卫东.纳米纤维素纤维在高能太根发射药中的应用[J].含能材料, 2018, 26(2): 118-122.
XIA Yong,LIANG Hao,HE Wei‑dong. Application of Cellulose Nanofibers in High‑energy TEGDN Gun Propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2018,26(2): 118-122.
- 35
Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 1962, 57(165):651-660.
- 36
Nishino T, Peijs T. All‑cellulose composites[J]. Macromolecules, 2004, 37(20): 7683-7687.
- 37
Saito T, Uematsu T, Kimura S, et al. Self‑aligned integration of native cellulose nanofibrils towards producing diverse bulk materials[J]. Soft Matter, 2011, 7(19): 8804-8809.
- 38
Wang Z H, Mcdonald A G, Westerhof R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2013, 100(3): 56-66.
- 39
Lin N, Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees[J]. Nanoscale, 2014, 6(10): 5384-5393.
- 40
Segal L, Creely J J, Jr A E M, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X‑Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
- 41
Klemm D, Philpp B, Heinze T, et al. Comprehensive cellulose chemistry. Volume 1: fundamentals and analytical methods [M]. Weinheim, Germany: Wiley, 1998: 130-155.
- 42
Marchessault R H, Morehead F F, Koch M J. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape[J]. Journal of Colloid Science, 1961, 16(4): 327-344.
- 43
Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(29): 8971-8976.
- 44
张立功, 张佐光. 先进复合材料中主要缺陷分析[J]. 玻璃钢/复合材料, 2001, 1(2): 42-45.
ZHANG Li‑gong, ZHANG Zuo‑guang. Analysis of defects in advanced composites[J]. Fiber Reinforced Plastics/composite, 2001, 1(2): 42-45.
- 45
Halsey G, Eyring H. The mechanical properties of textiles: II. A general theory of elasticity with application to partially rubber‑like substances[J]. Textile Research Journal, 1945, 15(12): 451-459.
- 46
庞鸿婷. 硝化棉在热老化过程中爆发点、分解温度变化规律的探讨[J]. 消防科学与技术, 1988, 3: 31-32.
PANG Hong‑ting. Discussion on the variation law of explosion point and decomposition temperature of nitrocellulose during heat aging[J]. Fire Science and Technology, 1988, 3: 31-32.
- 1
摘要
为获得力学性能更好的硝化纤维素膜材料,对竹浆进行2,2,6,6‑四甲基哌啶‑1‑氧基自由基(TEMPO)选择性催化氧化‑超声处理,得到直径纳米级、长度微米级的纤维素纳米纤维(cellulose nanofibrils,CNFs)。采用N,N‑二甲基甲酰胺(DMF)或DMF/
Abstract
To obtain a nitrocellulose membrane with enhanced mechanical properties, cellulose nanofibrils(CNFs) with nanometer‑diameter and micron‑length were obtained by 2,2,6,6‑tetramethylpiperidine‑1‑oxyl(TEMPO) oxidation‑sonication treatment of bamboo pulp. The N,N‑dimethylformamide(DMF) and DMF/