CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004,12(增刊): 1-12.
DONGHai‑shan. The development and countermeasure of high energy density materials[J]. Chinese Journal of Energetic Materials (Hannengcailiao),2004,12(Suppl.):1-12.
参考文献 2
王振宇. 国外高能量密度化合物研究新进展[J]. 飞航导弹,2003(2): 34-37.
WANGZhen‑yu. New progress in the study of highenergydensity compounds abroad[J]. Aerodynamic Missile Journal,2003(2):34-37.
参考文献 3
张德雄, 张衍, 王伟平, 等. 高能量密度材料(HEDM)研究开发现状及展望[J]. 固体火箭技术, 2005, 28(4): 284-288.
ZHANGDe‑xiong, ZHANGYan, WANGWei‑ping, et al. Research and development status and prospect of highenergydensity materials (HEDM)[J]. Journal of Solid Rocket Technology, 2005, 28(4): 284-288.
参考文献 4
张志忠, 王伯周, 姬月萍, 等. 部分新型高能量密度材料的国内研究进展[J]. 火炸药学报, 2008, 31(2): 93-97,101.
ZHANGZhi‑zhong, WANGBo‑zhou, JIYue‑ping, et al. Study progress of several high energy density materials(HEDM)[J]. Chinese Journalof Explosives & Propellants,2008, 31(2): 93-97,101.
参考文献 5
张豪侠. 美国国防部关键技术计划‑高能量密度材料项目[J]. 现代兵器, 1992(8):40-42.
ZHANGHao‑xia. Key technology program of the United States Department of Defense‑the program of high energy density materials[J]. Modern Weaponry, 1992(8): 40-42.
参考文献 6
ZhangQ H, ShreeveJ M. Metal‑organic frameworks as high explosives: a new concept for energetic materials[J]. Angewandte Chemie International Edition, 2014, 53(10): 2540-2542.
参考文献 7
McdonaldK A, SethS, MatzgerA J. Coordination polymers with high energy density: an emerging class of explosives[J]. Crystal Growth & Design,2015,15(12),5963-5972.
参考文献 8
LiS H, WangYY, QiC, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition,2013, 152(52):14031-14035.
参考文献 9
ZhangJ C, SuH, DongY L, et al. Synthesis of denser energetic metal‑organic frameworks via a tandem anion‑ligand exchange strategy[J]. Inorganic Chemistry,2017,56(17):10281-10289.
参考文献 10
LiuX Y, GaoW J, SunPP, et al. Environmentally friendly high‑energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry,2015,17(2):831-836.
参考文献 11
ZhangY L, ZhangS, SunL, et al. A solvent‑free dense energetic metal‑organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry[J]. Chemical Communications,2017,53:3034-3037.
参考文献 12
HiskeyM, GoldmanN, StineJ. High‑nitrogen energetic materials derived from azotetrazolate[J]. Journal of Energetic Materials,1998,16(2):119-127.
参考文献 13
HammerlA, KlapotkeT M. Tetrazolylpentazoles: nitrogen‑rich compounds[J]. Inorganic Chemistry,2002,41(4): 906-912.
参考文献 14
阳世清, 岳守体. 国外四嗪四唑类高氮含能材料研究进展[J]. 含能材料, 2003, 11(4): 231-235.
YANGShi‑qing, YUEShou‑ti. Progress in high‑nitrogen energetic materials derived from tetrazine and tetrazole[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003,11(4):231-235.
参考文献 15
ThomasM K, CariesM S. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.
参考文献 16
ZhaoH, QuZ, YeH, et al. In situ hydrothermal synthesis of tetrazole coordination polymers withinteresting physical properties[J]. Chemical Society Reviews, 2008, 37(1): 84-100.
参考文献 17
ZhangS, YangQ, LiuX Y, et al. High‑energy metal‑organic frameworks(HE‑MOFs): synthesis, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016, 307(2): 292-312.
参考文献 18
QuX N,ZhaiL J, WangB Z, et al. Copper‑based energetic MOFs with 3‑nitro‑1‑H‑1,2,4‑triazole: solvent‑dependent syntheses, structures and energetic performances[J]. Dalton Transactions, 2016, 45: 17304-17311.
参考文献 19
ZhangS, LiuX Y, YangQ, et al. A new strategy for storage and transportation of sensitive high‑energy materials: guest‑dependent energy and sensitivity of 3D metal‑organic‑framework‑based energetic compounds[J]. Chemistry‑A European Journal, 2014, 20(26): 7906-7910.
参考文献 20
王锡杰, 贾思媛, 王伯周, 等. 5‑氨基‑3‑硝基‑1,2,4‑三唑(ANTA)的合成工艺改进[J]. 含能材料, 2006, 14(6): 439-440.
WANGXi‑jie, JIASi‑yuan, WANGBo‑zhou, et al. Synthesis improvement of 5‑amino‑3‑nitro‑1,2,4‑triazole(ANTA)[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2006,14(6):439-440.
参考文献 21
HuangH, ZhouZ, LiangL, et al. Nitrogen‑rich energetic monoanionic salts of 3,4‑dis(1‑H‑5‑tetrazolyl)furoxan[J]. Chemistry‑An Asian Journal, 2012, 7(4): 707-714.
参考文献 22
SheldrickG. M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany,1997.
参考文献 23
SheldrickG. M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany ,1997.
参考文献 24
QuX N, ZhangS, YangQ, et al. Silver(I)‑based energetic coordination polymers: synthesis, structure and energy performance[J]. New Journal of Chemistry,2015,39(10):7849-7857.
参考文献 25
陆明. 对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 373-376.
LUMing. Consideration of the density and energetic level of the all nitrogen N5- metallic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(7): 373-376.
参考文献 26
CoxJ D, WagmanD D, MedvedevV A. CODATA key values for thermodynamics[M]. Hemisphere Publishing Corp, New York, 1989.
参考文献 27
WangY, ZhangJ, SuH, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. Journal of Physical Chemistry A,2014,118(25):4575-4581.
参考文献 28
FidlerR. Degradation of TNT, RDX, and TATP using microscale mechanically alloyed bimetals[M]. 2009.
参考文献 29
汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究[J]. 含能材料, 2011, 19(4): 396-400.
TANGZhan, YANGLi, QIAOXiao‑jing, et al. On thermal decomposition kinetics and thermal safety of HMX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2011,19(4):396-400.

    摘要

    基于含能配体3,5‑二硝基‑1‑氢‑1,2,4‑三唑(2‑Hntz)和3,4‑双(1‑氢‑5‑四唑基)‑氧化呋咱(H2BTOF),水热条件下制备了两例无溶剂的能量Ag(Ⅰ)‑MOFs,[Ag2(2‑ntz)2]n(1)和[Ag2(BTOF)]n(2)。单晶衍射分析表明,Ag+中心均为三配位,化合物1为由2‑ntz-采取μ3‑1,2,4模式桥联金属形成的三维框架结构(ρ1=2.805 g·cm-3),化合物2是由BTOF2-通过五齿桥连‑螯合模式连接金属形成的二维折叠层状结构(ρ2=3.101 g·cm-3)。综合热分析(TG‑DSC)测试表明,化合物1和2均具有较高的热稳定性,在240 ℃以前保持框架稳定。以氧弹热量计测定了化合物1和2的恒容燃烧热并计算得到标准摩尔生成焓分别为(1375.74±1.27) kJ·mol-1和(1647.42±1.46) kJ·mol-1。爆轰和安全性能分析表明,化合物1和2的爆热、爆速和爆压值分别为5.55 kJ·g-1和3.78 kJ·g-1,8.97 km·s-1和7.69 km·s-1,44.87 GPa和34.37 GPa,对撞击和摩擦不敏感,属潜在的高能钝感材料。

    Abstract

    Based on energetic ligands 3,5‑dinitro‑1‑H‑1,2,4‑triazole and 3,4‑bis(1H‑5‑tetrazolyl)furoxan, two solvent‑free energetic Ag(Ⅰ)‑MOFs, [Ag2(2‑ntz)2]n(1) and [Ag2(BTOF)]n(2) have been prepared under hydrothermal conditions. Single‑crystal X‑ray analysis reveals that the Ag+centersin both Ag(Ⅰ)‑MOFs are three‑coordinated. Compound 1 features a 3D framework (ρ1=2.805 g·cm-3) constructed by 2‑ntz- ligands bridging metal ions with a μ3‑1,2,4 mode. Compound 2 presents a 2D folded layer structure (ρ2=3.101 g·cm-3) formed by BTOF2- ligands linking metal ions with aquinquedentatechelating‑bridging coordinationmode. TG‑DSC curves demonstrate that both compounds 1 and 2 keep stable until 240 ℃, exhibiting high thermal stability. The heats of combustion of 1 and 2 are determined by oxygen‑bomb calorimeter, and the corresponding standard molar enthalpies of formationare determined to be (1375.74±1.27) kJ·mol-1 and (1647.42±1.46) kJ·mol-1, respectively. The detonation and safety performance analyses show that the heat of detonation, detonation velocityand detonationpressureof compounds1 and 2 are, respectively calculated as 5.55 kJ·g-1 and 3.78 kJ·g-1, 8.97 km·s-1 and 7.69 km·s-1, as well as 44.87 GPa and 34.37 GPa. Both compounds 1 and 2 are insensitive to impact and friction, and are good high energy yet low sensitivity materials.

  • 1 引 言

    1

    “高能量、低感度”是含能材料追求的目标。在各类能量氮杂环(呋咱,唑类,嗪类等)或张力环上引入—NO2、—ONO2及—N3等高能或生爆基团以提高含能分子的能量密度是当前提升材料能量的主流方[1,2,3]。然而,随着能量密度的提高,寻求材料能量密度的再提高愈发艰难,加之提高化学能的同时必然造成材料感度的急剧上升及稳定性降低,如何在保持高能量水平的同时平衡材料自身的感度已成为含能材料研究的重中之[4,5]。开发由金属离子和含能有机配体通过配位自组装形成的能量金属‑有机框架(E‑MOFs),是平衡上述“高能与钝感”矛盾的有效策[6]。一方面,高能配体密集、规则的分布于有限空间内有利于提高材料的能量密度;另一方面,高度有序的框架结构以及框架内丰富的超分子作用(π‑π堆积、氢键等)有利于降低材料感度及增强稳定[7]。2013年庞思平报道了一例由富氮的4,4′‑偶氮‑1,2,4‑三唑构筑的三维铜基E‑MOF,{[Cu(atrz)3]·2NO3}n,其爆热值(15.15 kJ·g-1)、热分解温度(243 ℃)及撞击感度(22.5 J)均优于CL‑20[8];随后基于同一配体该团队又报道了两例三维多孔E‑MOFs,{Zn(atrz)3[ClO4]2·2H2O}n和{Cu(atrz)3[NO3]2·2H2O}n,并通过单晶‑单晶转换,成功得到骨架结构转化、阴离子交换的E‑MOFs,{Zn(atrz)2[C(NO2)3]2(H2O)2·atrz·2H2O}n和{Cu(atrz)2[C(NO2)3]2(H2O)2·atrz·2H2O}n,其能量密度和爆轰性能显著改[9]。另外,陈三[10,11]课题组利用3‑四唑基‑5‑三唑(H2tztr)报道了多例不同骨架结构的铜基E‑MOFs,[Cu(Htztr)2(H2O)2]n、{[Cu(tztr)]·H2O}n、[Cu(Htztr)]n和[Cu(tztr)]n,呈现截然不同的爆轰性能。显然,含能配体及材料的骨架结构是决定E‑MOFs能量与安全性能的关键。

    富氮的唑类化合物凭借其生成焓高、热稳定性好、单位质量产气量大、燃烧产物多为对环境友好的氮气等优点,近年来一直是含能材料科学家们关注的焦[12,13,14,15];同时,其亲核的成环N原子易与中心离子成键而呈现出良好的配位能力和灵活的配位模[16],使该类化合物已成为构筑E‑MOFs的一类优选配体,一些结构新颖、性能优异的唑类E‑MOFs已被相继报[17]。然而,E‑MOFs在组装过程中存在不可预测性,常伴有溶剂分子参与配位或占据孔道晶[18,19],易导致材料稳定性和能量密度降低而大大削弱其能量特性。因此,选取合适的金属离子与位阻较大、配位竞争能力较强的高能配体组装是制备无溶剂E‑MOFs的有效方法。

    基于上述考虑,本研究参考文献[20-21]合成了3,5‑二硝基‑1‑氢‑1,2,4‑三唑(2‑Hntz)和3,4‑双(1‑氢‑5‑四唑基)‑氧化呋咱(H2BTOF)两种高能配体,其具有高的氮含量、不含氢原子及多个配位点等特点,同时三唑环和呋咱环上引入的硝基和氧原子不仅有利于提高材料的氧平衡值而且能够增加位阻效应,为提升材料爆炸性能提供了有力条件。在水热条件下,将二者分别与配位数较低的银离子组装获得了两例无溶剂的E‑MOFs,[Ag2(2‑ntz)2]n(1),和[Ag2(BTOF)]n(2),并对其进行了组成和结构表征。爆轰与安全性能研究表明,化合物1和2具有较高的稳定性且均对撞击和摩擦钝感,其爆轰性能要分别优于HMX和TNT,是理想的高能钝感材料。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    主要试剂:3,5‑二氨基‑1,2,4‑三唑(2‑Hatz)纯度≥98%,购自北京伊诺凯科技有限公司。亚硝酸钠、氰基乙酸、三氟乙酸、叠氮化钠、氯化锌、硝酸银均为分析纯,购自萨恩化学技术(上海)有限公司。乙腈和乙醚为分析纯,购自天津市天力化学试剂有限公司。硝酸、硫酸、盐酸、氨水为分析纯,购自北京化工厂。

    主要仪器:Vario EL Ⅲ型元素分析仪(德国Elementar公司),Bruker Tensor 27型红外光谱仪,AVANCE Ⅲ 400 MHz型核磁共振仪,STA 449C型综合热分析仪(德国耐驰仪器制造有限公司),CDR‑4P型差示扫描量热仪(上海天平仪器厂),IKA C5000型氧弹热量计。

  • 2.2 实验过程

    2.2

    依照文献[20-21]合成了能量配体3,5‑二硝基‑1‑氢‑1,2,4‑三唑的铵盐([2‑ntz]-·[NH4]+)和3,4‑双(1‑氢‑5‑四唑基)‑氧化呋咱(H2BTOF),再与AgNO3在不同的反应条件下得到化合物1和2,合成路线见Scheme 1。

    Scheme 1 Synthetic procedure of compounds 1 and 2

  • 2.2.1 3,5‑

    2.2.1

    二硝基‑1‑氢‑1,2,4‑三唑铵盐([2‑ntz]-·[NH4]+)的合成

    目标铵盐([2‑ntz]-·[NH4]+)按照文献[17-18]合成得到,产率为85%。([2‑ntz]-·[NH4]+)(C2H4N6O4Mr=176.09 g·mol-1)的元素分析结果(%):理论值C,13.64;H,2.29;N,47.73;实测值:C,13.57;H,2.32;N,47.6913C NMR(DMSO‑d6δ:162.07。红外光谱测试结果(KBr,ν/cm-1):3437,3239,2983,2921,2858,2362,2100,1662,1635,1542,1502,1394,1318,1277,1130,1043,993,857,623,571。

  • 2.2.2 [Ag2(2‑ntz)2]n(1)的合成

    2.2.2

    将50.9 mg(0.30 mmol)AgNO3和17.6 mg(0.10 mmol)([2‑ntz]-·[NH4]+)溶解于6 mL蒸馏水中,室温搅拌30 min后移至25 mL带聚四氟乙烯内衬的不锈钢反应釜中,升温至100 ℃下保温3天,之后以5 ℃·h-1的降温速率冷却到室温,过滤、水洗并干燥,得到淡黄色棒状晶体产率为36%(基于Ag+)。化合物1(Ag2C4N10O8Mr=531.88 g·mol-1)的元素分析结果(%):理论值C,9.03;N,26.34;实测值:C,9.11;N,26.27。红外光谱测试结果(KBr,ν/cm-1):3435,2994,2934,2858,2372,2107,1657,1642,1531,1496,1397,1315,1297,1132,1054,996,851,624,576。

    2

    .2.3 3,4‑双(1‑氢‑5‑四唑基)‑氧化呋咱(H2BTOF)的合成

    参照文献[21]合成3,4‑二氰基氧化呋咱(H2BCOF),产率89%。元素分析结果(%):理论值C 35.29,N 41.18;实测值:C 35.25,N 41.20。红外光谱测试结果(KBr,ν/cm-1):3438,2252,1644,1557,1465,1343,1308,1105,1076,1048,834,737,687,632,585,493,48813C NMR(DMSO‑d6δ: 134.7,106.7,105.0,99.5。

    将1.36 g(10.0mmol)H2BCOF,1.95 g(30.0 mmol)NaN3,1.36 g(10.0mmol)ZnCl2和30 mL H2O依次加入到100 mL圆底烧瓶中,搅拌,加热至100 ℃回流5 h,冷却至室温,用2%的HCl调节pH=1~2,过滤,水洗,置于真空箱中干燥,得白色粉末H2BTOF,产率86%。元素分析结果(%):理论值C 21.62,H 0.91,N 63.07;实测值:C 21.56,H 1.08,N 62.78。红外光谱测试结果(KBr,ν/cm-1):3139,2901,2446,1618,1575,1459,1417,1386,1283,1236,1203,1187,1127,1091,1066,1025,1001,965,933,823,784,733,707,542,48313C NMR(DMSO‑d6δ: 149.0,146.2,144.5,106.0。

  • 2.2.4 [Ag2(BTOF)]n(2)的合成

    2.2.4

    将0.1 mmol H2BTOF溶解于3 mL去离子水中,搅拌下加入3 mL AgNO3水溶液(0.10 mol·L-1),室温搅拌30 min后,用稀氨水调节体系pH至8左右,继续搅拌30 min后将混合物转移至25 mL带聚四氟乙烯内衬的不锈钢反应釜中,于160 ℃下晶化3 d,然后以3 ℃·h-1的降温速率冷却至室温,得淡黄色块状晶体,产率为11%(基于Ag+)。元素分析结果(%):理论值C 11.06,N 32.28;实测值:C 11.03,N 32.29。红外光谱测试结果(KBr,ν/cm-1δ:3148,2932,2451,1627,1579,1465,1428,1389,1291,1243,1218,1192,1132,1103,1069,1032,1007,969,941,829,787,736,711,549,486。

  • 2.3 晶体结构分析

    2.3

    借助显微镜选取合适尺寸、外形透明规则的化合物晶体12,采用Bruker Smart‑APEX II CCD X射线单晶衍射仪,以石墨单色器单色化的MoKα射线(λ=0.071073 nm)为光源,在296(2) K温度下,通过ωϕ扫描方式收集衍射点,所有强度数据进行LP因子及经验吸收校正。晶体结构通过直接法由SHELXS‑97解析得[22],并通过全矩阵最小二乘法精修由SHELXL‑97程[23]完成。化合物1和2的详细晶体数据及参数见表1,部分键长、键角数据见表2。晶体CIF文件已保存至剑桥晶体结构数据中心[CCDC No. 1478867(1)和1475304(2)]。

    表1 化合物1和2的晶体学数据表

    Table 1 Crystallorgraphic data for compounds

    compound1·[Ag2(2‑ntz)2]n2·[Ag2(BTOF)]n
    empirical formulaAg2C4N10O8

    C4Ag2N10O2

    435.88

    formula weight531.88
    crystal systemorthorhombicmonoclinic
    space groupPbcaP21/c
    a / Å10.7719(1)8.9537(1)
    b / Å11.1490(1)9.719(2)
    c / Å20.976(4)10.764(2)
    α /(°)9090
    β /(°)9094.593(4)
    γ /(°)9090
    V / Å32519.2(7)933.7(3)
    Z84
    ρ / g·cm-32.8053.101
    T / K296(2)296(2)
    μ / mm-13.1834.210
    F(000)2016.0816
    reflections collected/unique13928/30784929/1857
    Rint0.03350.0406
    data/restraints/parameters3078/6/2171857/6/163
    final R indexes [I>=2σ(I)]

    R1=0.0297

    wR2=0.0631

    R1=0.0752

    wR2=0.1937

    final R indexes [all data]

    R1=0.0458

    wR2=0.0684

    R1=0.0916

    wR2=0.2062

    GOF on F21.0181.085

    Largest diff. peak

    hole / e·Å-3

    1.14/-0.852.85/-1.13

    Note: R1=∑||Fo|−|Fc||/∑|Fo|. wR2=[∑w(Fo2Fc2)2/∑w[(Fo2)2]1/2.

    GOF is goodness of fit.

    表1
                    化合物1和2的晶体学数据表

    表2 化合物1和2的部分键长和键角数据

    Table 2 The selected bond length and angle of compounds 1 and 2

    compound 1
    N(2)—Ag(1)#12.249(3)Ag(1)—N(1)2.415(3)Ag(2)—N(5)#42.290(3)
    Ag(1)—N(4)#22.223(3)Ag(2)—N(3)2.270(3)Ag(2)—N(8)2.311(3)
    N(3)—Ag(2)—N(8)113.93(1)N(4)#2—Ag(1)—N(2)#3133.23(1)N(2)#3—Ag(1)—N(1)111.61(1)
    N(5)#4—Ag(2)—N(8)116.35(1)N(4)#2—Ag(1)—N(1)114.88(1)N(3)—Ag(2)—N(5)#4128.53(1)
    compound 2
    Ag(1)—N(1)2.217(9)Ag(2)—N(7)#72.222(1)Ag(2)—N(5)#72.377(1)
    Ag(1)—N(10)#62.234(1)Ag(1)—N(6)#52.482(1)Ag(2)—N(2)2.184(9)
    N(1)—Ag(1)—N(1)#6154.8(4)N(2)—Ag(2)—N(5)#7115.3(3)N(10)#6—Ag(1)—N(6)#593.5(4)
    N(1)—Ag(1)—N(6)#5110.1(3)N(7)#7—Ag(2)—N(5)#789.3(4)N(2)—Ag(2)—N(7)#7155.3(4)

    #1: ‑1/2+x, 1+y,1/2‑z. #2 :3/2‑x,1‑y,‑1/2+z. #3 :1/2+x, 1+y,1/2‑z. #4:1/2+x,3/2‑y,1‑z. #5: x,‑y+1/2,z+1/2. #6: x,y‑1,z. #7: x,‑y+1/2,z‑1/2.

  • 3 结果与讨论

    3
  • 3.1 结构描述

    3.1

    结构分析表明,化合物1属正交晶系,Pbca空间群,每一个不对称单元中包含两个Ag+离子和两个脱质子的2‑ntz-配体,整个结构中不含配位或游离的溶剂分子,密度为2.805 g·cm-3。如图1a所示,每一个Ag+离子分别与三个2‑ntz-配体上的三个N原子配位,对应的Ag—N键长[2.223(3)~2.415(3) Å]和N—Ag—N键角[111.61(1)o~133.23(1)o]均在文[24]报道的正常范围内(见表1)。每个2‑ntz-配体采取μ3‑1,2,4模式桥联三个Ag+离子(图1b),硝基基团未参与配位,其中最短的Ag(1)…Ag(2)距离为3.945(1) Å。相邻的Ag+中心经2‑ntz-配体互相连接,在空间上沿三维方向无线延伸形成密实的3D框架结构(见图2)。框架内三唑环间存在较强的π‑π堆积作用[质心间距离为3.8002(1) Å],有利于提升材料的热稳定性并降低感度。

    图1
                            化合物1中Ag+的配位环境和2‑ntz‑的配位环境

    a. g+    A 2‑ntz-    b.

    图1 化合物1中Ag+的配位环境和2‑ntz的配位环境

    Fig.1 The coordination environments of Ag+ and 2‑ntz- in compound 1

    图2
                            化合物1的三维框架结构

    图2 化合物1的三维框架结构

    Fig.2 The 3D framework of compound 1

    化合物2属单斜晶系,P21/c空间群,每个不对称单元中包含一个完全脱质子的BTOF2-配体和两个Ag+离子,结构中不含溶剂分子。如图3所示,Ag(1)与三个BTOF2-配体上的三个N原子配位,Ag(2)和两个BTOF2-配体上的三个N原子进行三配位,均形成平面三角形构型,对应的Ag—N键长和N—Ag—N键角与已报道的Ag—MOFs中相关参数相接[24]。BTOF2-采取桥连‑螯合配位模式同时与五个Ag+离子配位,其在空间上沿bc平面无限扩展连接形成二维折叠状平面结构(见图4a),由于两个四唑环相对呋咱环平面发生扭转,使得呋咱环与邻近配体的四唑环平面间存在强的π‑π堆积作用[质心间距离为3.298(2) Å],有利于降低材料感度;相邻的二维层间再进一步通过空间堆积形成密实的超分子结构(ρ=3.101 g·cm-3)(图4b)。

    图3
                            化合物2中Ag(1)和Ag(2)中心的配位环境

    a. Ag(1)    b. Ag(2)

    图3 化合物2中Ag(1)和Ag(2)中心的配位环境

    Fig.3 The coordination environments of Ag(1) and Ag(2) centers in compound 2

    图4
                            化合物2的二维折叠状平面结构及其超分子骨架结构

    a. fold plane structure    b. supramolecular framework

    图4 化合物2的二维折叠状平面结构及其超分子骨架结构

    Fig.4 The fold plane structureand the supramolecular framework of compound 2

  • 3.2 热稳定性分析

    3.2

    热稳定性是含能材料的重要评价指标。利用TG‑DSC技术考察了氮气气氛下以10 ℃·min-1为升温速率化合物1和2在25.0~500.0 ℃范围内的热分解行为。如图5所示,由于化合物1和2为无溶剂E‑MOFs,二者均只经历了一步分解过程并伴随尖锐的放热峰,表明其具备含能材料的潜质。化合物1于301.8 ℃开始分解,至349.4 ℃结束,该过程发生了整体结构的坍塌,对应于DSC曲线上302.9~347.2 ℃的明显放热,分解峰温为323.8 ℃。化合物2的分解温度开始于242.6 ℃,结束于335.6 oC,对应DSC曲线上一个明显的、温度跨度为268.1~311.6 ℃的放热过程,分解峰温为286.3 ℃。相比于配体([2‑ntz]-·[NH4]+[25]Td=170 ℃)和H2BTOF[20,21]Td=228 ℃),化合物1和2都表现出高的热稳定性,可能是由于体系的无溶剂特征、稳定的框架结构及丰富的π‑π堆积等超分子作用所致。化合物1较化合物2呈现更高的热分解峰温,可能归因于化合物1中更加牢固的三维框架结构。

    html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F006.jpg

    a. compound 1

    html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F007.jpg

    b. compound 2

    图5 化合物1和2的TG‑DSC曲线

    Fig.5 TG‑DSC curves of compounds 1 and 2

  • 3.3 标准摩尔生成焓计算

    3.3

    化合物的标准摩尔生成焓是影响含能材料爆轰性能的关键。利用IKA C5000型氧弹热量计,通过与基准物质苯甲酸(纯度≥99.999%,质量燃烧热为(-26434±3) J·g-1)混合压片来测试化合物1和2的燃烧热(ΔcU)(3 MPa高纯氧气氛围,平行进行六次测试取平均值),并根据Hess定律计算出材料的标准摩尔生成焓(ΔfHmθ)。实验测得的化合物1和2的恒容燃烧热ΔcU分别为(-5643.85±2.38) J·g-1和(-7493.09±3.36) J·g-1,根据公式(1)~(2)可得材料的等压燃烧热,即298.15 K,100 kPa时的标准摩尔燃烧焓ΔcHmθ(kJ·mol-1),分别为(-2980.78±1.27) kJ·mol-1和(-3252.46±1.46) kJ·mol-1。下式(3)和(4)分别为化合物1和2理想燃烧时的燃烧反应方程式,由相关文献数[26,27]可得相应物质的标准摩尔生成焓:ΔfHm(Ag2O, s)=-31.00 kJ·mol-1ΔfHmθ(CO2, g)=(-393.51±0.13) kJ·mol-1,最终由式(5)和(6)可求算的化合物1和2的标准摩尔生成焓分别为(1375.74±1.27) kJ·mol-1和(1647.42±1.46) kJ·mol-1

    Δ c H m = Δ c U × M + Δ n R T
    (1)
    Δ n = n g , P - n g , R
    (2)

    式中,M为物质的摩尔质量,g·mol-1ng,P是反应产物中气体总摩尔量,mol;ng,R是反应物中气体总摩尔量,mol;R为气体常数,8.314 J·mol-1·K-1T为298.15 K。

    A g 2 C 4 N 10 O 8 + 1 2 O 2 A g 2 O + 4 C O 2 + 5 N 2
    (3)
    A g 2 C 4 N 10 O 2 + 7 2 O 2 A g 2 O + 4 C O 2 + 5 N 2
    (4)
    Δ f H m 1 , s θ = Δ f H m A g 2 O , s θ + 4 Δ f H m C O 2 , g θ - Δ c H m 1 , s θ
    (5)
    Δ f H m 2 , s θ = Δ f H m A g 2 O , s θ + 4 Δ f H m C O 2 , g θ - Δ c H m 2 , s θ
    (6)
  • 3.4 爆轰性能

    3.4

    化合物1和2的爆炸方程见公式(7)和(8[8]。基于晶体密度和生成热,利用Kamlet‑Jacobs方程(9)~(11),化合物1和2的爆轰性能参数爆热(Q,kJ·g-1)、爆速(D,km·s-1)和爆压(p,GPa)值分别计算为5.55 kJ·g-1和3.78 kJ·g-1,8.97 km·s-1和7.69 km·s-1,44.87 GPa和34.37 GPa,其他参数以及TNT、HMX和RDX的文献值列于表3中。由表3可见,相比于能量构筑单元2‑Hntz和H2BTOF,化合物1和2的密度增大、爆轰性能显著增强,且要分别优于军用炸药HMX和TNT,这主要归功于能量单元通过金属离子配位在有限的空间内得到迅速聚集及体系的无溶剂特征。

    表3 化合物1、2及部分含能材料的物理化学性质参数

    Table 3 Physicochemical properties of compounds 1, 2, and some energetic materials

    compoundsρ / g·cm-3Td / ℃N / %Q[8] / kJ·g-1p[8] / GPaD[8] / km·s-1IS / JFS / N
    2‑Hntz1.83170(salt)44.033.53730.568.26--
    H2BTOF1.6222963.063.49123.97.78<2-
    12.805301.826.345.55044.878.97>40>360
    23.101242.632.143.77934.377.69>40>360
    TNT[28]1.65424418.503.75420.507.17815353
    HMX[29]1.95028037.805.52538.398.9007.4-
    RDX[28]1.80621037.805.84333.928.6007.5120
    表3
                    化合物1、2及部分含能材料的物理化学性质参数

    ρ is from X‑ray diffraction. Td is decomposition temperature. N is nitrogen content; Q is heat of detonation. p is detonation pressure. D is Detonation.IS is impact sensitivity. FS is friction sensitivity.

    A g 2 C 4 N 10 O 8 2 A g + 4 C O 2 + 5 N 2
    (7)
    A g 2 C 4 N 10 O 2 2 A g + 3 C + C O 2 + 5 N 2
    (8)
    D = 1.01 N M 1 / 2 Q 1 / 2 1 / 2 1 + 1.30 ρ
    (9)
    p = 1.55 ρ 2 N M 1 / 2 Q 1 / 2
    Q = - f H θ m d e t o n a t i o n p r o d u c t s - f H θ m e x p l o s i v e M ( e x p l o s i v e )
    (10)

    式中,ΔfHmθ为爆炸反应中各物质的标准摩尔生成焓,kJ·mol-1;Q为爆热,kJ·g-1;D为爆速,km·s-1;p为爆压,GPa;N为每克能量材料爆炸后产生的气体总摩尔数;M为1 mol能量材料爆炸后产生的气体的平均摩尔质量;ρ为材料的密度,g·cm-3

  • 3.5 撞击感度和摩擦感度

    3.5

    利用CGY‑1型机械撞击感度仪、MGY‑1型摆动摩擦感度仪对化合物1和2分别进行了撞击感度(IS)、摩擦感度(FS)测定,结果见表3。实验结果表明,化合物1和2的撞击感度值和摩擦感度值均分别大于40 J和360 N,未发生爆炸,表现出良好的钝感。从表3可以看出,相比于HMX、RDX、TNT和能量配体,化合物1和2具有良好的热稳定性和钝感,这主要是由金属离子和能量体构筑的稳定的E‑MOFs骨架结构及框架内丰富的π‑π堆积作用所致。综合爆轰性能和安全性能,化合物1和2均可作为优良的新型高能钝感含能材料。

  • 4 结 论

    4

    (1)结构分析表明,1和2中银离子均以三配位方式连接能量单元2‑Hntz和H2BTOF而形成无溶剂的高密度框架结构(ρ1=2.805 g·cm-3ρ2=3.101 g·cm-3),同时框架内芳香环间存在较强的π‑π堆积作用。

    (2)TG‑DSC测试表明,无溶剂的化合物1和2均只发生一步迅速分解,具有良好的热稳定性,其分解峰温度分别为323.8 ℃和286.3 ℃。

    (3)爆轰和安全性能分析表明,化合物1和2对撞击和摩擦均不敏感,属钝感含能材料。其爆热、爆速和爆压值分别为5.55 kJ·g-1和3.78 kJ·g-1,8.97 km·s-1和7.69 km·s-1,44.87 GPa和34.37 GPa,优于HMX和TNT。

    通过配位化学策略将能量基元进行有效聚集来制备E‑MOFs是发展新型高密度含能材料的有效途径。同时,配位化学赋予了E‑MOFs组装无限的可能及不确定性,要获得优异性能的E‑MOFs不仅仅取决于金属离子及高能配体种类,更与配体的配位模式、框架的维度、空间堆积方式和拓扑类型等因素息息相关。此外,金属离子的引入及MOFs材料的多孔空腔特征在一定程度上并不利于材料能量密度的提高,发展以轻金属离子为节点的E‑MOFs,或不含金属离子的能量共价‑有机框架(E‑COFs)以及由高能有机小分子占据孔道/空腔的E‑MOFs已成为当前研究新的趋势。总之,E‑MOFs研究仍处于探索阶段,从实验室的设计与合成到将其应用于实践,E‑MOFs材料还有很长的路要走。

  • 参考文献

    • 1

      董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004,12(增刊): 1-12.

      DONG Hai‑shan. The development and countermeasure of high energy density materials[J]. Chinese Journal of Energetic Materials (Hannengcailiao),2004,12(Suppl.):1-12.

    • 2

      王振宇. 国外高能量密度化合物研究新进展[J]. 飞航导弹,2003(2): 34-37.

      WANG Zhen‑yu. New progress in the study of highenergydensity compounds abroad[J]. Aerodynamic Missile Journal,2003(2):34-37.

    • 3

      张德雄, 张衍, 王伟平, 等. 高能量密度材料(HEDM)研究开发现状及展望[J]. 固体火箭技术, 2005, 28(4): 284-288.

      ZHANG De‑xiong, ZHANG Yan, WANG Wei‑ping, et al. Research and development status and prospect of highenergydensity materials (HEDM)[J]. Journal of Solid Rocket Technology, 2005, 28(4): 284-288.

    • 4

      张志忠, 王伯周, 姬月萍, 等. 部分新型高能量密度材料的国内研究进展[J]. 火炸药学报, 2008, 31(2): 93-97,101.

      ZHANG Zhi‑zhong, WANG Bo‑zhou, JI Yue‑ping, et al. Study progress of several high energy density materials(HEDM)[J]. Chinese Journalof Explosives & Propellants,2008, 31(2): 93-97,101.

    • 5

      张豪侠. 美国国防部关键技术计划‑高能量密度材料项目[J]. 现代兵器, 1992(8):40-42.

      ZHANG Hao‑xia. Key technology program of the United States Department of Defense‑the program of high energy density materials[J]. Modern Weaponry, 1992(8): 40-42.

    • 6

      Zhang Q H, Shreeve J M. Metal‑organic frameworks as high explosives: a new concept for energetic materials[J]. Angewandte Chemie International Edition, 2014, 53(10): 2540-2542.

    • 7

      Mcdonald K A, Seth S, Matzger A J. Coordination polymers with high energy density: an emerging class of explosives[J]. Crystal Growth & Design,2015,15(12),5963-5972.

    • 8

      Li S H, Wang YY, Qi C, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition,2013, 152(52):14031-14035.

    • 9

      Zhang J C, Su H, Dong Y L, et al. Synthesis of denser energetic metal‑organic frameworks via a tandem anion‑ligand exchange strategy[J]. Inorganic Chemistry,2017,56(17):10281-10289.

    • 10

      Liu X Y, Gao W J, Sun PP, et al. Environmentally friendly high‑energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry,2015,17(2):831-836.

    • 11

      Zhang Y L, Zhang S, Sun L, et al. A solvent‑free dense energetic metal‑organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry[J]. Chemical Communications,2017,53:3034-3037.

    • 12

      Hiskey M, Goldman N, Stine J. High‑nitrogen energetic materials derived from azotetrazolate[J]. Journal of Energetic Materials,1998,16(2):119-127.

    • 13

      Hammerl A, Klapotke T M. Tetrazolylpentazoles: nitrogen‑rich compounds[J]. Inorganic Chemistry,2002,41(4): 906-912.

    • 14

      阳世清, 岳守体. 国外四嗪四唑类高氮含能材料研究进展[J]. 含能材料, 2003, 11(4): 231-235.

      YANG Shi‑qing, YUE Shou‑ti. Progress in high‑nitrogen energetic materials derived from tetrazine and tetrazole[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003,11(4):231-235.

    • 15

      Thomas M K, Caries M S. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 16

      Zhao H, Qu Z, Ye H, et al. In situ hydrothermal synthesis of tetrazole coordination polymers withinteresting physical properties[J]. Chemical Society Reviews, 2008, 37(1): 84-100.

    • 17

      Zhang S, Yang Q, Liu X Y, et al. High‑energy metal‑organic frameworks(HE‑MOFs): synthesis, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016, 307(2): 292-312.

    • 18

      Qu X N,Zhai L J, Wang B Z, et al. Copper‑based energetic MOFs with 3‑nitro‑1‑H‑1,2,4‑triazole: solvent‑dependent syntheses, structures and energetic performances[J]. Dalton Transactions, 2016, 45: 17304-17311.

    • 19

      Zhang S, Liu X Y, Yang Q, et al. A new strategy for storage and transportation of sensitive high‑energy materials: guest‑dependent energy and sensitivity of 3D metal‑organic‑framework‑based energetic compounds[J]. Chemistry‑A European Journal, 2014, 20(26): 7906-7910.

    • 20

      王锡杰, 贾思媛, 王伯周, 等. 5‑氨基‑3‑硝基‑1,2,4‑三唑(ANTA)的合成工艺改进[J]. 含能材料, 2006, 14(6): 439-440.

      WANG Xi‑jie, JIA Si‑yuan, WANG Bo‑zhou, et al. Synthesis improvement of 5‑amino‑3‑nitro‑1,2,4‑triazole(ANTA)[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2006,14(6):439-440.

    • 21

      Huang H, Zhou Z, Liang L, et al. Nitrogen‑rich energetic monoanionic salts of 3,4‑dis(1‑H‑5‑tetrazolyl)furoxan[J]. Chemistry‑An Asian Journal, 2012, 7(4): 707-714.

    • 22

      Sheldrick G. M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany,1997.

    • 23

      Sheldrick G. M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany ,1997.

    • 24

      Qu X N, Zhang S, Yang Q, et al. Silver(I)‑based energetic coordination polymers: synthesis, structure and energy performance[J]. New Journal of Chemistry,2015,39(10):7849-7857.

    • 25

      陆明. 对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 373-376.

      LU Ming. Consideration of the density and energetic level of the all nitrogen N5- metallic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(7): 373-376.

    • 26

      Cox J D, Wagman D D, Medvedev V A. CODATA key values for thermodynamics[M]. Hemisphere Publishing Corp, New York, 1989.

    • 27

      Wang Y, Zhang J, Su H, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. Journal of Physical Chemistry A,2014,118(25):4575-4581.

    • 28

      Fidler R. Degradation of TNT, RDX, and TATP using microscale mechanically alloyed bimetals[M]. 2009.

    • 29

      汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究[J]. 含能材料, 2011, 19(4): 396-400.

      TANG Zhan, YANG Li, QIAO Xiao‑jing, et al. On thermal decomposition kinetics and thermal safety of HMX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2011,19(4):396-400.

屈晓妮

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

邮 箱:quxiaoni1990@126.com

作者简介:屈晓妮(1989-),女,博士,主要从事含能材料研究。e‑mail:quxiaoni1990@126.com

翟连杰

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi'an 710065, China

夏正强

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

角 色:通讯作者

Role: Corresponding author

邮 箱:northwindy@126.com

作者简介:夏正强(1986-),男,博士,主要从事能量MOFs研究。e‑mail:northwindy@126.com

王伯周

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi'an 710065, China

杨奇

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

谢钢

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

陈三平

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

角 色:通讯作者

Role: Corresponding author

邮 箱:sanpingchen@126.com

作者简介:陈三平(1972-),男,教授,博士生导师,主要从事含能材料研究。e‑mail:sanpingchen@126.com

高胜利

机 构:

1. 西北大学化学与材料科学学院, 陕西 西安 710127

2. 合成与天然功能分子化学教育部重点实验室, 陕西 西安 710127

Affiliation:

1. College of Chemistry and Materials Science, Northwest University, Xi′an 710127, China

2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Xi′an 710127, China

compound1·[Ag2(2‑ntz)2]n2·[Ag2(BTOF)]n
empirical formulaAg2C4N10O8

C4Ag2N10O2

435.88

formula weight531.88
crystal systemorthorhombicmonoclinic
space groupPbcaP21/c
a / Å10.7719(1)8.9537(1)
b / Å11.1490(1)9.719(2)
c / Å20.976(4)10.764(2)
α /(°)9090
β /(°)9094.593(4)
γ /(°)9090
V / Å32519.2(7)933.7(3)
Z84
ρ / g·cm-32.8053.101
T / K296(2)296(2)
μ / mm-13.1834.210
F(000)2016.0816
reflections collected/unique13928/30784929/1857
Rint0.03350.0406
data/restraints/parameters3078/6/2171857/6/163
final R indexes [I>=2σ(I)]

R1=0.0297

wR2=0.0631

R1=0.0752

wR2=0.1937

final R indexes [all data]

R1=0.0458

wR2=0.0684

R1=0.0916

wR2=0.2062

GOF on F21.0181.085

Largest diff. peak

hole / e·Å-3

1.14/-0.852.85/-1.13

Note: R1=∑||Fo|−|Fc||/∑|Fo|. wR2=[∑w(Fo2Fc2)2/∑w[(Fo2)2]1/2.

GOF is goodness of fit.

compound 1
N(2)—Ag(1)#12.249(3)Ag(1)—N(1)2.415(3)Ag(2)—N(5)#42.290(3)
Ag(1)—N(4)#22.223(3)Ag(2)—N(3)2.270(3)Ag(2)—N(8)2.311(3)
N(3)—Ag(2)—N(8)113.93(1)N(4)#2—Ag(1)—N(2)#3133.23(1)N(2)#3—Ag(1)—N(1)111.61(1)
N(5)#4—Ag(2)—N(8)116.35(1)N(4)#2—Ag(1)—N(1)114.88(1)N(3)—Ag(2)—N(5)#4128.53(1)
compound 2
Ag(1)—N(1)2.217(9)Ag(2)—N(7)#72.222(1)Ag(2)—N(5)#72.377(1)
Ag(1)—N(10)#62.234(1)Ag(1)—N(6)#52.482(1)Ag(2)—N(2)2.184(9)
N(1)—Ag(1)—N(1)#6154.8(4)N(2)—Ag(2)—N(5)#7115.3(3)N(10)#6—Ag(1)—N(6)#593.5(4)
N(1)—Ag(1)—N(6)#5110.1(3)N(7)#7—Ag(2)—N(5)#789.3(4)N(2)—Ag(2)—N(7)#7155.3(4)
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F002.jpg
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F003.jpg
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F004.jpg
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F005.jpg
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F006.jpg
html/hncl/CJEM2018220/alternativeImage/c214f115-f5bd-4030-bb5c-314adfdd651c-F007.jpg
compoundsρ / g·cm-3Td / ℃N / %Q[8] / kJ·g-1p[8] / GPaD[8] / km·s-1IS / JFS / N
2‑Hntz1.83170(salt)44.033.53730.568.26--
H2BTOF1.6222963.063.49123.97.78<2-
12.805301.826.345.55044.878.97>40>360
23.101242.632.143.77934.377.69>40>360
TNT[28]1.65424418.503.75420.507.17815353
HMX[29]1.95028037.805.52538.398.9007.4-
RDX[28]1.80621037.805.84333.928.6007.5120

表1 化合物1和2的晶体学数据表

Table 1 Crystallorgraphic data for compounds

表2 化合物1和2的部分键长和键角数据

Table 2 The selected bond length and angle of compounds 1 and 2

图1 化合物1中Ag+的配位环境和2‑ntz的配位环境

Fig.1 The coordination environments of Ag+ and 2‑ntz- in compound 1

图2 化合物1的三维框架结构

Fig.2 The 3D framework of compound 1

图3 化合物2中Ag(1)和Ag(2)中心的配位环境

Fig.3 The coordination environments of Ag(1) and Ag(2) centers in compound 2

图4 化合物2的二维折叠状平面结构及其超分子骨架结构

Fig.4 The fold plane structureand the supramolecular framework of compound 2

图5 化合物1和2的TG‑DSC曲线 -- a.

Fig.5 TG‑DSC curves of compounds 1 and 2 -- a.

图5 化合物1和2的TG‑DSC曲线 -- b.

Fig.5 TG‑DSC curves of compounds 1 and 2 -- b.

表3 化合物1、2及部分含能材料的物理化学性质参数

Table 3 Physicochemical properties of compounds 1, 2, and some energetic materials

image /

无注解

#1: ‑1/2+x, 1+y,1/2‑z. #2 :3/2‑x,1‑y,‑1/2+z. #3 :1/2+x, 1+y,1/2‑z. #4:1/2+x,3/2‑y,1‑z. #5: x,‑y+1/2,z+1/2. #6: x,y‑1,z. #7: x,‑y+1/2,z‑1/2.

无注解

无注解

无注解

无注解

无注解

无注解

ρ is from X‑ray diffraction. Td is decomposition temperature. N is nitrogen content; Q is heat of detonation. p is detonation pressure. D is Detonation.IS is impact sensitivity. FS is friction sensitivity.

  • 参考文献

    • 1

      董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004,12(增刊): 1-12.

      DONG Hai‑shan. The development and countermeasure of high energy density materials[J]. Chinese Journal of Energetic Materials (Hannengcailiao),2004,12(Suppl.):1-12.

    • 2

      王振宇. 国外高能量密度化合物研究新进展[J]. 飞航导弹,2003(2): 34-37.

      WANG Zhen‑yu. New progress in the study of highenergydensity compounds abroad[J]. Aerodynamic Missile Journal,2003(2):34-37.

    • 3

      张德雄, 张衍, 王伟平, 等. 高能量密度材料(HEDM)研究开发现状及展望[J]. 固体火箭技术, 2005, 28(4): 284-288.

      ZHANG De‑xiong, ZHANG Yan, WANG Wei‑ping, et al. Research and development status and prospect of highenergydensity materials (HEDM)[J]. Journal of Solid Rocket Technology, 2005, 28(4): 284-288.

    • 4

      张志忠, 王伯周, 姬月萍, 等. 部分新型高能量密度材料的国内研究进展[J]. 火炸药学报, 2008, 31(2): 93-97,101.

      ZHANG Zhi‑zhong, WANG Bo‑zhou, JI Yue‑ping, et al. Study progress of several high energy density materials(HEDM)[J]. Chinese Journalof Explosives & Propellants,2008, 31(2): 93-97,101.

    • 5

      张豪侠. 美国国防部关键技术计划‑高能量密度材料项目[J]. 现代兵器, 1992(8):40-42.

      ZHANG Hao‑xia. Key technology program of the United States Department of Defense‑the program of high energy density materials[J]. Modern Weaponry, 1992(8): 40-42.

    • 6

      Zhang Q H, Shreeve J M. Metal‑organic frameworks as high explosives: a new concept for energetic materials[J]. Angewandte Chemie International Edition, 2014, 53(10): 2540-2542.

    • 7

      Mcdonald K A, Seth S, Matzger A J. Coordination polymers with high energy density: an emerging class of explosives[J]. Crystal Growth & Design,2015,15(12),5963-5972.

    • 8

      Li S H, Wang YY, Qi C, et al. 3D energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition,2013, 152(52):14031-14035.

    • 9

      Zhang J C, Su H, Dong Y L, et al. Synthesis of denser energetic metal‑organic frameworks via a tandem anion‑ligand exchange strategy[J]. Inorganic Chemistry,2017,56(17):10281-10289.

    • 10

      Liu X Y, Gao W J, Sun PP, et al. Environmentally friendly high‑energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry,2015,17(2):831-836.

    • 11

      Zhang Y L, Zhang S, Sun L, et al. A solvent‑free dense energetic metal‑organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry[J]. Chemical Communications,2017,53:3034-3037.

    • 12

      Hiskey M, Goldman N, Stine J. High‑nitrogen energetic materials derived from azotetrazolate[J]. Journal of Energetic Materials,1998,16(2):119-127.

    • 13

      Hammerl A, Klapotke T M. Tetrazolylpentazoles: nitrogen‑rich compounds[J]. Inorganic Chemistry,2002,41(4): 906-912.

    • 14

      阳世清, 岳守体. 国外四嗪四唑类高氮含能材料研究进展[J]. 含能材料, 2003, 11(4): 231-235.

      YANG Shi‑qing, YUE Shou‑ti. Progress in high‑nitrogen energetic materials derived from tetrazine and tetrazole[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003,11(4):231-235.

    • 15

      Thomas M K, Caries M S. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 16

      Zhao H, Qu Z, Ye H, et al. In situ hydrothermal synthesis of tetrazole coordination polymers withinteresting physical properties[J]. Chemical Society Reviews, 2008, 37(1): 84-100.

    • 17

      Zhang S, Yang Q, Liu X Y, et al. High‑energy metal‑organic frameworks(HE‑MOFs): synthesis, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016, 307(2): 292-312.

    • 18

      Qu X N,Zhai L J, Wang B Z, et al. Copper‑based energetic MOFs with 3‑nitro‑1‑H‑1,2,4‑triazole: solvent‑dependent syntheses, structures and energetic performances[J]. Dalton Transactions, 2016, 45: 17304-17311.

    • 19

      Zhang S, Liu X Y, Yang Q, et al. A new strategy for storage and transportation of sensitive high‑energy materials: guest‑dependent energy and sensitivity of 3D metal‑organic‑framework‑based energetic compounds[J]. Chemistry‑A European Journal, 2014, 20(26): 7906-7910.

    • 20

      王锡杰, 贾思媛, 王伯周, 等. 5‑氨基‑3‑硝基‑1,2,4‑三唑(ANTA)的合成工艺改进[J]. 含能材料, 2006, 14(6): 439-440.

      WANG Xi‑jie, JIA Si‑yuan, WANG Bo‑zhou, et al. Synthesis improvement of 5‑amino‑3‑nitro‑1,2,4‑triazole(ANTA)[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2006,14(6):439-440.

    • 21

      Huang H, Zhou Z, Liang L, et al. Nitrogen‑rich energetic monoanionic salts of 3,4‑dis(1‑H‑5‑tetrazolyl)furoxan[J]. Chemistry‑An Asian Journal, 2012, 7(4): 707-714.

    • 22

      Sheldrick G. M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany,1997.

    • 23

      Sheldrick G. M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany ,1997.

    • 24

      Qu X N, Zhang S, Yang Q, et al. Silver(I)‑based energetic coordination polymers: synthesis, structure and energy performance[J]. New Journal of Chemistry,2015,39(10):7849-7857.

    • 25

      陆明. 对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 373-376.

      LU Ming. Consideration of the density and energetic level of the all nitrogen N5- metallic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(7): 373-376.

    • 26

      Cox J D, Wagman D D, Medvedev V A. CODATA key values for thermodynamics[M]. Hemisphere Publishing Corp, New York, 1989.

    • 27

      Wang Y, Zhang J, Su H, et al. A simple method for the prediction of the detonation performances of metal‑containing explosives[J]. Journal of Physical Chemistry A,2014,118(25):4575-4581.

    • 28

      Fidler R. Degradation of TNT, RDX, and TATP using microscale mechanically alloyed bimetals[M]. 2009.

    • 29

      汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究[J]. 含能材料, 2011, 19(4): 396-400.

      TANG Zhan, YANG Li, QIAO Xiao‑jing, et al. On thermal decomposition kinetics and thermal safety of HMX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2011,19(4):396-400.