-
1 引言
含能材料是武器弹药的重要能源原料,性能优异的含能材料是提升现代先进武器装备性能的前提。近年来,随着现代战争对武器“远程打击、高效毁伤”要求的提高,同时随着含能材料在民用领域应用的不断扩展,为了满足需求,含能材料从早期的三硝基甲苯(TNT),到黑索金(RDX)、奥克托今(HMX),再到近年来富氮化合物及其衍生物的探索研究,不断产生新的性能优异的含能材料。但随着新的含能材料能量的增加其感度也随之增大,它们在生产、运输、贮存和使用过程中遇到外界能量刺激时易发生意外爆炸,造成重大经济损失和人员伤亡。由于爆轰性能和安全性是含能化合物在实际应用领域中首先要考虑的重要因素,因此,需要合理的设计方案来解决高能量与低感度的冲突矛盾,开发爆轰性能更优和感度更低的高能量密度材料(HEDM)。
为了协调含能材料能量和感度的内在矛盾,同时满足新型含能材料对高通量设计和制备技术的要求,近年来含能离子盐已发展为含能材料基础研究的热点之一。含能离子盐可通过改变离子的组分和分别对阴、阳离子进行官能团修饰来改进离子盐的整体性质,扩大含能化合物的种类,以满足不同的应用需求。这种改进能有效地解决含能材料在多方面性能的相互排斥性,制备出综合性能优良的含能离子盐,从而满足先进武器装备对含能材料的要求。其作为高能材料在工业和军事方面有广泛的应用前景。
含能离子盐的研究已取得了大量的研究成果。含能离子盐的阴离子从最初的简单无机阴离子,如高氯酸根、硝酸根、二硝酰胺负离子发展到以有机阴离子为主,如4‑硝胺‑1,2,4‑三唑、5‑硝基四唑、5,5‑偶氮四唑、5‑二硝基甲基四唑、4‑氨基‑3‑(5‑四唑基)呋咱、3‑氨基‑6‑硝胺四嗪、羰基及乙基桥连二(1,5‑二氨基四唑)
等[1] 。目前,对含能离子盐的研究主要集中在阴、阳离子的合成、修饰和相互间的有效组合,其研究模式通常是根据经验或理论计算设计合成出特定结构的中性化合物或盐类化合物,然后通过中和反应或复分解反应制备出相应的含能离子盐,借助经典谱学等手段和单晶X‑射线技术对所得离子盐进行结构表征,并通过实验或理论计算测定其理化性质(密度、熔点、热分解温度、标准摩尔生成焓等)、爆轰性能(爆速、爆压、感度等),最后根据所得的数据对含能离子盐进行综合评
价[1,2,3] 。总的说来,含能离子盐继承了离子液体和离子型化合物优良的物理和化学性质,且具有更低的蒸汽压、更高的密度、更高的生成焓和更好的热稳定性,并因其独特且优越的性质受到了越来越多的关注。有关该领域的研究已不局限于新型含能盐的合成方法和结构表征,而是向结构设计、性能优化、应用开发等研究方向发展。
氨基硝化制备硝胺基(—NHN
O2 )衍生物可以提高化合物的密度并改善氧平衡,从而提高爆轰性能。因此,合成硝胺基化合物是制备含能材料的一种重要方法。一般来说,仲胺基硝化后氮原子上不再有活泼氢,因此这类硝化产物无明显的酸性。很多经典的含能化合物都包含硝胺基,例如RDX,HMX及CL‑20等。但是与仲胺不同,当杂环化合物连接伯胺基时,其氨基硝化只需通过常规的硝化反应就能实现。其中大部分产物密度高且爆轰性能好,但是由于硝基的强吸电子作用导致硝胺基上剩余的氢原子易于离去,从而使该化合物酸性增强,其酸性强的特点使这类化合物在作为含能材料的应用上受到限制,因此,将伯胺硝化产物作为含能材料使用的较少。由于硝胺基上的氢容易在碱的作用下失去质子,所以这类化合物可作为制备含能离子盐阴离子的原料。近年来,随着人们对含能离子盐的重视的提高,再加上目前常用于制备含能材料的杂环化合物都存在或易于引入氨基,因此,硝胺基(—NHNO2 )的去质子化提供了结构修饰的可能性。近年来人们合成出较多的含有硝胺基官能团的含能离子盐并重点研究了这类新型含能材料的理化性质。针对这一研究趋势,近年国内外有关硝胺类含能离子盐的合成报道较多,但是未见对其有较为系统的总结,因此本文对这方面的研究进展进行了整理、分析和归纳,为该领域的研究提供帮助。 -
2 含硝胺基类含能离子盐
-
2.1 3,4‑二硝胺基呋咱及其含能离子盐
噁二唑环共有四种异构体:1,2,5‑噁二唑(呋咱)、1,2,4‑噁二唑、1,3,4‑噁二唑和1,2,3‑噁二唑。除了1,2,3‑噁二唑不稳定之外,其他三个异构体可以形成邻位、间位和对位连接的化合物。噁二唑环中的氧原子有助于改善其衍生物的氧平衡,因此噁二唑环是构建含能材料的一类重要的杂环化合物。二氨基呋咱是合成呋咱类含能材料的重要前体化合物,该化合物能够通过硝化反应制备3,4‑二硝胺基呋咱(1)。虽然理论计算显示其硝化产物是一个能量较高的含能材料,但是实验结果显示,该材料撞击感度小于1 J,摩擦感度小于5 N,起始热分解温度为99 ℃,同时,二硝胺基呋咱在室温下缓慢分解,尤其是暴露于空气中时,只有在-20 ℃以下才能够稳定保存。因此,1的不稳定性严重妨碍了该化合物作为含能材料的应
用[4] 。不过,3,4‑二硝胺基呋咱中的硝胺基具有去质子化的能力,该化合物可以通过酸碱中和反应进行结构修饰从而产生更稳定的离子盐。有鉴于此,Shreeve[4] 研究小组通过酸碱反应直接合成了一系列包含3,4‑二硝胺基呋咱阴离子的富氮含能离子盐(表1)。实验测定及理论计算显示(表1),羟胺盐1-2及肼盐1-3的爆轰性能优于HMX[4] ,但它们的撞击感度仍然较高(肼盐2.0 J,羟胺盐2.5 J),这一缺点限制了它们的实际应用价值[5] 。Tm is melting temperature. Td is thermal decomposition temperature. d is density. D is detonation speed. p is detonation pressure. IS is impact sensitivity. FS is friction sensitivity.2
-
2.2 二氨基呋咱衍生物及其含能离子盐
由于分子中存在氨基,二氨基呋咱衍生物同样是合成硝胺基衍生物及其含能离子盐的母体化合物的主要原料。2014年,Klapötk
e[6] 研究小组以乙二醛为原料合成了3,3′‑二氨基‑4,4′‑联呋咱,再通过硝化得到3,3′‑二硝胺基‑4,4′‑联呋咱(2),进而得到一系列含能离子盐(表2)。为了进一步提升化合物的能量,该小组及Shreeve研究小组[7] 先后以二氨基呋咱为原料,通过氧化反应,合成了3,3′‑二氨基‑4,4′‑偶氮呋咱和3,3′‑二氨基‑4,4′‑氧化偶氮呋咱,进而采用100%硝酸分别对它们进行硝化,得到了3,3′‑二硝胺基‑4,4′‑偶氮呋咱(3)以及3,3′‑二硝胺基‑4,4′‑氧化偶氮呋咱(4),并进一步合成了3,3′‑二硝胺基‑4,4′‑偶氮呋咱的含能离子盐。其中,化合物2、3和4具有标准摩尔生成焓高、氧平衡好以及密度高等优点(表2),这使得它们的爆轰性能优异(p>40 GPa,D>9000 m·s-1 )。但它们的热稳定性能欠佳(Td=80 ℃(2),122 ℃(3),70 ℃(4))且撞击感度和摩擦感度高,这导致它们在作为含能材料方面的实际应用价值变低[6] 。然而,通过中和反应将化合物2、3和4制备成相应的离子盐后,其热稳定性能大大增加(表2)。其中以含能离子盐2-2(p=42.5 GPa,D=9363 m·s-1 )和3-3(p=39.8 GPa,D=9328 m·s-1 )的爆轰性能最佳。但是,2-2和3-3的分解温度较低,限制了它们在高性能炸药领域的适用性。综合考虑,含能离子盐2-5的爆压为27.1 GPa,爆速为8225 m·s-1 ,同时该化合物具有撞击和摩擦感度低且热分解温度高的优点(IS>40 J,FS>360 N,Td=280 ℃),这些数据显示可以将化合物2-5归类为低感含能材料。另外含能离子盐2-1的热分解温度为230 ℃,感度低(IS=6 J,FS=120 N),其爆轰性能(p=35.4 GPa,D=9058 m·s-1 )与RDX相近,是一类综合性能优异的新型含能材料(表2)[6] 。.3 双(4‑硝胺基呋咱基‑3‑氧化偶氮)偶氮呋咱及其含能离子盐
受到上述偶氮/氧化偶氮基呋咱含能离子盐合成的启发,张庆华研究小组以二氨基呋咱作为原料,设计了双(4‑硝胺基呋咱基‑3‑氧化偶氮)偶氮呋咱(5
)[8] 。化合物5结构中含有四个呋咱环和三个偶氮键,该化合物的爆轰性能良好(D=9541 m·s-1 ,p=40.5 GPa),不过它的撞击和摩擦感度分别只有2 J和10 N,而且分解温度较低(Td=120 ℃),这些因素降低了该化合物的实用价值。该研究小组通过用化合物5与不同的阳离子配对制备了一系列含能离子盐,与母体分子5相比,离子盐的分解温度得到了显著性提升,其分解温度介于151 ℃(5-4)到209 ℃(5-7和5-10)之间,所得的含能离子盐密度范围在1.71~1.88 g·cm-3 之间,同时这些含能离子盐的撞击和摩擦感度(IS为14~16 J,FS为120~240 N)比中性化合物5的更低。理论计算显示这些离子盐的爆速在8584 m·s-1 (5-8)到9256 m·s-1 (5-3)之间,爆压在29.1(5-8)到35.0 GPa(5-2)之间,在所有5的含能离子盐当中,5-3的爆轰性能与RDX相当,而且5-3的撞击和摩擦感度较低(15 J,120 N)(表3),其良好的爆轰性能和较低的感度使5-3有望成为与RDX性能相当的新型含能材料[8] 。 -
2.4 硝胺基氧化呋咱及其含能离子盐
氧化呋咱(Furoxan)是噁二唑衍生物,其氧含量为37.2%。它被认为是一个“隐藏的”硝基,因为当氧化呋咱代替硝基时,化合物的密度和爆速可以分别增加约0.06~0.08 g·c
m-3 和300 m·s-1 。在含有氧化呋咱的化合物基础上进一步引入硝胺基使其成为制备含能离子盐的潜在前体化合物[9] 。Shreeve研究小组采用4,4′‑二氨基‑[3,3′‑二(1,2,5‑噁二唑)]‑5,5′‑二氧化物和4,4′‑二氨基‑[3,3′‑二(1,2,5‑噁二唑)]‑2,2′‑二氧化物为原料,通过硝酸硝化,得到4,4′‑二硝胺基‑[3,3′‑双(1,2,5‑噁二唑)]‑5,5′‑二氧化物(6)和4,4′‑二硝胺基‑[3,3′‑二(1,2,5‑噁二唑)]‑2,2′‑二氧化物(7)[9] 。化合物6、7及其离子盐的爆压在28.4~46.4 GPa之间,爆速在8573~9870 m·s-1 之间。其中,离子盐7-3的爆速最高(9870 m·s-1 ),而离子盐7-2的爆压(p=46.4 GPa)最高。6和7及其羟铵盐(6-2,7-2)和肼盐(6-3,7-3)的爆轰性能良好,这几个化合物感度较低,有望替代HMX。然而,这些化合物热分解温度较低,这限制了它们作为含能材料的使用(表4)[9] 。表4 化合物6~7及其含能离子盐的理化参
数[9] Table 4 Physicochemical properties of compound 6-7 and their energetic salt
s[9] -
2.5 1,2,4‑噁二唑及其含能离子盐
与呋咱结构类似的1,2,4‑噁二唑及桥连1,2,4‑噁二唑类化合物同样具有良好的热稳定性和较高的密度,也是制备含能材料潜在的前体化合物。Shreev
e[10] 研究小组利用丙二腈为起始原料合成了3‑氨基‑4‑(5‑氨基‑1,2,4‑噁二唑‑3‑基)呋咱及3‑氨基‑4‑(5‑氨基‑1,2,4‑噁二唑‑3‑基)呋咱,用发烟硝酸硝化形成3‑硝胺基‑4‑(5‑硝胺基‑1,2,4‑噁二唑‑3‑基)呋咱(8)和3‑硝胺基‑4‑(5‑硝胺基‑1,2,4‑噁二唑‑3‑基)呋咱(9)及其含能离子盐(表5)。化合物8和9结构中包含了呋咱和1,2,4‑噁二唑等不同的杂环结构,其离子盐具有较高的密度(1.67~1.85 g·cm-3 )和良好的热稳定性(Td=172~269 ℃),它们的爆速(8102~9046 m·s-1 )和爆压(24.2~37.4 GPa)介于 TNT和RDX之间,这些含能离子盐撞击感度范围在14~26 J。离子盐8-3,8-4,8-5,8-7和9-1的摩擦感度大于120 N,这使得这些化合物具有比RDX更低的感度。其中,离子盐8-3具有密度高(1.85 g·cm-3 )、感度较低(16 J,240 N)、氧平衡好(0)、爆压(37.4 GPa)和爆速(9046 m·s-1 )高等特点,再加上8-3的制备方法简单易行,这使得8-3成为具有吸引力的高密度含能材料[10] 。表5 化合物8~9及其含能离子盐的理化参
数[10] Table 5 Physicochemical properties of compound 8-9 and their energetic salt
s[10] -
2.6 杂环双呋咱及其含能离子盐
Shreeve研究小组和程广斌研究小组进一步尝试了用其它杂环结构桥连两个呋咱环用于含能离子盐制备。这两个研究小组先后合成了3,6‑双(4‑硝胺基‑1,2,5‑噁二唑‑3‑基)噁二嗪(10)、3,5‑双(4‑硝胺基‑1,2,5‑噁二唑‑3‑基)‑1,2,5‑噁二唑(11)、3,4‑双(4‑硝胺基‑1,2,5‑噁二唑‑3‑基)‑1,2,4‑三唑(12)和3‑硝胺基‑4‑(4‑硝胺基‑1,2,5‑噁二唑‑3‑基)氧化呋咱(13)及它们相应的含能离子盐(表6
)[11,12] 。该研究中,由于阴离子包含了三个杂环,因此所合成的离子盐的阴离子结构较大,通过大阴离子和小阳离子的组合所制备的离子盐具有密度大、生成焓高的特点,且大多数离子盐具有稳定性适中(>150 ℃)、感度低以及爆轰性能优异等特点,特别是含能离子盐10-1、10-2、10-3、12-2和13-2的爆速值甚至大于9000 m·s-1 ,基于这些优异的性能数据,10的含能离子盐是一类具有潜在应用前景的新型高能量密度材料[11,12] 。表6 化合物10~13及其含能离子盐的理化参
数[11,12] Table 6 Physicochemical properties of compound 10-13 and their energetic salt
s[12] 表6 化合物10~13及其含能离子盐的理化参数<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R12">12</xref>]</sup>
Table 6 Physicochemical properties of compound 10-13 and their energetic salts
[12]
10-7 2∶1 151 1.81 8109 29.3 6.9 100 10-8 2∶1 166 1.81 8154 29.6 7.8 240 10-9 2∶1 187 1.82 8064 29 12.6 160 10-10 2∶1 166 1.82 8397 31.5 6.3 120 11-1 2∶1 179 1.80 8979 36.3 8 160 11-2 2∶1 231 1.76 8968 34 12 160 11-3 2∶1 180 1.66 8287 27.6 25 360 12-1 2∶1 208 1.70 8467 28 20 240 12-2 2∶1 229 1.83 9163 35.6 12 160 13-1 2∶1 154 1.75 8836 33.9 10 160 13-2 2∶1 152 1.81 9351 38.3 6 120 10-7 2∶1 151 1.81 8109 29.3 6.9 100 10-8 2∶1 166 1.81 8154 29.6 7.8 240 10-9 2∶1 187 1.82 8064 29 12.6 160 10-10 2∶1 166 1.82 8397 31.5 6.3 120 11-1 2∶1 179 1.80 8979 36.3 8 160 11-2 2∶1 231 1.76 8968 34 12 160 11-3 2∶1 180 1.66 8287 27.6 25 360 12-1 2∶1 208 1.70 8467 28 20 240 12-2 2∶1 229 1.83 9163 35.6 12 160 13-1 2∶1 154 1.75 8836 33.9 10 160 13-2 2∶1 152 1.81 9351 38.3 6 120 -
2.7 3‑硝胺基‑4‑四唑基呋咱及其含能离子盐
呋咱也可以单独与其它杂环桥连制备相应的含能化合物,这类尝试也进一步拓展了含能离子盐阴离子的杂环组合模式。2016年,杨军研究小组合成了3‑硝胺基‑4‑四唑基呋咱(14)及其含能离子
盐[13] 。这类含能离子盐分解温度为203 ℃(14-2)~284 ℃(14-4),它们的撞击感度介于5 J(14-1和14-3)至大于40 J(14-4,14-5和14-6),它们的摩擦感度为108 N(14-2)~360 N(14-4)。爆压为21.1 GPa(14-4)~34.7 GPa(14-3)、爆速为7117 m·s-1 (14-4)~8826 m·s-1 (14-3)(表7)。综合考虑,含能离子盐14-4的爆轰性能及稳定性都很好,这使它有望成为替代RDX的新型含能材料[13] 。表7 化合物14及其含能离子盐的理化参
数[13] Table 7 Physicochemical properties of compound 14 and its energetic salt
s[13] -
2.8 3‑氨基‑5‑硝胺基‑1,2,4‑噁二唑及其含能离子盐
2016年,Shreev
e[14] 研究小组合成了3‑氨基‑5‑硝胺基‑1,2,4‑噁二唑(15)及其含能离子盐。与RDX相比,15-1和15-3具有较低的爆压(15-1:30.6 GPa; 15-3:32.5 GPa)和撞击感度(15-1:20 J;15-3:16 J)。同时,两者具有相同的摩擦感度(240 N)。考虑到肼盐15-1合成方法简单且成本低的特点,它有望成为RDX的替代品(表8)。 -
2.9 3‑氨基‑5‑硝胺基‑1,2,4‑噁二唑及其含能离子盐
同年,Shreeve研究小组采用100%硝酸对5,5′‑二氨基‑3,3′‑偶氮‑1,2,4‑噁二唑进行硝化,合成了二硝胺基取代的产物5,5′‑二硝胺基‑3,3′‑偶氮‑1,2,5‑噁二唑(16)及其含能离子盐。研究结果显示(表9),16的分解温度是140 ℃,撞击感度为2 J,摩擦感度为10 N,是一个非常敏感的化合物。相对化合物16而言,其含能离子盐(16-1~16-8)具有良好的爆轰性能(爆速为8381 m·
s-1 (16-6)~9243 m·s-1 (16-1),爆压为27.5 GPa(16-6)~39.2 GPa(16-1),同时它们的撞击和摩擦感度相对较低。其中,铵盐16-3热稳定性最佳,其分解温度为261 ℃,同时16-4和16-6的分解温度也超过200 ℃,它们的热稳定性均比RDX高。其它盐的分解温度在160 ℃(16-5)~188 ℃(16-8)之间。这里要指出的是含能离子盐16-1的密度为1.86 g·cm-3 ,爆速为9243 m·s-1 ,爆压为39.2 GPa,加上该离子盐较高的热稳定性和较低的感度(IS=10 J;FS=160 N),这使16-1成为一个较有吸引力的新型含能材料[15] 。表9 化合物16及其含能离子盐的理化参
数[15] Table 9 Physicochemical properties of compound 16 and its energetic salt
s[15] -
2.10 4‑硝基
‑5‑(3‑(5‑硝胺基‑1,2,4‑三唑基))‑1,2,3‑三唑及其含能离子盐
除了噁二唑杂环作为制备含能离子盐阴离子的骨架化合物以外,近年来对于其它杂环化合物的修饰也有报道。2018年,程广
斌[16] 研究小组合成了4‑硝基‑5‑(3‑(5‑硝胺基‑1,2,4‑三唑基))‑1,2,3‑三唑(17)。由于17的结构中的硝胺基及三唑环中均含有活泼氢,因此当17与一定量的碱性化合物反应后可得到单阳离子盐或双阳离子盐。化合物17及其含能离子盐的密度较高(1.69~1.88 g·cm-3 ),热稳定性较好(分解温度在162.6~263.3 ℃之间)。所有含能离子盐都具有良好的撞击和摩擦感度,其最小值分别为28 J和300 N。在所有离子盐中,肼盐17-11具有密度高(1.82 g·cm-3 )、感度低(28 J,300 N)、爆轰性能良好(p=34.5 GPa,D=9341 m·s-1 )的特点,其综合性能与HMX相近(表10),因此17-11是一个具有潜在应用价值的新型含能材料(表8)[16] 。表10 化合物17及其含能离子盐的理化参
数[16] Table 10 Physicochemical properties of compound 17 and its energetic salt
s[16] 表10 化合物17及其含能离子盐的理化参数<sup>[<xref ref-type="bibr" rid="R16">16</xref>]</sup>
Table 10 Physicochemical properties of compound 17 and its energetic salts
[16]
17-17 2∶1 - 180.1 1.74 8510 27.7 >40 >360 17-18 2∶1 128.5 175.9 1.69 8007 23.6 >40 >360 17-17 2∶1 - 180.1 1.74 8510 27.7 >40 >360 17-18 2∶1 128.5 175.9 1.69 8007 23.6 >40 >360 -
2.11 3,5‑二硝胺基‑1,2,4‑三唑及其含能离子盐
2017年,Shreev
e[17] 研究小组基于3,5‑二硝胺基‑1,2,4‑三唑(18)制备了其羟胺单阳离子(18-1)、羟胺双阳离子(18-2)以及羟胺双阳离子盐羟胺合物(18-3)等三种含能离子盐,所有离子盐的爆轰性能均优于RDX,其中化合物18-3具有热稳定性好、感度低及爆轰性能优异(D=9690 m·s-1 ,p=40.4 GPa)的特点(表11),这在设计新型钝感高能化合物方面是一个有意义的尝试。 -
2.12 四唑衍生物及其含能离子盐
四唑以其氮含量高、热稳定性好等特点一直是含能离子盐制备的重要单体之
一[1] 。2017年,Shreeve[18] 研究小组用氨基乙腈合成了一系列新的不对称N‑亚甲基‑C桥联四唑1‑(5‑四唑基)甲基‑5‑氨基‑四唑(19)及其含能离子盐。将高能量和敏感的硝基亚氨基(四唑)部分与感度更低且热稳定定性能良好的四唑结合的设计思路,使所合成的含能离子盐成为低感高能的富氮化合物(表12)。同年,张庆华[19] 研究小组采用5‑氨基四唑为原料,通过与氰基叠氮反应制备了1‑四唑基‑5‑硝胺基四唑(20)及其含能离子盐。这些含能离子盐密度范围为1.68~1.92 g·cm-3 ,其中20-1(1.92 g·cm-3 )和20-4(1.81 g·cm-3 )属于高密度材料(HEDM,1.8~2.0 g·cm-3 )。这些化合物当中,中性化合物20的撞击感度(1 J)和摩擦感度(8 N)均非常高,而与化合物20相比,离子盐20-1~20-6显示出更低的感度,这可能是由于20形成离子盐后有助于在提高化合物整体爆轰性能的同时增强其热稳定性并降低感度。从热稳定性来看,胍盐20-6分解温度为257 ℃,优于RDX(Td=210 ℃)和CL‑20(Td=215 ℃)。综合各方面数据来看,肼盐20-5的理论计算爆速(9822 m·s-1 )优于RDX(8878 m·s-1 ),优于HMX(9263 m·s-1 )并略优于CL‑20(9730 m·s-1 ),其撞击和摩擦感度(IS=8 J,FS=192 N)与HMX相当(IS=7 J,FS=112 N),由于其感度适中且具有良好爆轰性能,化合物20-5作为含能材料具有潜在的实用价值(表13)[19] 。表1,2,3,4,5,6,7,8,9,10,11,12,13中的一些硝胺含能离子盐其硝胺基均连接在杂环中的C原子上,相比于C—硝胺类含能分子,N‑硝胺结构中包含3个以上直接相连的氮原子链,使得相应的产物生成焓显著增加,进而显著提升了分子的能量水平,因此,合成N‑硝胺基含能离子盐成为近年来关注热点之一。但值得一提的是,N‑硝胺化在追求CHNO分子能量极限的同时,常常伴随稳定性降低和感度升高的特点,这相应增加了硝胺化产物的分离、提纯和表征的危险性和难度。
-
2.13 1,5‑二硝胺基四唑及其含能离子盐
2015年,Klapötk
e[20] 研究小组通过环化反应设计合成了酯保护的1,5‑二氨基四唑前体,该前体在五氧化二氮(N2 O5 )的作用下可以成功合成1,5‑二硝胺基四唑(21)及其含能离子盐。化合物21常温下单晶密度为1.93 g·cm-3 ,其理论计算爆速为9967 m·s-1 ,1,5‑二硝胺基四唑(21)是迄今为止合成的最强大的爆炸物之一,然而由于该化合物分解温度低(110 ℃)和撞击感度高(1 J)的缺点,其实际应用受到了限制。其钾盐21-1热稳定性能好,其分解温度为240 ℃,该离子盐也显示出非常优秀的爆轰性能(D> 10000 m·s-1 ,p>50.0 GPa)。但是和其母体分子21一样,21-1(IS=1 J,FS<5 N)具有与叠氮化铅相当的感度(表14)[20] 。 -
2.14 N,N′‑二硝胺基‑联三唑及其含能离子盐
2015年,Shreev
e[21] 研究小组合成了N,N′‑二硝胺基-联三唑(22)及其含能离子盐。这些化合物爆压和爆速范围分别为28.4~39.1 GPa和8456~9330 m·s-1 ,它们的爆轰性能与RDX(p=34.9 GPa,D=8748 m·s-1 )近似。其中化合物22比较敏感(IS=3 J),其离子盐(22-1~22-7)具有比中性分子22更高的热稳定性和更低的撞击感度(5~40 J)和摩擦感度,虽然22摩擦感度较高(40 N),但由于22-1~22-4,22-7的摩擦感度较低(FS,80~160 N),而22-5和22-6摩擦感度低(FS>360 N)(表15),其实际应用受到限制[21] 。2016年,Shreeve研究小组进行了类似的设计。该小组采用1H,1′H‑2,2′‑联咪唑为原料制备了4,4′,5,5′‑四硝基[2,2′‑联咪唑]‑1,1′‑二硝胺基(23)及其含能离子盐[22] 。23热稳定性较低,另外,该化合物非常敏感(IS=3 J;FS=20 N),相比之下,23的含能离子盐中除了23-4(Td=113 ℃)以外均具有更高的热稳定性,其分解温度介于128 ℃和203 ℃之间,这些离子盐的密度在1.75和1.85 g·cm-3 之间,撞击和摩擦感度范围分别为5~30 J(IS)和60~240 N(FS)。其中,离子盐23-6热稳定性能最佳(Td为203 ℃)(表16)。总体说来,多硝基官能化的23及其含能离子盐热稳定性好、密度高、氧平衡和爆轰性能优异。这表明通过将C‑硝基官能团和N‑硝胺基官能团同时引入到双咪唑环中,丰富了多硝基化合物的设计策略并获得了一些具有潜在应用价值的新型含能离子盐[22] 。表15 化合物22及其含能离子盐的理化参
数[21] Table 15 Physicochemical properties of compound 22 and its energetic salt
s[21] 表16 化合物23及其含能离子盐的理化参
数[22] Table 16 Physicochemical properties of compound 23 and its energetic salt
s[22] -
3 结论及展望
本文对近年来含硝胺基含能离子盐的制备及其性能研究进行了简要总结,可以看出,设计合成新型含能离子盐仍然以在杂环化合物骨架中引入含能基团对其进行结构修饰,通过硝化氨基从而形成硝胺基,然后通过中和反应或离子置换反应将阴阳离子组合来制备新的含能离子盐为主。借助这种模式,科学家利用特定的杂环结构(例如呋咱、三唑、四唑等)并通过引入硝基等含能基团的方式来提高或改善目标分子结构中的氧平衡、密度、氮含量、标准摩尔生成焓等参数,在综合提高含能离子盐的爆轰性能及降低其感度方面进行了有益的尝试。特别是其中部分化合物在能量获得提高的同时,稳定性能也较大幅度的提高,从而较好地满足应用需求。这在一定程度上实现了定向调控、靶向合成目标含能离子盐,进而获得兼具爆轰性能优良且感度低的新型含能材料。可以说未来含能离子盐是一类具有研究价值和潜在应用前景的含能材料,在一定时间内仍然是该领域基础研究的重点之一。
随着对含能离子盐研究的深入,一方面,目前含能离子盐在制备其阴阳离子时,主要是通过在阴阳离子杂环母体结构中引入特定的官能团。这些方法或材料的使用,使得含能离子盐种类极多,所以制备并筛选出能量高且感度低的含能离子盐难度逐渐增大,传统的有机合成方法不足以完全胜任这一极具挑战性的工作。在未来发展中,科学家在设计含能离子盐结构的时候还需要研究简单易行、绿色环保的合成制备方法,对有潜在应用前景的含能离子盐进行工艺优化研究,降低生产成本,以实现其工业化生产与实际应用。
另一方面,含能离子盐的合成研究具有一定的危险性。同时多数制备出的含能离子盐其爆轰性能及稳定性并不完全符合预期,这种目标化合物性能的不确定性会造成人力、物力等资源的浪费。目前,理论计算在研究含能化合物的结构、理化性能、爆轰性能及感度方面是一种相对简单有效且方便可行的方法。通过理论计算及数据采集建立含能阴阳离子数据库,利用化学方法组合,在阴阳离子上科学地引入官能团、杂环、桥基等来调节它们的理化性质,结合其构效关系对含能离子盐的综合性能做出系统预测,在降低含能离子盐感度的同时确保或提升其爆轰性能,从而最终筛选出综合性能优异的含能离子盐。就目前研究进展来看,其准确的能量评估方法仍需进一步建立和完善。相信未来随着含能离子盐研究工作的不断深入和理论计算技术的不断发展,以及结构和性能数据库的不断完善,利用理论计算缩短含能离子盐研发时间并有效降低其成本,进而加速含能离子盐研发的步伐是未来含能离子盐研究的另一主要趋势。
-
参考文献
-
1
Gao H, Shreeve J n M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111 (11): 7377-7436.
-
2
He P, Zhang J G, Yin X, et al. Energetic salts based on tetrazole N‑oxide[J]. Chemistry‑A European Journal, 2016, 22(23): 7670-7685.
-
3
Liu W, Liu W L, Pang S P, et al. Structures and properties of energetic cations in energetic salts[J]. RSC Advances,2017, Ahead of Print.
-
4
Tang Y, Zhang J, Mitchell L A, et al. Taming of 3,4‑di(nitramino)furazan[J]. Journal of the American Chemical Society, 2015, 137(51): 15984-15987.
-
5
Huang H,Shi Y, Liu Y, et al. High‑oxygen‑balance furazan anions: a good choice for high‑performance energetic salts[J]. Chemistry‑An Asian Journal,2016, 11(11): 1688-1696.
-
6
Fischer D, Klapöetke T M, Reymann M, et al. Dense energetic nitraminofurazanes[J]. Chemistry‑A European Journal, 2014, 20(21): 6401-6411.
-
7
Zhang J, Shreeve J n M. Nitroaminofurazans with Azo and Azoxy Linkages: A Comparative Study of Structural, Electronic, Physicochemical, and Energetic Properties[J]. Journal of Physical Chemistry C, 2015, 119(23): 12887-12895.
-
8
Liu Y, Zhang J, Wang K, et al. Bis(4‑nitraminofurazanyl‑3‑azoxy)azofurazan and derivatives: 1,2,5‑oxadiazole structures and high‑performance energetic materials[J]. Angewandte Chemie, International Edition, 2016, 55(38): 11548-11551.
-
9
He C, Tang Y, Mitchell L A, et al. N‑oxides light up energetic performances: synthesis and characterization of dinitraminobisfuroxans and their salts[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(23): 8969-8973.
-
10
Wei H, He C, Zhang J, et al. Combination of 1,2,4‑oxadiazole and 1,2,5‑oxadiazole moieties for the generation of high‑performance energetic materials[J]. Angewandte Chemie(International Edition), 2015, 54(32): 9367-9371.
-
11
Tang Y, He C, Mitchell L A, et al. Small Cation‑based high‑performance energetic nitraminofurazanates[J]. Chemistry‑A European Journal, 2016, 22(33): 11846-11853.
-
12
Yu Q, Cheng G, Ju X, et al. An interesting 1,4,2,5‑dioxadiazine‑furazan system: structural modification by incorporating versatile functionalities[J]. Dalton Transactions, 2017, 46(41), 14301-14309.
-
13
Huang H, Shi Y, Li Y, et al. Thermally stable energetic salts based on 3‑nitramino‑4‑tetrazolefurazan[J]. RSC Advances, 2016, 6(69):64568-64574.
-
14
Tang Y, Gao H, Mitchell L A, et al. Enhancing energetic properties and sensitivity by incorporating amino and nitramino groups into a 1,2,4‑oxadiazole building block[J]. Angewandte Chemie, International Edition, 2016, 55(3): 1147-1150.
-
15
Tang Y, Gao H, Mitchell L A, et al. Syntheses and promising properties of dense energetic 5,5′‑dinitramino‑3,3'‑azo‑1,2,4‑oxadiazole and its salts[J]. Angewandte Chemie(International Edition),2016, 55(9): 3200-3203.
-
16
Xu Z, Cheng G, Zhu S, et al. Nitrogen‑rich salts based on the combination of 1,2,4‑triazole and 1,2,3‑triazole rings: a facile strategy for fine tuning energetic properties[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(5): 2239-2248.
-
17
Tang Y, Mitchell L A, Imler G H, et al. Ammonia oxide as a building block for high‑performance and insensitive energetic materials[J]. Angewandte Chemie, International Edition, 2017, 56(21): 5894-5898.
-
18
Kumar D, Imler G H, Parrish D A, et al. Aminoacetonitrile as precursor for nitrogen rich stable and insensitive asymmetric N‑methylene‑C linked tetrazole‑based energetic compounds[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(32): 16767-16775.
-
19
Wang B, Qi X, Zhang W, et al. Synthesis of 1‑(2H‑tetrazol‑5‑yl)‑5‑nitraminotetrazole and its derivatives from 5‑aminotetrazole and cyanogen azide: a promising strategy towards the development of C—N linked bistetrazolate energetic materials[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(39): 20867-20873.
-
20
Fischer D, Klapöetke T M, Stierstorfer J, et al. 1,5‑Di(nitramino)tetrazole: high sensitivity and superior explosive performance[J]. Angewandte Chemie(International Edition), 2015, 54(35): 10299-10302.
-
21
Yin P, Shreeve J n M. From N‑nitro to N‑nitroamino: preparation of high‑performance energetic materials by introducing nitrogen‑containing Ions[J]. Angewandte Chemie(International Edition), 2015, 54(48): 14513-14517.
-
22
Yin P, He C, Shreeve J n M. Fully C/N‑polynitro functionalized 2,2'‑biimidazole derivatives as nitrogen‑ and oxygen‑rich energetic salts[J]. Chemistry‑A European Journal, 2016, 22(6): 2108-2113.
-
1
摘要
近年来,含能离子盐的研究重点仍然是通过官能团修饰有机阴阳离子的策略实现含能离子盐的靶向合成、结构和性能的定向调控。本文以近年来研究较多的含硝胺基的含能离子盐为例,综合介绍了它们的化学结构、理化参数(熔点、热分解温度、密度)、爆轰性能(爆速、爆压)及感度(撞击感度及摩擦感度)等数据,从含能离子盐结构设计、合成策略与性能评价等角度对近年来含能离子盐合成研究的发展方向与趋势进行了简要介绍。
Abstract
Energetic salts as a unique class of energetic materials arereadily modified to improve their detonation properties through the appropriate combination of different cations and anions.In this review, a brief introduction to the latest developments in the field of energetic salts synthesis over the past few years.These energetic salts generally exhibit desirable properties and performance, which in some cases are superior to those of the common energetic materials HMX, RDX, TNT and TATB. Furthermore, the development direction and trend of synthetic research of the energetic salts are discussed.