CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BalzerJ E, SiviourC R, WalleyS M, et al. Behavior of ammonium perchlorate propellants and a polymer‑bonded explosive under impact loading[J].Proceeding of the Royal Society London Series A, 2004, 460(2043): 781-806.
参考文献 2
KachanowL M. Introduction to Continuum Damage. Mechanics[M]. Netherlands: Martinus Nijhoff Publishers,1986.
参考文献 3
BaruaA, HorieY, ZhouM. Energy localization in HMX‑Estane polymer‑bonded explosive during impact loading[J]. Journal of Applied Physics, 2012, 111(5): 399-586.
参考文献 4
陈鹏万,丁雁生.含能材料的细观损伤[J].火炸药学报, 2001, 24(2): 58-61.
CHENPeng‑wan, DINGYan‑sheng. Damage in energetic materials[J]. Chinese Journal of Explosive & Propellants, 2001, 24(2): 58-61.
参考文献 5
LemaitreJ.A Course on Damage Mechanics[M].Berlin: Spring Verlag, 1992.
参考文献 6
陈鹏万,丁雁生,何松伟,等.炸药冲击损伤的实验研究[J].含能材料,2003,11(1):13‑17.
CHENPeng‑wan, DINGYan‑sheng,HESong‑wei,et al. Experimental study on the impact damage of selected explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(1): 13-17.
参考文献 7
Pengwan Chen, Fenglei Huang, Kaida Dai, et al. Detection and characterization of long‑pulse low‑velocity impact damage in plastic bonded explosives[J]. International Journal of Impact Engineering, 2005, 31: 497-508.
参考文献 8
梁增友,黄风雷,段卓平,等.PBX炸药及其模拟材料冲击损伤的实验研究[J].弹箭与制导学报, 2008, 28(1): 131-135.
LIANGZeng‑you, HUANGFeng‑lei, DUANZhuo‑ping, et al. Experiment study on impact damage of PBX explosive and simulation material[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 131-135.
参考文献 9
YurlovV, PushkovV A, NaidanovaT G,et al. Response of an HMX based explosive to dynamic loading by the Hopkinson split bar technique[J]. Combustion, Explosion, and Shock Waves, 2016, 52(4): 493-496.
参考文献 10
孙培培,王晓峰,南海,等.落锤冲击加载下炸药基体内不同粒度AP颗粒破碎特征[J].含能材料, 2015, 23(1): 53-56.
SUNPei‑Pei,WANGXiao‑feng, HaiNAN, et al. Fracture feature of AP grains with different sizes within explosive substrate under drop hammer impact loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 53-56.
参考文献 11
尹俊婷,袁宝慧,牛鹏俊,等.炸药损伤及损伤炸药环境适应性的实验研究[J].火炸药学报, 2008, 31(2): 78-80.
YINJun‑ting, YUANBao‑hui, NIUPeng‑jun, et al. Experimental study on the explosive damage and environment adaptability of damaged explosive[J].Chinese Journal of Explosive & Propellants, 2008, 31(2): 78-80.
参考文献 12
DAIXiao‑gan, HUANGQian, HUANGFeng‑lei, et al. The development of a confined impact test for evaluating the safety of polymer bonded explosives during warhead penetration[J].Propellants, Explosives, Pyrotechnics,2015, 40(5):665-673.
参考文献 13
姜夕博,金朋刚,王建灵,等.冲击载荷作用下两种HMX基抗高过载炸药损伤特性[J].含能材料,2017, 25(12): 991-996.
JIANGXi‑bo, JINPeng‑gang, WANGJian‑ling, et al. Damage characteristics of two HMX‑based anti‑overloaded explosives under shock loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(12): 991-996.
参考文献 14
Bin Dai, Wei‑bin Zhang,Lin‑gang Lan,et al. Experimental study and DEM simulation of micro‑macro behavior of TATB granules during compaction using X‑ray tomography[J].Propellants,Explosives,Pyrotechnics, 2015, 40: 688-698.
参考文献 15
罗景润,李大红,张寿齐,等.简单拉伸下高聚物粘结炸药的损伤测量及损伤演化研究[J]. 高压物理学报,2000,14(3):203-208.
LUOJing‑run, LIDa‑hong, ZHANGShou‑qi,et al.Damage evolution of PBX under simple tension[J]. Chinese J ournal of High Pressure Physics, 2000, 14(3): 203-208.
参考文献 16
YuanZeng‑nian,ChenHua, DaiBin. In‑situ X‑ray tomography observation of damage evolution in PBX mock materials with prefabricated defects[J]. Materials, 2017, 25(12): 997-1003.
参考文献 17
张伟斌,戴斌,田勇,等.微米级炸药晶体缺陷的μVCT试验研究[J].含能材料, 2008, 16(6): 767.
ZHANGWei‑bin, DAIBin, TIANYong, et al. Experiment study on micro crystal defect of explosive based on μVCT[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2008, 16(6): 767.
参考文献 18
张伟斌,李敬明,杨雪海,等. TATB颗粒稳压成型PBX的初始损伤[J].含能材料, 2015, 23(2): 202-204.
ZHANGWei‑bin, LIJing‑ming, YANGXue‑hai, et al. Initial mesoscopic damage of TATB based PBX pressed by warm compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2): 202-204.
目录 contents

    摘要

    为研究高聚物黏结炸药(PBX)在冲击载荷作用下损伤特性,以分离式霍普金森压杆(SHPB)对TATB基PBX进行了动态冲击实验,利用X射线显微层析成像(X‑ray Micro‑computed tomography, X‑μCT)进行了损伤观测表征,基于CT图像序列并结合数字图像处理算法,对损伤裂纹进行了提取与三维重构,并提出一种基于CT图像序列的缺陷体积占比的损伤变量评价方法,对不同子弹冲击速度作用下的损伤变量值进行了计算。结果表明,损伤裂纹沿着与端面约为60°方向由两端向中间延展,裂纹整体呈“沙漏”分布特征,且随着子弹冲击速度增加,裂纹延伸方向基本保持不变,由于炸药初始损伤的存在,损伤变量值并不一直增大,而是先减小再增大,后呈急剧增大趋势。

    Abstract

    To study the damage characteristics of polymer bonded explosive (PBX) under impact load action, the dynamic impact test of TATB‑based PBX was carried out with split Hopkins pressure bar (SHHB) and X‑ray micro‑computed tomography(X‑μ CT) was used to observe and characterize the damage. Based on CT image sequences and combined with digital image processing algorithm, the extraction and 3D reconstruction of damaged cracks was performed and a damage variable evaluation method based on the proportion of defect volume in CT image sequences was proposed. The value of damage variables under different impact velocities of bullet was calculated. Results show that the damaged cracks extends from two ends to the middle along the direction of approximately 60° with the end face. The whole crack exhibits a “hourglass” distribution characteristic. With the increase of the bullet impact velocity, the crack extension direction remains basically unchanged. Because of the existence of initial damage, the value of damage variables does not always increase, while first decreases and then increases, and then shows a sharp increase trend.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image012.png

    The separated Hopkins pressure bar was used to impact the PBX and the damage was observed by X‑ray micro‑computed tomography(X‑μ CT). Based on CT image sequences and combined with digital image processing algorithm, the extraction and 3D reconstruction of damaged cracks was performed. A damage variable evaluation method based on the proportion of defect volume in CT images was proposed to calculate and analyze the value of damage variable under different impact velocities of bullet.

  • 1 引 言

    1

    高聚物粘结炸药(Polymer bonded explosive,PBX)是目前应用最为广泛的炸药材料,跌落、撞击等异常外界冲击作用下的安全性问题一直是研究的重点与难[1]。冲击载荷作为一种常见载荷形式,可能导致PBX内部产生裂纹、孔洞、固体颗粒破碎及黏结剂脱粘等各种形式的损[2]。这些损伤的存在一方面可使PBX力学性能劣化,并最终导致材料破坏;另一方面,损伤对“热点”的形成具有重要的影响,从而影响PBX感度、燃烧甚至爆炸性[3,4]。所以,研究PBX在冲击载荷作用下的损伤特性对异常环境刺激下PBX安全性评估具有重要的作[5]

    国内外学者采用众多冲击加载以及检测分析手段研究了冲击载荷作用下PBX炸药的损伤特性。陈鹏万[6,7]采用低速气炮对B炸药和PBXN‑5炸药进行冲击损伤加载,对冲击损伤形貌进行显微观测,同时对冲击损伤前后试样密度和声衰减进行测量。梁增友[8]利用轻气炮驱动飞片加载技术对JO‑9159炸药及其模拟材料样品进行了冲击损伤研究,通过扫描电镜(SEM)研究冲击载荷作用下实验样品损伤模式,结果表明PBX的损伤破坏模式是以微裂纹为主的脆性损伤,主要表现为颗粒之间的脱粘,并伴有颗粒的破碎。Yurlov[9]通过分离式霍普金森压杆(SHPB)对HMX基PBX进行冲击加载,研究了其动态力学性能。孙培培[10]研究了不同粒度高氯酸铵(AP)颗粒在落锤冲击加载下的破碎特征。尹俊婷[11]利用CT扫描技术对PBX损伤情况进行观察,同时通过冲击、振动、跌落实验,对损伤炸药的环境适应性进行了研究。Dai[12]利用X‑μCT研究了PBX在不同高度跌落冲击作用下的损伤状况,并测定了损伤裂纹宽度。姜夕博[13]对两种HMX基抗高过载炸药进行冲击损伤,通过CT检测表征实验前后炸药的损伤程度,同时测试了冲击损伤后炸药的冲击波感度。综合来看,目前对于PBX冲击损伤研究主要是利用显微镜、SEM等二维分析手段,样品制备复杂,并且容易引入新的损伤,破坏原有损伤结构,而工业CT以其高分辨率、无损探伤、三维成像等优点在炸药冲击损伤表征领域逐渐成为中坚力量,但目前只局限于简单的CT成像观测,对后续基于CT数字图像的进一步分析研究较少。

    基于此,本研究以分离式霍普金森压杆作为冲击加载工具,利用X‑μCT对冲击损伤PBX进行观测表征,基于CT图像序列并结合数字图像处理技术实现冲击损伤的分割、提取以及三维重构,同时对损伤变量进行计算分析,相关结果可为建立损伤与冲击速度的关联模型以及进一步发展TATB基PBX的应变率相关的损伤本构模型提供支撑。

  • 2 实验

    2
  • 2.1 仪器设备

    2.1
  • (1)分离式霍普金森压杆(SHPB)

    实验在中国工程物理研究院化工材料研究所的分离式霍普金森压杆(Split Hopkinson Pressure Bar,SHPB)上完成,所用的压杆为直径20 mm的7075铝杆,其杨氏模量为71 GPa,杆中波速为5053 m·s-1。其中子弹、入射杆和吸收杆长度分别为300 mm,2000 mm和1500 mm。实验中利用氮气气阀驱动子弹,通过气压调节来控制子弹的速度实现不同程度冲击损伤加载。

  • (2) X‑μCT

    X射线CT作为目前最佳的三维无损表征手段,其基本原理是X射线穿透物质时发生衰减,由探测器探测到衰减后的射线强度,生成一系列投影图像,经过计算机软件进行重建,得到物体内部完整的三维结构信[14]

    CT扫描实验采用天津三英精密仪器有限公司的nanoVoxel‑9010型X‑μCT扫描系统(图1),所选扫描参数电压为85 kV,电流110 μA,曝光时间0.3 s,将被测试样固定在样品台上旋转360°,共采集720幅图像,其中射线源与样品距离(SOD)为118.35 mm,射线源与探测器距离(SDD)为540.06 mm,体元像素尺寸28 μm,经过CT投影图重建出扫描样品内部信息。

    图1
                            X‑μ CT扫描系统

    图1 X‑μ CT扫描系统

    Fig.1 X‑ray CT scanning system

  • 2.2 实验样品

    2.2

    实验样品为TATB基PBX药柱,由中国工程物理研究院化工材料研究所提供,样品尺寸Φ10 mm×10 mm,其通过水悬浮法制备造型颗粒,采用模压法压制成型,密度为1.89 g·cm-3

  • 2.3 实验过程

    2.3

    首先对未损伤PBX药柱进行CT扫描实验,记录下扫描参数。在SHPB冲击实验时,因TATB基PBX强度低、破坏变形小,为防止损伤过大,以至样品不能进行CT扫描,同时在PBX应用中外围通常也存在一定厚度的壳体约束,因此实验中在试样外加上套筒形成围压。所选套筒为1 mm厚的LY12硬铝套筒,其大小保证PBX样品与套筒装配无明显间隙, 使PBX样品不能在套筒中滑动。为保证PBX试样两端受到均匀平面波冲击加载,在试样两端固定了相同尺寸的LY12硬铝击柱。

    通过调节气阀不同压力,采用红外测速装置测试出四次子弹冲击速度为5.4,7.3,8.8,11.24 m·s-1。实验装置如图2所示,最后对不同损伤程度的PBX样品按照初始扫描参数进行CT扫描与重建分析。

    图2
                            冲击实验示意图

    图2 冲击实验示意图

    Fig.2 Schematic diagram of impact experiment

  • 3 结果与讨论

    3
  • 3.1 PBX冲击损伤表征

    3.1

    制备的药柱在7.3 m·s-1子弹冲击速度前后的CT扫描横截面图如图3所示,可以看到初始样品界面平整、密实,无宏观裂纹损伤缺陷,冲击加载后实验样品出现了宏观损伤裂纹。

    4给出了4种典型冲击速度加载后PBX样品的CT扫描纵截面图,以此对比不同加载速度对样品造成的损伤。从图4中可以看出,PBX样品内部出现了裂纹,主裂纹首先在样品两端产生并沿着与端面约60°向试样中部扩展,且裂纹扩展深度随着子弹冲击速度的增加而增加,不同冲击速度下裂纹扩展与端面夹角保持60°基本不变,纵截面上主裂纹整体呈“X”型分布。

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image003.png

    a. 5.4 m·s-1 b. 7.3 m·s-1

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image004.png

    c. 8.8 m·s-1 d. 11.24 m·s-1

    图4 4种典型冲击速度作用下PBX样品的CT扫描纵截面

    Fig.4 CT scanning longitudinal section images of PBX sample under four kinds of typical impact velocities

    图3
                            冲击损伤实验前后CT扫描截面图

    a. before impact test b. after impact test

    图3 冲击损伤实验前后CT扫描截面图

    Fig.3 CT scanning sectional images before and after impact damage test

    由于实验样品外的铝套筒作用,X射线穿透样品时射束硬化现象较严重,造成CT切片图样品内部灰度值偏低,因此需对CT图像进行滤波降噪处理、射束硬化校正,在此基础上进行灰度值提取与阈值分割,提取出样品内部裂纹等缺陷,对所有切片数据重复上述步骤,并将所有切片提取出的截面典型缺陷进行三维重构与解析,得到PBX药柱冲击损伤三维结构特征,结果如图5所示。

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image006.png

    a. 5.4 m·s-1 b. 7.3 m·s-1

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image007.png

    c. 8.8 m·s-1 d. 11.24 m·s-1

    图5 4种典型冲击速度作用下PBX冲击损伤的三维重构分析

    Fig.5 3D reconstruction analyses of PBX impact damage under four kinds of typical impact velocities

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image008.png

    a. the reconstruction of sectional image using Matlab

    html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image009.png

    b. PBX sample after impact

    图6 PBX损伤Matlab重构与实验样品照片

    Fig.6 The damage reconstruction of PBX using Matlab and the photo of experimental sample

    由图5可见,当子弹冲击速度达到5.4 m·s-1时,试样内部逐渐出现宏观可见裂纹,随着子弹冲击速度的增加主裂纹由两端向中部扩展,当子弹冲击速度达到11.24 m·s-1时,上下端面主裂纹逐渐贯通,整个损伤裂纹面呈完整的“沙漏”型分布。图6a为11.24 m·s-1子弹冲击速度作用下部分典型扫描切片Matlab重构图,图6b为实验样品在12.5 m·s‑1子弹冲击速度下破碎掉落照片,同样呈现出“沙漏”型分布特征。

  • 3.2 损伤变量评价

    3.2

    为定量描述材料损伤的程度,损伤力学中引入了损伤变量概念。由于微缺陷(微裂纹和微孔洞等)的存在,材料有效承载面积比总横截面积小,损伤力学中将损伤变量定义为缺陷面积与总面积之[15]。由于冲击载荷作用下PBX损伤主要集中于样品内部,无法准确界定样品的有效承载面积,给损伤变量计算带来困难。工业CT可三维直观成像,且能无损观测样品内部结构,因此本文在X‑μCT成像基础上,利用基于CT切片数字图像的损伤变量评价方[16],其具体计算过程为:从CT体数据导出各层切片,经过图像格式转换、灰度校正、滤波降噪得到待处理CT切片,运用灰度值提取与阈值分割,提取出损伤缺陷,将CT切片图像进行二值化处理,如图7所示。图7右图中白色部分即为提取出的样品内部损伤缺陷,在二值图中代表值为“1”,对每层切片重复上述步骤,计算得到损伤变量值。

    D = V d a m a g e V s a m p l e = i = 1 n N i P V s a m p l e
    (1)

    式中, V 为样品内裂纹、孔隙等损伤体积; V 为样品总体积,mm3; N i 为二值化图像中“1”的像素个数;n为总切片个数;P为CT图像体素尺寸,mm3;D为损伤变量值。

    运用上述方法,对12种子弹冲击速度作用下PBX损伤变量值进行计算,绘制损伤变量值与子弹冲击速度关系曲线,如图8所示。

    从图8中A点可知,样品初始损伤变量并不等于0,这主要是因为炸药在成型过程中受到工艺条件以及环境因素的影响,其内部存在微裂纹与孔隙等初始损[17,18]。在曲线AB段,子弹冲击速度较小,大部分初始微裂纹、孔隙等初始损伤在冲击载荷作用下发生闭合,样品被压实,虽然伴随着微裂隙的产生,但冲击压缩载荷造成的闭合效应占主导地位,试样损伤变量减小;曲线BC段损伤变量逐渐增大,微裂隙的产生逐渐增多,当子弹冲击速度超过C点时,微裂隙扩展、汇集作用持续加强,新形成的微裂隙足以抵消冲击压缩导致的闭合效应,损伤变量值超过初始状态,汇集的微裂隙逐渐失稳形成CT可见宏观裂纹,见图6a所示,此后随着子弹冲击速度的增大,损伤变量急剧增大,主裂纹迅速扩展直至贯穿试件,样品破坏。纵观整个曲线,样品的损伤变量并不随着子弹冲击速度的增加而一直增大,而是先减小再增大,后呈急剧增大趋势。

    图8
                            子弹速度与损伤变量关系曲线

    图8 子弹速度与损伤变量关系曲线

    Fig.8 Relation curve of bullet velocity and damage variable

    图7
                            CT切片阈值分割与裂纹提取结果

    图7 CT切片阈值分割与裂纹提取结果

    Fig.7 Threshold segmentation and crack extraction results of CT slices

  • 4 结 论

    4

    (1)当子弹冲击速度达到5.4 m·s-1时,样品内部逐渐出现宏观可见裂纹,损伤裂纹首先在样品两端产生,随着子弹冲击速度的增加,主裂纹沿着与端面约60°夹角方向逐步向试样中部延伸,其延伸方向基本保持不变,直至上下主裂纹贯通,试样破碎。

    (2)CT扫描纵截面主裂纹呈“X”型分布,基于CT图像序列对冲击损伤PBX三维损伤结构进行提取与重构,发现冲击损伤主裂纹三维结构呈“沙漏”型分布特征,直观呈现了冲击加载下裂纹的空间结构信息。

    (3)利用基于CT数字图像序列的缺陷体积占比的损伤变量评价方法,对不同子弹速度作用下的PBX损伤变量进行了计算,发现随着子弹冲击速度的逐步增加,由于初始损伤的存在,损伤变量值先减小再增大,后呈急剧增大趋势。

  • 参考文献

    • 1

      Balzer J E, Siviour C R, Walley S M, et al. Behavior of ammonium perchlorate propellants and a polymer‑bonded explosive under impact loading[J].Proceeding of the Royal Society London Series A, 2004, 460(2043): 781-806.

    • 2

      Kachanow L M. Introduction to Continuum Damage. Mechanics[M]. Netherlands: Martinus Nijhoff Publishers,1986.

    • 3

      Barua A, Horie Y, Zhou M. Energy localization in HMX‑Estane polymer‑bonded explosive during impact loading[J]. Journal of Applied Physics, 2012, 111(5): 399-586.

    • 4

      陈鹏万,丁雁生.含能材料的细观损伤[J].火炸药学报, 2001, 24(2): 58-61.

      CHEN Peng‑wan, DING Yan‑sheng. Damage in energetic materials[J]. Chinese Journal of Explosive & Propellants, 2001, 24(2): 58-61.

    • 5

      Lemaitre J.A Course on Damage Mechanics[M].Berlin: Spring Verlag, 1992.

    • 6

      陈鹏万,丁雁生,何松伟,等.炸药冲击损伤的实验研究[J].含能材料,2003,11(1):13‑17.

      CHEN Peng‑wan, DING Yan‑sheng,HE Song‑wei,et al. Experimental study on the impact damage of selected explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(1): 13-17.

    • 7

      Pengwan Chen, Fenglei Huang, Kaida Dai, et al. Detection and characterization of long‑pulse low‑velocity impact damage in plastic bonded explosives[J]. International Journal of Impact Engineering, 2005, 31: 497-508.

    • 8

      梁增友,黄风雷,段卓平,等.PBX炸药及其模拟材料冲击损伤的实验研究[J].弹箭与制导学报, 2008, 28(1): 131-135.

      LIANG Zeng‑you, HUANG Feng‑lei, DUAN Zhuo‑ping, et al. Experiment study on impact damage of PBX explosive and simulation material[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 131-135.

    • 9

      Yurlov V, Pushkov V A, Naidanova T G,et al. Response of an HMX based explosive to dynamic loading by the Hopkinson split bar technique[J]. Combustion, Explosion, and Shock Waves, 2016, 52(4): 493-496.

    • 10

      孙培培,王晓峰,南海,等.落锤冲击加载下炸药基体内不同粒度AP颗粒破碎特征[J].含能材料, 2015, 23(1): 53-56.

      SUN Pei‑Pei,WANG Xiao‑feng, NAN Hai, et al. Fracture feature of AP grains with different sizes within explosive substrate under drop hammer impact loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 53-56.

    • 11

      尹俊婷,袁宝慧,牛鹏俊,等.炸药损伤及损伤炸药环境适应性的实验研究[J].火炸药学报, 2008, 31(2): 78-80.

      YIN Jun‑ting, YUAN Bao‑hui, NIU Peng‑jun, et al. Experimental study on the explosive damage and environment adaptability of damaged explosive[J].Chinese Journal of Explosive & Propellants, 2008, 31(2): 78-80.

    • 12

      DAI Xiao‑gan, HUANG Qian, HUANG Feng‑lei, et al. The development of a confined impact test for evaluating the safety of polymer bonded explosives during warhead penetration[J].Propellants, Explosives, Pyrotechnics,2015, 40(5):665-673.

    • 13

      姜夕博,金朋刚,王建灵,等.冲击载荷作用下两种HMX基抗高过载炸药损伤特性[J].含能材料,2017, 25(12): 991-996.

      JIANG Xi‑bo, JIN Peng‑gang, WANG Jian‑ling, et al. Damage characteristics of two HMX‑based anti‑overloaded explosives under shock loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(12): 991-996.

    • 14

      Bin Dai, Wei‑bin Zhang,Lin‑gang Lan,et al. Experimental study and DEM simulation of micro‑macro behavior of TATB granules during compaction using X‑ray tomography[J].Propellants,Explosives,Pyrotechnics, 2015, 40: 688-698.

    • 15

      罗景润,李大红,张寿齐,等.简单拉伸下高聚物粘结炸药的损伤测量及损伤演化研究[J]. 高压物理学报,2000,14(3):203-208.

      LUO Jing‑run, LI Da‑hong, ZHANG Shou‑qi,et al.Damage evolution of PBX under simple tension[J]. Chinese J ournal of High Pressure Physics, 2000, 14(3): 203-208.

    • 16

      Yuan Zeng‑nian,Chen Hua, Dai Bin. In‑situ X‑ray tomography observation of damage evolution in PBX mock materials with prefabricated defects[J]. Materials, 2017, 25(12): 997-1003.

    • 17

      张伟斌,戴斌,田勇,等.微米级炸药晶体缺陷的μVCT试验研究[J].含能材料, 2008, 16(6): 767.

      ZHANG Wei‑bin, DAI Bin, TIAN Yong, et al. Experiment study on micro crystal defect of explosive based on μVCT[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2008, 16(6): 767.

    • 18

      张伟斌,李敬明,杨雪海,等. TATB颗粒稳压成型PBX的初始损伤[J].含能材料, 2015, 23(2): 202-204.

      ZHANG Wei‑bin, LI Jing‑ming, YANG Xue‑hai, et al. Initial mesoscopic damage of TATB based PBX pressed by warm compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2): 202-204.

刘本德

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

邮 箱:liubende@caep.cn

作者简介:刘本德(1990-),男,硕士,主要从事含能材料无损表征与分析研究。e‑mail:liubende@caep.cn

陈华

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

张伟斌

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

张才鑫

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

刘晨

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:liu_chen@caep.cn

作者简介:刘晨(1991-),男,硕士,主要从事含能材料力学性能研究。e‑mail:liu_chen@caep.cn

html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image001.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image002.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image003.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image004.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image005.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image006.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image007.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image008.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image009.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image010.png
html/hncl/CJEM2018166/media/6a3c0822-3838-45bb-b9ea-8a8f2d09d966-image011.png

图1 X‑μ CT扫描系统

Fig.1 X‑ray CT scanning system

图2 冲击实验示意图

Fig.2 Schematic diagram of impact experiment

图4 4种典型冲击速度作用下PBX样品的CT扫描纵截面 -- a. 5.4 m·s-1 b. 7.3 m·s-1

Fig.4 CT scanning longitudinal section images of PBX sample under four kinds of typical impact velocities -- a. 5.4 m·s-1 b. 7.3 m·s-1

图4 4种典型冲击速度作用下PBX样品的CT扫描纵截面 -- c. 8.8 m·s-1 d. 11.24 m·s-1

Fig.4 CT scanning longitudinal section images of PBX sample under four kinds of typical impact velocities -- c. 8.8 m·s-1 d. 11.24 m·s-1

图3 冲击损伤实验前后CT扫描截面图

Fig.3 CT scanning sectional images before and after impact damage test a. before impact test b. after impact test

图5 4种典型冲击速度作用下PBX冲击损伤的三维重构分析 -- a. 5.4 m·s-1 b. 7.3 m·s-1

Fig.5 3D reconstruction analyses of PBX impact damage under four kinds of typical impact velocities -- a. 5.4 m·s-1 b. 7.3 m·s-1

图5 4种典型冲击速度作用下PBX冲击损伤的三维重构分析 -- c. 8.8 m·s-1 d. 11.24 m·s-1

Fig.5 3D reconstruction analyses of PBX impact damage under four kinds of typical impact velocities -- c. 8.8 m·s-1 d. 11.24 m·s-1

图6 PBX损伤Matlab重构与实验样品照片 -- a. the reconstruction of sectional image using Matlab

Fig.6 The damage reconstruction of PBX using Matlab and the photo of experimental sample -- a. the reconstruction of sectional image using Matlab

图6 PBX损伤Matlab重构与实验样品照片 -- b. PBX sample after impact

Fig.6 The damage reconstruction of PBX using Matlab and the photo of experimental sample -- b. PBX sample after impact

图8 子弹速度与损伤变量关系曲线

Fig.8 Relation curve of bullet velocity and damage variable

图7 CT切片阈值分割与裂纹提取结果

Fig.7 Threshold segmentation and crack extraction results of CT slices

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Balzer J E, Siviour C R, Walley S M, et al. Behavior of ammonium perchlorate propellants and a polymer‑bonded explosive under impact loading[J].Proceeding of the Royal Society London Series A, 2004, 460(2043): 781-806.

    • 2

      Kachanow L M. Introduction to Continuum Damage. Mechanics[M]. Netherlands: Martinus Nijhoff Publishers,1986.

    • 3

      Barua A, Horie Y, Zhou M. Energy localization in HMX‑Estane polymer‑bonded explosive during impact loading[J]. Journal of Applied Physics, 2012, 111(5): 399-586.

    • 4

      陈鹏万,丁雁生.含能材料的细观损伤[J].火炸药学报, 2001, 24(2): 58-61.

      CHEN Peng‑wan, DING Yan‑sheng. Damage in energetic materials[J]. Chinese Journal of Explosive & Propellants, 2001, 24(2): 58-61.

    • 5

      Lemaitre J.A Course on Damage Mechanics[M].Berlin: Spring Verlag, 1992.

    • 6

      陈鹏万,丁雁生,何松伟,等.炸药冲击损伤的实验研究[J].含能材料,2003,11(1):13‑17.

      CHEN Peng‑wan, DING Yan‑sheng,HE Song‑wei,et al. Experimental study on the impact damage of selected explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(1): 13-17.

    • 7

      Pengwan Chen, Fenglei Huang, Kaida Dai, et al. Detection and characterization of long‑pulse low‑velocity impact damage in plastic bonded explosives[J]. International Journal of Impact Engineering, 2005, 31: 497-508.

    • 8

      梁增友,黄风雷,段卓平,等.PBX炸药及其模拟材料冲击损伤的实验研究[J].弹箭与制导学报, 2008, 28(1): 131-135.

      LIANG Zeng‑you, HUANG Feng‑lei, DUAN Zhuo‑ping, et al. Experiment study on impact damage of PBX explosive and simulation material[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 131-135.

    • 9

      Yurlov V, Pushkov V A, Naidanova T G,et al. Response of an HMX based explosive to dynamic loading by the Hopkinson split bar technique[J]. Combustion, Explosion, and Shock Waves, 2016, 52(4): 493-496.

    • 10

      孙培培,王晓峰,南海,等.落锤冲击加载下炸药基体内不同粒度AP颗粒破碎特征[J].含能材料, 2015, 23(1): 53-56.

      SUN Pei‑Pei,WANG Xiao‑feng, NAN Hai, et al. Fracture feature of AP grains with different sizes within explosive substrate under drop hammer impact loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 53-56.

    • 11

      尹俊婷,袁宝慧,牛鹏俊,等.炸药损伤及损伤炸药环境适应性的实验研究[J].火炸药学报, 2008, 31(2): 78-80.

      YIN Jun‑ting, YUAN Bao‑hui, NIU Peng‑jun, et al. Experimental study on the explosive damage and environment adaptability of damaged explosive[J].Chinese Journal of Explosive & Propellants, 2008, 31(2): 78-80.

    • 12

      DAI Xiao‑gan, HUANG Qian, HUANG Feng‑lei, et al. The development of a confined impact test for evaluating the safety of polymer bonded explosives during warhead penetration[J].Propellants, Explosives, Pyrotechnics,2015, 40(5):665-673.

    • 13

      姜夕博,金朋刚,王建灵,等.冲击载荷作用下两种HMX基抗高过载炸药损伤特性[J].含能材料,2017, 25(12): 991-996.

      JIANG Xi‑bo, JIN Peng‑gang, WANG Jian‑ling, et al. Damage characteristics of two HMX‑based anti‑overloaded explosives under shock loading[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(12): 991-996.

    • 14

      Bin Dai, Wei‑bin Zhang,Lin‑gang Lan,et al. Experimental study and DEM simulation of micro‑macro behavior of TATB granules during compaction using X‑ray tomography[J].Propellants,Explosives,Pyrotechnics, 2015, 40: 688-698.

    • 15

      罗景润,李大红,张寿齐,等.简单拉伸下高聚物粘结炸药的损伤测量及损伤演化研究[J]. 高压物理学报,2000,14(3):203-208.

      LUO Jing‑run, LI Da‑hong, ZHANG Shou‑qi,et al.Damage evolution of PBX under simple tension[J]. Chinese J ournal of High Pressure Physics, 2000, 14(3): 203-208.

    • 16

      Yuan Zeng‑nian,Chen Hua, Dai Bin. In‑situ X‑ray tomography observation of damage evolution in PBX mock materials with prefabricated defects[J]. Materials, 2017, 25(12): 997-1003.

    • 17

      张伟斌,戴斌,田勇,等.微米级炸药晶体缺陷的μVCT试验研究[J].含能材料, 2008, 16(6): 767.

      ZHANG Wei‑bin, DAI Bin, TIAN Yong, et al. Experiment study on micro crystal defect of explosive based on μVCT[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2008, 16(6): 767.

    • 18

      张伟斌,李敬明,杨雪海,等. TATB颗粒稳压成型PBX的初始损伤[J].含能材料, 2015, 23(2): 202-204.

      ZHANG Wei‑bin, LI Jing‑ming, YANG Xue‑hai, et al. Initial mesoscopic damage of TATB based PBX pressed by warm compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(2): 202-204.