CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
曾贵玉,聂福德,刘晓东,等. 六硝基六氮杂异伍兹烷(CL‑20)的研究进展[J]. 含能材料,2000, 8(3): 130-134.
ZENGGui‑yu,NIEFu‑de,LIUXiao‑dong, et al. Advances in research on hexanitrohexane (CL‑20)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(3): 130-134.
参考文献 2
欧育湘,孟征,刘进全. 高能量密度化合物CL‑20应用研究进展[J]. 化工进展, 2007, 26(12): 1690-1694.
Yu‑xiangOU,MENGZheng,LIUJin‑quan. Progress in application of high energy density compound CL‑20[J].Chemical Industry and Engineering Progress,2007, 26(12): 1690-1694.
参考文献 3
徐金江,孙杰,周克恩,等. CL‑20重结晶过程中的晶型转变研究进展[J]. 含能材料, 2012, 20(2): 102-105.
XUJin‑jiang, SUNJie, ZHOUKe‑en, et al. Progress in crystallization transformation in recrystallization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012,20(2): 102-105.
参考文献 4
NairU R,SivabalanR,GoreG M,et al. Hexanitrohexaazaisowurtzitane(CL‑20) and CL‑20‑based formulations(review)[J]. Combustion Explosion & Shock Waves,2005,41(2): 121-132.
参考文献 5
钱华,叶志文,吕春绪. N2O5/HNO3硝解TAIW合成CL‑20[J]. 应用化学,2008,25(3): 378-380.
QIANHua,YEZhi‑wen, Chun‑xuLÜ. Nitration of N2O5/HNO3 TAIW synthesis CL‑20[J]. Chinese Journal of Applied Chemistry, 2008, 25(3): 378-380.
参考文献 6
高凤,刘文芳,孟子晖,等. 激光拉曼光谱技术在火炸药分析检测中的应用研究进展[J]. 含能材料, 2018(2): 185-196.
GAOFeng,LIUWen‑fang,MENGZi‑hui,et al. Progress in application of laser raman spectroscopy in analysis and detection of explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018(2): 185-196.
参考文献 7
PanB,DangL,WangZ,et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Crystengcomm,2018,20(11):1553-1563.
参考文献 8
KholodY,OkovytyyS,KuramshinaG,et al. An analysis of stable forms of CL‑20: A DFT study of conformational transitions, infrared and Raman spectra[J]. Journal of Molecular Structure,2007,843(1-3): 14-25.
参考文献 9
PatelR B,StepanovV,QiuH. Dependence of raman spectral intensity on crystal size in organic nano energetics[J]. Applied Spectroscopy, 2016, 70(8): 1339-1345.
参考文献 10
AnC,LiH,YeB,et al. Nano‑CL‑20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials,2017, 2017(5): 1-7.
参考文献 11
LiuK, ZhangG, LuanJ, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL‑20/DNT[J]. Journal of Molecular Structure,2016, 11(10):91-96.
参考文献 12
GoedeP,Latypov N VÖstmarkH. Fourier transform raman spectroscopy of the four crystallographic phases of α,β,γ and ɛ 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(4): 205-208.
参考文献 13
孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的γ和ε晶型混合物[J]. 火炸药学报, 2010, 33(5): 12-18.
MENGZheng, WEIHong‑yuan. Fourier transform raman spectroscopy was used to quantitatively analyze the gamma and epsilon crystal mixtures of HNIW[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 12-18.
参考文献 14
孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的β和ε晶型混合物[J]. 含能材料, 2011, 19(3): 339-342.
MENGZheng, WEIHong‑yuan. Quantitative analysis of beta and epsilon crystal mixtures of HNIW by Fourier transform raman spectroscopy[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(3): 339-342.
参考文献 15
GhoshM,VenkatesanV,SikderN,et al. Quantitative analysis of α‑CL‑20 polymorphic impurity in ε‑CL‑20 using dispersive raman spectroscopy[J]. Central European Journal of Energetic Materials, 2013, 10(3): 419-438.
参考文献 16
HeX,LiuY,HuangS L,et al. Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL‑20[J].RSC Advances,2018, 8: 23348-23352.
参考文献 17
DumasS,GauvritJ Y,LanteriP. Determining the polymorphic purity of ε‑CL‑20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 230-234.

    摘要

    为了建立一种简单、高效、重复性好的测定ε‑六硝基六氮杂异戊兹烷(CL‑20)中γ晶型杂质的含量的方法,确定了用拉曼光谱定量表征γ‑CL‑20/ε‑CL‑20混合样品的特征参数,然后以两种晶型的特征峰峰面积之比A232/A528γ‑CL‑20含量作图,分别得到了2%~9%和10%~90%两组浓度范围内的标准曲线,并与采用峰面积法得到的定量结果作了比较。结果表明,当γ‑CL‑20的含量为2%~9%时,三组平行实验的A232/A528值的相对误差不大于2.2%,拟合方程为y=0.0062e0.2512x,相关系数为0.9806。当γ‑CL‑20的含量为10%~90%时,A232/A528的相对误差不超过2.9%,拟合方程为y=0.0822e0.0596,相关系数为0.9816。A232/A528的数据再现性和拟合相关性远优于峰面积法。

    Abstract

    To establish a simple, efficient and good reproducible method of measuring the content of γ‑crystal form impurities inε‑hexanitrohexaazaisowurtzitane (ε‑CL‑20). the characteristic parameters for the quantitative characterizationof γ‑CL‑20/ε‑CL‑20 mixed samples were determined by Raman spectroscopy, and then, the characteristic peak area ratio A232/A528 of two crystal forms was plotted against γ‑CL‑20 content. The standard curves in the two sets of concentration ranges of 2%-9% and 10%-90% were obtained respectively and compared with the quantitative results obtained by the peak area method. Results show that when the content of γ‑CL‑20 is 2%-9%, the relative error of A232/A528 values for three sets of parallel experiments is not more than 2.2%, and the fitting equation is y=0.0062e0.2512x with a correlation coefficient of 0.9806. When the content of γ‑CL‑20 is 10%-90%, the relative error of A232/A528 is not exceed 2.9%, and the fitting equation is y=0.0822e0.0596x with a correlation coefficient of 0.9816. Data reproducibility and fitting correlation coefficient of A232/A528 are far better than the peak areamethod.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F002.jpg

    A rapid and sensitive quantitativemethod via Raman spectroscopy was explored for the measurement of crystal purity of ε‑CL‑20.

  • 1 引言

    1

    六硝基六氮杂异戊兹烷(CL‑20)是一种军用猛炸药,具有高密度、高能量、高爆压、高爆速等特[1],可以用于炸药、固体火箭推进剂及发射[2]。CL‑20有四种晶[3],分别为α、βγε晶型,其中,ε‑CL‑20的密度最大,热稳定性最好,感度最低,是唯一具有实际应用价值的一种晶型。通常,先通过硝化四乙酰基六氮异伍兹烷(TAIW)生成γ‑CL‑20,再进一步转晶生成ε‑CL‑20[4,5]。产品中可能含有的少量γ‑CL‑20,这不仅会影响稳定性,还会影响到燃烧和推进速度。因此,对ε‑CL‑20晶型纯度的检测具有重要意义。

    拉曼光谱技术是一种可以获取物质结构和官能团信息的分子光谱技术,与常规分析手段如红外光谱、液相色谱相比,具有无损、快速、对样品制备没有特殊要求,对样品量要求低等优[6],现已越来越多地应用于火炸药的定性分[7,8,9,10,11]。但由于光谱强度的重复性差,拉曼光谱用于定量分析的报道还很少见。Goede[12]ε‑CL‑20在284 cm-1处的峰面积为基准,曾尝试确定βε、以及γε两种晶型混合物中ε‑CL‑20的纯度。国内也有类似的报道,孟征等也利用这个峰的峰面积分别对βε、以及γε‑CL‑20混合物进行定量分[13,14]。Ghosh[15]等使用色散拉曼光谱法研究了ε‑CL‑20中α晶型杂质的含量;He[16]等根据主成分分析(PCA)和量子力学(QM)计算结果选择不同的特征峰,并建立了一种定量测定ε‑CL‑20中多晶型杂质的新方法;Dumas[17]等利用FTIR‑MIR光谱和偏最小二乘(PLS)回归相结合的方法测量CL‑20的多晶型组成。以上研究均采用单一的峰面积对组分含量作标准曲线,以求出ε‑CL‑20的纯度,尚未见到利用两种晶型的峰面积之比来分析纯度的报道。

    为此,本研究采用拉曼光谱对ε‑CL‑20和γ‑CL‑20进行了定性分析,提取了定量表征的特征参数,以二者的峰面积之比对γ‑CL‑20的含量建立了标准曲线,并与采用单个峰的峰面积进行定量分析的结果进行了对比。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    美国BWTEK公司OPAL 3000型便携式拉曼光谱仪;上海医用恒温设备厂DHG‑9053A型电热恒温鼓风干燥箱;赛多利斯科学仪器(北京)有限公司BS 224S型电子分析天平。

    ε‑CL‑20和γ‑CL‑20(辽宁庆阳特征化工有限公司),蒸馏水。

  • 2.2 实验过程

    2.2
  • 2.2.1 单一样品的分析

    2.2.1

    取少量γ‑CL‑20或ε‑CL‑20白色粉末置于样品槽中,采用拉曼光谱仪对样品进行定性分析。测试条件为:曝光时间1 s,扫描功率50 mW,扫描波谱范围为0~3250 cm-1,自动扫描5次。

  • 2.2.2 混合样品的制备与分析

    2.2.2

    分析混合样品时,配制γ‑CL‑20含量从2%‑9%(间隔为1%)以及10%~90%(间隔为10%)的γ‑CL‑20/ε‑CL‑20混合样品各100 mg,置于玛瑙研钵中,滴入两滴蒸馏水,研磨10 min,然后置于鼓风干燥箱中45 ℃下干燥3 h,用拉曼光谱仪分析。

    对每个样品做三组平行实验,采用Origin软件对选定峰面积进行积分,基于平行试验的结果,取算术平均值,并根据公式(1)计算标准偏差(S),根据公式(2)计算相对误差(Z)。

    S = 1 N ( X i - X ̅ ) N - 1
    (1)
    Z = X i - X ̅ X ̅ × 100 %
    (2)

    式中,Xi为实测数据, X ̅ 为平行实验各组数据的平均值,N为平行试验的组数。

  • 3 结果与讨论

    3
  • 3.1 ε‑CL‑20和γ‑CL‑20单一样品的定性分析及特征参数提取

    3.1

    ε‑CL‑20和γ‑CL‑20的拉曼光谱见图1。由图1可知,ε‑CL‑20的出峰位置为143,197,268,321,347,528,823,836,1053,1279,1610,1628 cm-1。其中,1610,1628 cm-1为N—NO2的伸缩振动峰,1279 cm-1为C—C的伸缩振动峰,143,197,268,321,347 cm-1可能为C骨架的伸缩振动峰。γ‑CL‑20的出峰位置在141,176,232,270,286,310,848,982,1256,1276,1314,1608 cm-1处。其中,1256,1276,1608 cm-1为N—NO2的伸缩振动峰,1314 cm-1为C—C的伸缩振动峰,141,176,232,270,286,310 cm-1为C骨架的伸缩振动峰。两种晶型的出峰位置和相对强弱均存在差别。ε‑CL‑20最强的峰出现在143 cm-1,其次是321 cm-1,接下来是823、347和1279 cm-1;而γ‑CL‑20最强的峰出现在310 cm-1,其次是232 cm-1

    图1
                            ε‑CL‑20和γ‑CL‑20的拉曼光谱

    图1 ε‑CL‑20和γ‑CL‑20的拉曼光谱

    Fig.1 Raman spectra of ε‑CL‑20 and γ‑CL‑20

    与文[8]比较,ε‑CL‑20在250~300 cm-1,810~870 cm-1,1000 cm-1附近,1200~1400 cm-1,1550~1630 cm-1范围内的实测值与文献基本没有差别;而文献中报道的791,755 cm-1两个峰,却在测量中未出现;在波数低于250 cm-1时,ε‑CL‑20出现143、197 cm-1两个特征峰,文献中未报道。γ‑CL‑20在1020,1550 cm-1两处特征峰的波数与文献中(1053,1608 cm-1)差别较大,且文献在141,176,232,310 cm-1处并未出现特征峰。所测数据与文献报道之间的差别,可能是由于产品成分以及测量仪器的差异导致的。

    为了实现对ε‑CL‑20/γ‑CL‑20混合样品的定量分析,对ε‑CL‑20与γ‑CL‑20的拉曼光谱图局部放大(图2),以找出不相重叠的特征峰,确定特征参数。从图2可以看出,对ε‑CL‑20来说,与γ‑CL‑20不重叠的特征峰依次出现在143,321,347,528,823 cm-1,其中,在528 cm-1处的峰型较好,与γ‑CL‑20的特征峰区分明显,故选用该峰作为ε‑CL‑20定量分析的特征峰;而对γ‑CL‑20来说,与ε‑CL‑20不重叠的特征峰出现在232,286,310 cm-1和847 cm-1,其中,232 cm-1处的峰型较好,故选用该峰作为γ‑CL‑20定量分析的特征峰。

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F003.jpg

    a. view 1 b. view 2 c. view 3

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F004.jpg

    d. view 4 e. view 5

    图2 ε‑CL‑20和γ‑CL‑20的拉曼光谱的局部放大图

    Fig.2 Partially enlarged views of the Raman spectra of ε‑CL‑20 and γ‑CL‑20

  • 3.2 ε‑CL‑20/γ‑CL‑20混合样品的定量分析

    3.2

    3γ‑CL‑20含量为2%~9%、10%~90%的17个ε‑CL‑20/γ‑CL‑20混合样品的拉曼光谱图。对γ‑CL‑20在232 cm-1处的特征峰和ε‑CL‑20在528 cm-1处的特征峰面积积分,求得的A232A528A232/A528以及它们的算术平均值、标准偏差(S)和相对误差(Z)列于表1A232A528A232/A528对γ‑CL‑20含量的拟合曲线见图4

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F011.jpg

    a. γ‑CL‑20 content of 2%-9%

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F012.jpg

    b. γ‑CL‑20 content of 10%-90%

    图3 ε‑CL‑20/γ‑CL‑20混合样品的拉曼光谱

    Fig.3 Ramanspectra of ε‑CL‑20/γ‑CL‑20 mixed samples

    表1 γ‑CL‑20含量为2%~9%的γ‑CL‑20/ε‑CL‑20混合样品的A232A528以及A232/A528

    Table 1 Values of A232A528 and A232/A528 of γ‑CL‑20/ε‑CL‑20 mixed samples with γ‑CL‑20 content of 2%-9%

    parallel

    experiment

    2%3%4%5%
    A232A528A232/A528A232A528A232/A528A232A528A232/A528A232A528A232/A528
    175.986606.90.011526.662082.80.012825.561692.70.015136.061785.10.0202
    284.337207.60.011758.9545000.013139.812551.90.015665.433115.20.0210
    363.455615.00.011340.143087.70.013039.692577.30.015440.421952.70.0207
    Average value74.596476.60.011541.923223.50.013035.022274.00.015447.3022840.0206
    S8.581665.790.000213.24991.50.00016.689411.10.000212.94591.50.0003
    Z/%1.9-14.92-13.30-1.74.2-40.60.4-39.60.2-1.34.67-27.012-25.60-1.914.5-38.314.5-21.80.5-1.9

    parallel

    experiment

    6%7%8%9%
    A232A528A232/A528A232A528A232/A528A232A528A232/A528A232A528A232/A528
    163.752090.20.030555.591726.40.0322115.82382.70.0486239.73846.70.0623
    292.113000.30.030783.212560.30.0325171.93559.40.0483143.92325.00.0619
    358.911894.20.031177.832439.80.0319102.52105.50.048799.891555.90.0642
    Average value71.592328.20.030872.212242.20.0322130.12682.60.0485161.22579.90.0628
    S14.64481.90.000311.963680.000330.07630.30.000258.34951.90.0001
    Z/%11.0-28.710.2-28.80.3-1.07.8-238.8-230-0.911-3211.2-32.70.2-0.410.7-42.59.8-490.8-2.2
    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F005.jpg

    a. A232

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F006.jpg

    b. A528

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F007.jpg

    c. A232/A528

    图4 A232A528A232/A528γ‑CL‑20含量(2%~9%)的拟合曲线

    Fig.4 Fitting curves of A232A528 and A232/A528 vs. γ‑CL‑20 content of 2%-9%

    由表1可知,三组平行实验的A232A528相差较大。随着γ‑CL‑20含量增加,混合样品的A232A528的规律性不强。在去掉2%和3%两组数据后,混合样品的A232γ‑CL‑20含量的拟合相关度变好,R2值从0.5591提高到0.9666(图4a)。从图4b中可以看出,以A528γ‑CL‑20含量作图,规律性也不好,相关度只有0.3618。与单个峰的面积相比,混合样品的A232/A528的重复性以及规律性则好得多(图4c),在各个配比下,三组平行实验的A232/A528相对误差不超过2.2%,A232/A528的拟合结果优于A232A528

    采用同样的方法对γ‑CL‑20含量为10%~90%的混合样品进行分析,结果见图5。由图5a和图5b可知,尽管与低浓度组相比,高浓度组的峰面积A232A528数据对γ‑CL‑20含量拟合的相关度有所提高,但均低于0.9,说明数据的规律性不够好;且从数据点的误差限可看出,当固定组分配比进行多次测量时,峰面积的重复性不好,导致误差较大。因此,文献中报道的用ε‑CL‑20特征峰面积来定量的方法是不可行的。

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F008.jpg

    a. A232

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F009.jpg

    b. A528

    html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F010.jpg

    c. A232/A528

    图5 A232A528A232/A528γ‑CL‑20含量(10%~90%)的拟合曲线

    Fig.5 Fitting curves of peak area vs. γ‑CL‑20 content of 10%-90%

    而从图5c则可以看出,采用A232/A528γ‑CL‑20含量拟合的相关度高达0.9816,说明不同配比得到的数据的规律性非常好;图中几乎观察不到每个点的误差限,这是因为误差太小的缘故。实际上,在各个配比下,混合样品的A232/A528的相对误差不超过2.9%。由此可知,采用两种组分的特征峰面积之比来定量分析ε‑CL‑20的晶型纯度是可行的,不但简单快速,而且更加可靠。在同样条件下测定杂质含量未知的ε‑CL‑20样品的A232/A528值,对照相应范围内的标准曲线,即可得知γ晶型杂质的含量。

  • 4 结论

    4

    采用拉曼光谱,通过对εγ晶型CL‑20分析,提取了两种晶型CL‑20的定量表征的特征参数,以峰面积及峰面积之比A232/A528分别对γ‑CL‑20含量建立了标准曲线,得出以下结论:

    (1)ε‑CL‑20最强的峰出现在143 cm-1,其次是321 cm-1,接下来是823,347 cm-1和1279 cm-1;而γ‑CL‑20最强的峰出现在310 cm-1,其次是235 cm-1。不同批次ε‑CL‑20的拉曼光谱完全重合。

    (2)γ‑CL‑20与ε‑CL‑20互不重叠的特征峰分别为γ‑CL‑20的310,232 cm-1ε‑CL‑20的143,321,528,823,1279 cm-1,其中,γ‑CL‑20在232 cm-1ε‑CL‑20在528 cm-1作为对γ‑CL‑20/ε‑CL‑20混合样品定量分析的特征峰。

    (3)A232/A528的数据重复性和规律性明显优于A232A528,特别是在γ‑CL‑20含量比较低的情况下。且无论浓度高低,A232/A528的三组平行实验的相对误差均不超过2.9%。在γ‑CL‑20含量为2%~9%和10%~90%时,峰面积之比与γ‑CL‑20含量的拟合方程分别为y=0.0062e0.2512xy=0.0822e0.0596x,相关系数分别为0.9806和0.9816。

    (4)采用两种组分的特征峰面积之比来定量分析ε‑CL‑20的晶型纯度是可行的,不仅简单快速,而且更加可靠。

  • 参考文献

    • 1

      曾贵玉,聂福德,刘晓东,等. 六硝基六氮杂异伍兹烷(CL‑20)的研究进展[J]. 含能材料,2000, 8(3): 130-134.

      ZENG Gui‑yu,NIE Fu‑de,LIU Xiao‑dong, et al. Advances in research on hexanitrohexane (CL‑20)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(3): 130-134.

    • 2

      欧育湘,孟征,刘进全. 高能量密度化合物CL‑20应用研究进展[J]. 化工进展, 2007, 26(12): 1690-1694.

      OU Yu‑xiang,MENG Zheng,LIU Jin‑quan. Progress in application of high energy density compound CL‑20[J].Chemical Industry and Engineering Progress,2007, 26(12): 1690-1694.

    • 3

      徐金江,孙杰,周克恩,等. CL‑20重结晶过程中的晶型转变研究进展[J]. 含能材料, 2012, 20(2): 102-105.

      XU Jin‑jiang, SUN Jie, ZHOU Ke‑en, et al. Progress in crystallization transformation in recrystallization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012,20(2): 102-105.

    • 4

      Nair U R,Sivabalan R,Gore G M,et al. Hexanitrohexaazaisowurtzitane(CL‑20) and CL‑20‑based formulations(review)[J]. Combustion Explosion & Shock Waves,2005,41(2): 121-132.

    • 5

      钱华,叶志文,吕春绪. N2O5/HNO3硝解TAIW合成CL‑20[J]. 应用化学,2008,25(3): 378-380.

      QIAN Hua,YE Zhi‑wen, LÜ Chun‑xu. Nitration of N2O5/HNO3 TAIW synthesis CL‑20[J]. Chinese Journal of Applied Chemistry, 2008, 25(3): 378-380.

    • 6

      高凤,刘文芳,孟子晖,等. 激光拉曼光谱技术在火炸药分析检测中的应用研究进展[J]. 含能材料, 2018(2): 185-196.

      GAO Feng,LIU Wen‑fang,MENG Zi‑hui,et al. Progress in application of laser raman spectroscopy in analysis and detection of explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018(2): 185-196.

    • 7

      Pan B,Dang L,Wang Z,et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Crystengcomm,2018,20(11):1553-1563.

    • 8

      Kholod Y,Okovytyy S,Kuramshina G,et al. An analysis of stable forms of CL‑20: A DFT study of conformational transitions, infrared and Raman spectra[J]. Journal of Molecular Structure,2007,843(1-3): 14-25.

    • 9

      Patel R B,Stepanov V,Qiu H. Dependence of raman spectral intensity on crystal size in organic nano energetics[J]. Applied Spectroscopy, 2016, 70(8): 1339-1345.

    • 10

      An C,Li H,Ye B,et al. Nano‑CL‑20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials,2017, 2017(5): 1-7.

    • 11

      Liu K, Zhang G, Luan J, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL‑20/DNT[J]. Journal of Molecular Structure,2016, 11(10):91-96.

    • 12

      Goede P,Latypov N VÖstmark H. Fourier transform raman spectroscopy of the four crystallographic phases of α,β,γ and ɛ 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(4): 205-208.

    • 13

      孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的γε晶型混合物[J]. 火炸药学报, 2010, 33(5): 12-18.

      MENG Zheng, WEI Hong‑yuan. Fourier transform raman spectroscopy was used to quantitatively analyze the gamma and epsilon crystal mixtures of HNIW[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 12-18.

    • 14

      孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的βε晶型混合物[J]. 含能材料, 2011, 19(3): 339-342.

      MENG Zheng, WEI Hong‑yuan. Quantitative analysis of beta and epsilon crystal mixtures of HNIW by Fourier transform raman spectroscopy[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(3): 339-342.

    • 15

      Ghosh M,Venkatesan V,Sikder N,et al. Quantitative analysis of α‑CL‑20 polymorphic impurity in ε‑CL‑20 using dispersive raman spectroscopy[J]. Central European Journal of Energetic Materials, 2013, 10(3): 419-438.

    • 16

      HeX,LiuY,Huang S L,et al. Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL‑20[J].RSC Advances,2018, 8: 23348-23352.

    • 17

      Dumas S,Gauvrit J Y,Lanteri P. Determining the polymorphic purity of ε‑CL‑20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 230-234.

高凤

机 构:北京理工大学化工与环境学院, 北京 102488

Affiliation:School of Chemical & Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

邮 箱:1344781237@qq.com

作者简介:高凤(1992-),女,硕士研究生,主要从事火炸药分析检测方面的研究。e‑mail:1344781237@qq.com

孟子晖

机 构:北京理工大学化工与环境学院, 北京 102488

Affiliation:School of Chemical & Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

刘文芳

机 构:北京理工大学化工与环境学院, 北京 102488

Affiliation:School of Chemical & Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

角 色:通讯作者

Role: Corresponding author

邮 箱:liuwenfang@bit.edu.cn

作者简介:刘文芳(1977-),女,北京理工大学副教授,主要从事高分子材料表面改性及火炸药分析方法研究。e‑mail:liuwenfang@bit.edu.cn

李志学

机 构:辽宁庆阳特种化工有限公司, 辽宁 辽阳 111102

Affiliation:Liaoning Qingyang Special Chemical Co., Ltd., Wensheng District, Liaoyang 111002, China

王明辉

机 构:辽宁庆阳特种化工有限公司, 辽宁 辽阳 111102

Affiliation:Liaoning Qingyang Special Chemical Co., Ltd., Wensheng District, Liaoyang 111002, China

html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F001.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F003.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F004.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F011.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F012.jpg

parallel

experiment

2%3%4%5%
A232A528A232/A528A232A528A232/A528A232A528A232/A528A232A528A232/A528
175.986606.90.011526.662082.80.012825.561692.70.015136.061785.10.0202
284.337207.60.011758.9545000.013139.812551.90.015665.433115.20.0210
363.455615.00.011340.143087.70.013039.692577.30.015440.421952.70.0207
Average value74.596476.60.011541.923223.50.013035.022274.00.015447.3022840.0206
S8.581665.790.000213.24991.50.00016.689411.10.000212.94591.50.0003
Z/%1.9-14.92-13.30-1.74.2-40.60.4-39.60.2-1.34.67-27.012-25.60-1.914.5-38.314.5-21.80.5-1.9

parallel

experiment

6%7%8%9%
A232A528A232/A528A232A528A232/A528A232A528A232/A528A232A528A232/A528
163.752090.20.030555.591726.40.0322115.82382.70.0486239.73846.70.0623
292.113000.30.030783.212560.30.0325171.93559.40.0483143.92325.00.0619
358.911894.20.031177.832439.80.0319102.52105.50.048799.891555.90.0642
Average value71.592328.20.030872.212242.20.0322130.12682.60.0485161.22579.90.0628
S14.64481.90.000311.963680.000330.07630.30.000258.34951.90.0001
Z/%11.0-28.710.2-28.80.3-1.07.8-238.8-230-0.911-3211.2-32.70.2-0.410.7-42.59.8-490.8-2.2
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F005.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F006.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F007.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F008.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F009.jpg
html/hncl/CJEM2018150/alternativeImage/fc21aec8-1e90-4b88-bcd8-1cfaee401833-F010.jpg

图1 ε‑CL‑20和γ‑CL‑20的拉曼光谱

Fig.1 Raman spectra of ε‑CL‑20 and γ‑CL‑20

图2 ε‑CL‑20和γ‑CL‑20的拉曼光谱的局部放大图

Fig.2 Partially enlarged views of the Raman spectra of ε‑CL‑20 and γ‑CL‑20

图2 ε‑CL‑20和γ‑CL‑20的拉曼光谱的局部放大图

Fig.2 Partially enlarged views of the Raman spectra of ε‑CL‑20 and γ‑CL‑20

图3 ε‑CL‑20/γ‑CL‑20混合样品的拉曼光谱 -- a. γ‑CL‑20 content of 2%-9%

Fig.3 Ramanspectra of ε‑CL‑20/γ‑CL‑20 mixed samples -- a. γ‑CL‑20 content of 2%-9%

图3 ε‑CL‑20/γ‑CL‑20混合样品的拉曼光谱 -- b. γ‑CL‑20 content of 10%-90%

Fig.3 Ramanspectra of ε‑CL‑20/γ‑CL‑20 mixed samples -- b. γ‑CL‑20 content of 10%-90%

表1 γ‑CL‑20含量为2%~9%的γ‑CL‑20/ε‑CL‑20混合样品的A232A528以及A232/A528

Table 1 Values of A232A528 and A232/A528 of γ‑CL‑20/ε‑CL‑20 mixed samples with γ‑CL‑20 content of 2%-9%

图4 A232A528A232/A528γ‑CL‑20含量(2%~9%)的拟合曲线 -- a. A232

Fig.4 Fitting curves of A232A528 and A232/A528 vs. γ‑CL‑20 content of 2%-9% -- a. A232

图4 A232A528A232/A528γ‑CL‑20含量(2%~9%)的拟合曲线 -- b. A528

Fig.4 Fitting curves of A232A528 and A232/A528 vs. γ‑CL‑20 content of 2%-9% -- b. A528

图4 A232A528A232/A528γ‑CL‑20含量(2%~9%)的拟合曲线 -- c. A232/A528

Fig.4 Fitting curves of A232A528 and A232/A528 vs. γ‑CL‑20 content of 2%-9% -- c. A232/A528

图5 A232A528A232/A528γ‑CL‑20含量(10%~90%)的拟合曲线 -- a. A232

Fig.5 Fitting curves of peak area vs. γ‑CL‑20 content of 10%-90% -- a. A232

图5 A232A528A232/A528γ‑CL‑20含量(10%~90%)的拟合曲线 -- b. A528

Fig.5 Fitting curves of peak area vs. γ‑CL‑20 content of 10%-90% -- b. A528

图5 A232A528A232/A528γ‑CL‑20含量(10%~90%)的拟合曲线 -- c. A232/A528

Fig.5 Fitting curves of peak area vs. γ‑CL‑20 content of 10%-90% -- c. A232/A528

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      曾贵玉,聂福德,刘晓东,等. 六硝基六氮杂异伍兹烷(CL‑20)的研究进展[J]. 含能材料,2000, 8(3): 130-134.

      ZENG Gui‑yu,NIE Fu‑de,LIU Xiao‑dong, et al. Advances in research on hexanitrohexane (CL‑20)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(3): 130-134.

    • 2

      欧育湘,孟征,刘进全. 高能量密度化合物CL‑20应用研究进展[J]. 化工进展, 2007, 26(12): 1690-1694.

      OU Yu‑xiang,MENG Zheng,LIU Jin‑quan. Progress in application of high energy density compound CL‑20[J].Chemical Industry and Engineering Progress,2007, 26(12): 1690-1694.

    • 3

      徐金江,孙杰,周克恩,等. CL‑20重结晶过程中的晶型转变研究进展[J]. 含能材料, 2012, 20(2): 102-105.

      XU Jin‑jiang, SUN Jie, ZHOU Ke‑en, et al. Progress in crystallization transformation in recrystallization of CL‑20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012,20(2): 102-105.

    • 4

      Nair U R,Sivabalan R,Gore G M,et al. Hexanitrohexaazaisowurtzitane(CL‑20) and CL‑20‑based formulations(review)[J]. Combustion Explosion & Shock Waves,2005,41(2): 121-132.

    • 5

      钱华,叶志文,吕春绪. N2O5/HNO3硝解TAIW合成CL‑20[J]. 应用化学,2008,25(3): 378-380.

      QIAN Hua,YE Zhi‑wen, LÜ Chun‑xu. Nitration of N2O5/HNO3 TAIW synthesis CL‑20[J]. Chinese Journal of Applied Chemistry, 2008, 25(3): 378-380.

    • 6

      高凤,刘文芳,孟子晖,等. 激光拉曼光谱技术在火炸药分析检测中的应用研究进展[J]. 含能材料, 2018(2): 185-196.

      GAO Feng,LIU Wen‑fang,MENG Zi‑hui,et al. Progress in application of laser raman spectroscopy in analysis and detection of explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018(2): 185-196.

    • 7

      Pan B,Dang L,Wang Z,et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Crystengcomm,2018,20(11):1553-1563.

    • 8

      Kholod Y,Okovytyy S,Kuramshina G,et al. An analysis of stable forms of CL‑20: A DFT study of conformational transitions, infrared and Raman spectra[J]. Journal of Molecular Structure,2007,843(1-3): 14-25.

    • 9

      Patel R B,Stepanov V,Qiu H. Dependence of raman spectral intensity on crystal size in organic nano energetics[J]. Applied Spectroscopy, 2016, 70(8): 1339-1345.

    • 10

      An C,Li H,Ye B,et al. Nano‑CL‑20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials,2017, 2017(5): 1-7.

    • 11

      Liu K, Zhang G, Luan J, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL‑20/DNT[J]. Journal of Molecular Structure,2016, 11(10):91-96.

    • 12

      Goede P,Latypov N VÖstmark H. Fourier transform raman spectroscopy of the four crystallographic phases of α,β,γ and ɛ 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL‑20)[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(4): 205-208.

    • 13

      孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的γε晶型混合物[J]. 火炸药学报, 2010, 33(5): 12-18.

      MENG Zheng, WEI Hong‑yuan. Fourier transform raman spectroscopy was used to quantitatively analyze the gamma and epsilon crystal mixtures of HNIW[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 12-18.

    • 14

      孟征,卫宏远.用傅里叶变换拉曼光谱定量分析HNIW的βε晶型混合物[J]. 含能材料, 2011, 19(3): 339-342.

      MENG Zheng, WEI Hong‑yuan. Quantitative analysis of beta and epsilon crystal mixtures of HNIW by Fourier transform raman spectroscopy[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(3): 339-342.

    • 15

      Ghosh M,Venkatesan V,Sikder N,et al. Quantitative analysis of α‑CL‑20 polymorphic impurity in ε‑CL‑20 using dispersive raman spectroscopy[J]. Central European Journal of Energetic Materials, 2013, 10(3): 419-438.

    • 16

      HeX,LiuY,Huang S L,et al. Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL‑20[J].RSC Advances,2018, 8: 23348-23352.

    • 17

      Dumas S,Gauvrit J Y,Lanteri P. Determining the polymorphic purity of ε‑CL‑20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 230-234.