-
1 引 言
平面波透镜作为一种重要的爆轰元件,广泛应用于爆轰理论研究、炸药的冲击起爆、材料的高压、动力压缩及高压物理等学科领域
中[1] 。以压制成型的3‑硝基甲苯(TNT)为低速层的平面波透镜因其波形精度高而且稳定,于20世纪90年代开始用于实际,但是其存在机械强度差、渗油、膨胀、密度稳定性较差等问题,严重影响产品生产效率、机加和储运。2,4‑二硝基苯甲醚(DNAN)感度和毒性较低,已被世界各国替代TNT作为液相载体用于铸装炸药中[2,3] ,美国皮卡汀尼兵工厂、美国陆军研究所、澳大利亚国防科技局、西安近代研究所、中国工程物理研究院化工材料研究所、北京理工大学等单位正积极开展DNAN相关研究,研究的重点仍然集中在DNAN基熔铸炸药相关的配方[4] 、工艺[5,6] 、爆轰性能[7] 、爆轰产物[8] 等,而对于DNAN单质目前关注更多的是DNAN本身及其降解产物的毒性等[9,10,11,12,13] ,比如Hawari[12] 、Stanley[13] 等均证实DNAN及其降解产物的毒性较TNT、黑索今(RDX)小;Provatas[14] 研究了三种DNAN基熔铸炸药(ARX‑4027、ARX‑4028、ARX‑4029)的老化特性,表明在长时间的温度循环刺激下,环境适应性比TNT基熔铸炸药好;刘瑞鹏等[15] 发现RDX为主体的高聚物粘结炸药(PBX)炸药在高低温循环冲击过程中容易产生微裂纹,DNAN 基熔铸炸药则没有变化,证明DNAN具有较好的环境适应性。常态下DNAN有α[16]和β[17]两种晶型,其中α‑DNAN在常温常压下热力学稳定性更好,应用更广泛。同时,α‑DNAN的爆速、爆压比TNT的低,这有利于增大平面波透镜高速层与低速层的爆速差,从而减小整个平面波透镜的尺寸[18] ,因此,α‑DNAN有可能代替TNT作为温压型平面波透镜低速层。内部密度均匀是炸药运用于平面波透镜低速层的关键条件之一,在温度和压力作用下α‑DNAN晶体若发生相变,将导致成型部件内部密度不均匀,进而影响产生的平面波的精度。而目前仅Takahash
i[19] 等人指出α‑DNAN在173~303 K范围内没有发生相转移。因此,本研究采用理论结合实验的方法分析在压制成型的温度和压力作用下α‑DNAN晶体结构和力学性能的变化,旨在为评判其能否用做平面波透镜低速层提供支撑。 -
2 理论计算与实验
-
2.1 实验部分
-
2.1.1 实验材料
α‑DNAN样品由甘肃银光化学工业集团有限公司科研所提供,批号K‑2016‑10‑1,纯度99.8%。
-
2.1.2 结构变化测试
变温X射线衍射(VTXRD)采用中低温样品台 TTK450精确控制实验温度;使用万特探测器,管电压40 kV,管电流40 mA;扫描范围298~358 K,步长为0.02 ℃,步速为0.2 s/step。拉曼光谱在Renishaw公司的inVia型拉曼光谱系统下完成,562.995 nm激发,输出功率30 mW。
-
2.1.3 成型性能试验
(1) 成型药柱准备:在材料试验机上压制Φ20 mm×20 mm的α‑DNAN药柱,并让药柱自然冷却;
(2) 密度测试:采用排水法在20 ℃的蒸馏水中测试药柱的密度,测量前将药柱置于20 ℃的恒温间24 h,待达到充分的热平衡后开始测试。
(3) 压缩力学性能测试:采用力学性能试验机进行抗压强度测试,抗压强度按GJB772A-1997方法416.1进行试验。
-
2.2 计算方法
-
2.2.1 密度泛函理论(DFT)计算
晶体结构、弹性常数及电子特性计算采用周期性平面波密度泛函理论结合模守恒赝势方法,采用广义梯度近似(GGA)中的PBE泛
函[20] 处理相关势能。为考虑分子间的范德华力相互作用,应用PBE+Grimme[21] 校正方法。DNAN晶体在布里渊区的倒异空间格点采用Monkhorst‑Pack方案[22] 选择k网格点为3×1×2。基组的截断能设置为830 eV。在保持晶体的对称性下采用BFGS 算法[23] 优化晶胞参数和原子坐标。在对晶体进行结构优化计算的过程中,保证能量收敛标准为5.0×10‑6 eV∙atom-1 ,原子间相互作用力低于0.01 eV·Å-1 ,最大应力低于0.02 GPa,原子最大位移不超过5.0×10-4 Å。在弹性常数的计算过程中,每个应变模式设置为4步,最大应变振幅设为0.003,能量收敛标准设为5.0×10-6 eV∙atom-1 ,原子间相互作用力低于0.01 eV∙Å-1 ,原子最大位移不超过5.0×10-4 Å。计算采用Materials Studio 2017的CASTEP模块[24] 。 -
2.2.2 分子动力学(MD)模拟
基于优化后的DNAN晶体原胞构建了4×2×2超晶胞,将其置于具有周期性边界条件的周期箱里,并经分子力学优化,对优化后的模型进行分子动力学模拟,在NPT系综和COMPASSII力
场[25] 下进行,力场适用性已被前期的研究工作证实。采用Anderson[26] 方法控制温度,采用Parrinello[27] 方法控制压力。初始速度采用Maxwell分布取样,velocity Verlet算法被用于求解。范德华力和库仑力分别采用atom‑based和Ewald方法计算。每次模拟持续1000 ps以确保温度和能量达到平衡,时间步长为1 fs。计算采用Materials Studio 2017的Forcite模块[24] 。 -
3 结果与讨论
-
3.1 α‑DNAN晶体相结构变化
实际温压成型过程中,在温度和压力作用下,若晶体的相结构发生变化,会导致成型药柱密度不均匀。为此,首先考察了升温条件下,α‑DNAN晶体(熔点为367~368 K)VTXRD谱图的变化情况,如图1所示。由图1可以看出,由298 K升高到358 K,α‑DNAN晶体的VTXRD谱图没有发生明显变化,仅是衍射峰位置的偏移,说明α‑DNAN晶体没有发生相转变。
图1 α‑DNAN晶体的变温X射线衍射(VTXRD)谱图(熔点为367~368 K)
Fig.1 Variable temperature XRD(VTXRD) patterns of α‑DNAN crystal(melting point is 367-368 K)
根据经验,实际炸药压制成型的工艺要求压力≤0.2 GPa,但由于实验条件的限制,课题组仅获得了相对α‑DNAN晶体在较高压力范围(0.57~1.42 GPa)内的拉曼谱图,如图2所示。由图2可见,在0.57,0.85,0.93,1.04,1.42 GPa压力下,α‑DNAN晶体的拉曼谱图没有发生明显变化,仅是拉曼峰位置的偏移。基于VTXRD、高压拉曼测试的结果,以及成型实际工艺条件,课题组进一步采用DFT方法结合MD方法研究了压力(0.0001~1.5 GPa)和温度(298~333 K)耦合作用下α‑DNAN晶体结构的变化。
-
3.2 热‑力作用下α‑DNAN晶体结构
-
3.2.1 不同压力下α‑DNAN晶体结构
在常温常压下,α‑DNAN属于对称群为P
21 /n的单斜晶系,其晶体结构如图3所示[16] 。首先在单斜晶系对称性限制下,采用DFT方法优化了α‑DNAN晶体的所有原子和晶格常数。模拟得到的晶胞体积和晶格参数与文献的实验值[16] 列于表1。由表1可见,优化得到的平衡晶胞体积与基准实验值之间的差值仅为0.42%,且晶格参数值均与实验值大小相近,表明本研究的计算结果与实验值吻合得很好。这说明本计算方法对α‑DNAN晶体结构模拟的可靠性较好。a. xy‑plane b. xz‑plane
图3 沿XY平面和XZ平面观察的α‑DNAN的晶体结构
Fig.3 Crystal structure of α‑DNAN viewed along xy‑plane and xz‑plane
注:(白色球体代表H原子,红色代表O原子,蓝色代表N原子,灰色代表C原子)
NOTE: (The white spheres represent the H atoms, the red represent the O atoms, the blue are the N atoms, and the grey are the C atoms.)
为了进一步证实计算的可靠性,采用上文所述的DFT方法和MD方法,对报道较多的β‑DNAN晶体在常压(0.0001 GPa)和相变压力(0.16 GPa)下的晶格常数进行了计算,结果见表2。由表2可见,DFT方法和MD方法的计算结果均与文
献【17】 报道的实验结果较接近,进一步说明所采用的计算方法是可信的。表1 计算得到的α‑DNAN的晶格参数、晶胞体积(V)及与实验值对比
Table 1 Comparison of the values of lattice parameters, and cell volume (V) of α‑DNAN obtained by calculation and the experimental ones
method a / Å b / Å c / Å β / (°) V / Å3 PBE(this work) 8.667 12.663 15.513 82.303 1687.17 Exp .[16] 8.772 12.645 15.429 81.89 1694.3 表2 不同压力条件下β‑DNAN晶体结构的变化
Table 2 Changes of crystal structure of β‑DNAN under different pressure conditions
p / GPa method a / Å b / Å c / Å β / (°) 0.0001 Exp .[17] 3.970 13.726 15.437 91.06 DFT 3.979 13.759 15.445 90.89 MD 17.387 32.266 31.627 92.761 0.16 Exp. [17] 3.882 13.717 15.402 94.32 DFT 3.703 14.331 15.467 95.15 MD 18.388 27.218 31.973 94.91 NOTE: MD calculation was based on the optimized 4×2×2 supercell of β‑DNAN.
基于上述计算的DFT方法,课题组在常压下优化的结构基础上,计算了不同压力条件下α‑DNAN结构的演化。图4列出了不同压力(0.0001~1.50 GPa)条件下α‑DNAN晶体结构的变化。可以发现,压力作用下,α‑DNAN晶体主要沿a轴和c轴进行压缩,其变化率分别为8.70%和3.52%。这是由于b轴方向的空间位阻较大(如图3所示),a轴和c轴方向的空间位阻小,而a轴方向因存在大量的π‑π作用而最容易压缩。此外,整个压力范围内,晶体的β角随压力的增加而增大,总体积V随压力的增大而减小。结合高压拉曼(0.57~1.42 GPa)的结果,说明在0.0001~1.5 GPa范围内,α‑DNAN没有发生晶型转变。
图4 α‑DNAN晶胞参数的相对值(R)随压力(p)的变化(DFT 计算)
Fig.4 Change of relative values of α‑DNAN cell parameter (R) with pressure (p) by DFT calculating
表3 0.2 GPa时不同温度下α‑DNAN的结构及密度(MD模拟)
Table 3 Structure and density of α‑DNAN at 0.2GPa under different temperature by MD modeling
T / K a / Å b / Å c / Å ρc / g·c m-3 298 37.159 22.663 33.735 1.270 308 35.224 22.768 33.648 1.283 313 36.970 22.916 32.943 1.268 323 37.328 22.484 33.394 1.277 333 35.383 23.177 33.706 1.279 NOTE: 1) ρc is the density by MD calculating.
-
3.2.2 热‑力作用下α‑DNAN晶体密度
采用MD方法计算了不同压力和温度条件下α‑DNAN晶体密度变化。由α‑DNAN的密度(ρc)随压力(p)的变化趋势(图5)可以看出,α‑DNAN晶体结构的变化是压力和温度协同作用的结果,相同温度条件下,α‑DNAN的晶体密度随压力的增大而升高。而在相同压力条件下,较低压力(0.0001,0.06 GPa)时,随着温度的升高,晶体密度呈膨胀趋势,温度效应起主导作用;在较高压力时(0.12,0.2 GPa),压力和温度协同效应明显,随着压力的进一步升高,压力的压缩效应起主导作用,压力在0.2 GPa时,各个温度下的晶体密度值较接近。
由于实际成型工艺的压力≤0.2 GPa,故计算了0.2 GPa条件下α‑DNAN晶体的晶胞结构及密度,结果见表3。由表3可见,0.2 GPa条件下,随着温度的升高其晶体密度呈上升趋势,但是在313 K时,其密度反而下降。此外,随着温度的升高,α‑DNAN晶体的a轴和c轴受到较大的扰动,而b轴方向由于其较强的分子间相互作用下所受扰动较小,这一结果与上述不同压力下晶体结构变化情况相符。
-
3.3 力学性质
-
3.3.1 弹性常数
α‑DNAN属于分子晶体类含能材料,力学性能是其能否应用于实际的关键因素。弹性是表征材料对外界应力的机械响应的基本特性。定量研究含能材料的弹性特性对理解分子间相互作用进而分析材料硬度有至关重要的作用。弹性常数矩阵的三个对角元素 C11,C22和C33与三个晶轴方向的分子间相互作用强度相关。采用DFT方法计算了α‑DNAN晶体的弹性常数,结果见表4。由表4可见,在0.2 GPa,298~333 K时,α‑DNAN晶体三个晶轴方向的弹性常数大小顺序为C33>C22>C11。这归因于c轴方向分子间相互作用最强,其次是b轴,a轴方向的分子间相互作用最弱。此外,在313 K时,对应的C11,C22 和C33几乎均较其他温度的低,说明该温度下各个方向上的分子间相互作用强度较其他几种温度下的弱,即313K时晶体内总的分子间相互作用强度最弱。Li
u[28] 等人报道了由M6=C66‑p>0及M9=(C33‑p)(C55‑p)‑C552>0作为单斜晶系的力学稳定性的评判标准。由表4可知,在0.2 GPa,298~333 K时,α‑DNAN的M6和M9均大于0,说明其能稳定存在。这也说明了在0.2 GPa条件下,α‑DNAN晶体没有发生相结构的变化,实际压制成型过程中有利于成型药柱密度的均匀性。表4 α‑DNAN晶体在压力为0.2 GPa不同温度下的弹性常数(DFT计算)
Table 4 Elastic constants Cij of α‑DNAN crystal at 2 GPa under different temperature predicted from DFT calculationsGPa
T /K C11 C22 C33 C12 C55 C66 C35 M6 M9 298 8.65 10.804 13.75 6.591 3.731 4.477 -1.226 4.277 2.334 308 7.564 12.03 15.607 6.551 3.465 5.327 -0.808 5.127 4.066 313 7.597 9.283 9.658 6.151 2.167 4.833 -2.187 4.633 0.025 323 9.694 11.773 12.097 5.966 3.585 5.174 -0.483 4.974 3.281 333 8.479 9.402 16.301 6.865 3.558 4.590 -0.967 4.39 3.859 NOTE: 1)C11, C22 and C33 are three diagonal elements of the elastic constant matrix. 2) M6=C66-p,M9=(C33-p)(C55-p)-C552‑
-
3.3.2 力学性能
-
0.2 GPa时不同温度下,α‑DNAN药柱的压缩强度及压缩模量列于表5。
采用MD方法计算的0.2 GPa时不同温度下α‑DNAN的杨氏模量(拉伸模量,E)、体积模量(K)也列于表5。由表5可以看出,体现抗压性能的压缩模量(试验值)和体积模量(计算值)随温度的变化趋势一致;不同压力下α‑DNAN的成型密度与MD计算值(表3)变化趋势一致,这说明试验和理论计算结果具有可靠性。同时,计算和实验结果都表明,0.2 GPa压力时,313 K时的密度最低(表3和表5),其对应的压缩强度和压缩模量均相对较低(表5),这一结果可由弹性力学常数数据分析结果(如表4),即313 K时α‑DNAN晶体内总的分子间相互作用强度最弱,这也体现了α‑DNAN晶体结构的变化是温度和压力协同作用的结果。此外,由表5可知,我们所考察的α‑DNAN的压缩强度和压缩模量数值仅略低于常用的高性能炸药(例如,常压293 K条件下,运用于平面波透镜高速层的高聚物粘结炸药聚奥‑9159(JO 9159)的压缩强度和压缩模量分别为30.89 MPa和8.23 GPa
)[29] ,说明若将其运用于平面波透镜低速层,其力学性能在理论上能满足要求。表5 0.2 GPa时不同温度下 α‑DNAN的密度及力学性能
Table 5 Densities and mechanical properties of α‑DNAN under different temperature at 0.2 GPa
T / K ρr / g·c m-3 compressing intension / MPa compressing modulus / GPa Young modulus / GPa bulk modulus / GPa 298 1.506 34.09 7.87 3.10 2.45 308 1.509 39.48 8.15 10.80 2.73 313 1.505 36.52 7.40 8.75 0.83 323 1.513 41.13 7.93 10.33 2.55 333 1.520 42.71 6.97 11.22 0.78 NOTE: 1)ρr is the density of α‑DNAN with size Φ20 mm×20 mm by compacting in reality. 2) Compressing intension and compressing modulus were from the compressing experiment. 3) Young modulus and bulk modulus were obtained by MD modeling.
-
4 结 论
(1)在温度(298~358 K)和压力(0.0001~1.5 GPa)条件下,α‑DNAN没有发生晶相转变行为,这有利于其压制成型时内部密度的均一性。计算结果表明,在相同压力条件下,较低压力(0.0001,0.6 GPa)时,随着温度的升高,晶体密度呈膨胀趋势,温度效应起主导作用;在较高压力时(0.12,0.2 GPa),压力和温度协同效应明显,随着压力的进一步升高,压力的压缩效应起主导作用。计算和试验结果均表明,0.2 GPa条件下,313 K时α‑DNAN晶体的密度较308 K和323 K时低,力学性能也相应较差,该现象可归因于该温度时α‑DNAN晶体内总的分子间相互作用强度最弱,说明其晶体结构的变化是压力和温度协同作用的结果。
(2)0.2 GPa时,不同温度条件下,α‑DNAN的压缩力学性能数值仅略低于常用的高性能炸药,若将其运用于平面波透镜低速层,其力学性能理论上满足要求。此外,α‑DNAN的爆速、爆压比TNT的低,这有利于增大平面波透镜高速层与低速层的爆速差,从而减小整个平面波透镜的尺寸,因此,我们认为α‑DNAN有运用于平面波透镜低速层的潜力。
-
参考文献
-
1
黄交虎, 尹锐, 黄辉. 小尺寸炸药平面波透镜界面曲线的设计[J]. 含能材料, 2011, 19(4): 425-427.
HUANG Jiao‑hu, YING Rui, HUANG Hui, et al. Design of interfacial curve of small‑sized explosive planar wave lens[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(4): 425-427.
-
2
王红星, 王浩, 高杰, 等. 2, 4‑二硝基苯甲醚应用基础性能研究[J]. 科学技术与工程, 2014, 14(25): 72-75.
WANG Hong‑xing, WANG Hao, GAO Jie, et al. Application basic research on 2,4‑dinitroanisole[J]. Science Technology and Engineering, 2014, 14(25): 72-75.
-
3
Ravi P, Badgujar D M, Gore G M, et al. Review on melt cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403.
-
4
Nicolich S, Niles J, Doll D, et al. Development of a novel high fragmentation/high blast melt pour explosive[C]//2003 IMEMTS (Insensitive Munitions & Energetic Materials Technology Symposium), Orlando, Florida, USA, 2003.
-
5
Shen J Y, Ou C J, Zhou Z Y. Pretreatment of 2,4‑dinitroanisole (DNAN) producing wastewater using a combined zero‑valent iron (ZVI) reduction and fenton oxidation process[J]. Journal of Hazardous Materials, 2013, 260: 993-1000.
-
6
Wang D L, Xie Z Y, Sun W X, et al. Solidification simulation of melt‑cast explosive under pressurization[C]//Proceedings of the 6th International Conference on Physical and Nmnerical Sinmlation of Materials Processing. Guilin: Gulin University of Electronic Technology, 2012: 71.
-
7
Coulouarn C, Aumasson R, Lamy‑Bracq P, et al. Energetic binders: DNAN vs TNT. Evaluation of melt‑cast explosive compositions based on TNT and DNAN[C]//45th International Annual Conference of ICT, Karlsruhe, Germany, 2014.
-
8
Walsh M R, Walsh M E, Ramsey C A. Energetic residues from the detonation of IMX‑104 insensitive munitions[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2): 243-250.
-
9
Kennedy A J, Poda A R, Melby N L, et al. Aquatic toxicity of photo‑degraded insensitive munition 101(IMX‑101) constituents[J]. Environmental Toxicology and Chemistry, 2017, 36(8): 2050-2057
-
10
Kennedy A J, Lounds C D, Melby N L, et al. Development of environmental health criteria for insensitive munitions: aquatic ecotoxicological exposures using 2,4‑dinitroanisole[R]. U.S.
Army Engineer Research and Development Center, Vicksburg, MS, 2013.
-
11
Dodard S G, Sarrazin M, Hawari J, et al. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4‑dinitroanisole (DNAN)[J]. Journal of Hazardous Materials, 2013, 262: 143-150.
-
12
Hawari J, Monteil‑Rivera F, Perreault N N, et al. Environmental fate of 2, 4‑dinitroanisole (DNAN) and its reduced products[J]. Chemosphere, 2015, 119: 16-23.
-
13
Stanley J K, Lotufo G R, Biedenbach J M, et al. Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles[J]. Environmental Toxicology and Chemistry, 2015, 34(4): 873-879.
-
14
Provatas A, Wall C. Ageing of Australian DNAN based melt‑cast insensitive explosives[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 555-561.
-
15
刘瑞鹏, 王红星, 王浩, 等. 高低温环境对不同炸药结构影响研究[J]. 科学技术与工程, 2014, 14(25): 274-277.
LIU Rui‑peng, WANG Hong‑xing, WANG Hao, et al. Effect of environment temperature on different explosive structures[J]. Science Technology and Engineering,2014,14(25):274-277.
-
16
Nyburg S C, Faerman C H, Prasad L, et al. Structures of 2, 4‑dinitroanisole and 2, 6‑dinitroanisole[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1987, 43(4): 686-689.
-
17
Xue G, Gong C R, Chen H Y. Crystal structure of 2, 4‑dinitroanisole, C7H6N2O5[J]. Zeitschrift für Kristallographie‑New Crystal Structures, 2007, 222(3): 321-322.
-
18
Chavez D E, Harry H H, Olinger B W. An environmentally friendly baratol replacement for plane wave generator applications[J]. Journal of Energetic Materials,2014,32(2): 129-134.
-
19
Takahashi H, Tamura R. Low temperature phase transition induced biaxial negative thermal expansion of 2, 4‑dinitroanisole[J]. Cryst Eng Comm, 2015, 17(46): 8888-8896.
-
20
Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671.
-
21
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473.
-
22
Monkhorst H J, Pack J D. Special points for brillouin‑zone integrations[J]. Physical Review B, 1976, 13(12): 5188.
-
23
Pfrommer B G, Côté M, Louie S G, et al. Relaxation of crystals with the quasi‑Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240.
-
24
Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie‑Crystalline Materials, 2005, 220(5/6): 567-570.
-
25
Gautheron F, Eyrich W, Konstantinov V, et al. Compass‑II proposal[R].
Tech. Rep. CERN‑SPSC‑2010‑014. SPSC‑P‑340, CERN, Geneva, 2010.
-
26
Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393.
-
27
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.
-
28
Liu Q J, Zhang N C, Sun Y Y, et al. Density‑functional theory study of the pressure‑induced phase transition in hydronitrogen compound N4H4[J]. Physics Letters A, 2014, 378(18-19): 1333-1335.
-
29
董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 62‑63.
DONG Hai‑shan, ZHOU Fen‑fen. High energetic explosives and properties[M]. Beijing: Science Press, 1989: 62-63.
-
1
摘要
采用理论结合实验的方法研究了不同温度和压力条件下α‑2,4‑二硝基苯甲醚(α‑DNAN)晶体结构变化,探讨其应用于平面波透镜低速层的潜力。综合实验(变温X射线衍射、高压拉曼光谱)和理论计算(密度泛函理论、分子动力学)结果表明,在所考察的温度(298~358 K)和压力(0.0001~1.5 GPa)范围内α‑DNAN晶体均能稳定存在,没有发生相转移现象。热‑力作用下,α‑DNAN晶体的a轴方向因存在大量的π‑π作用而最容易膨胀或压缩,b轴方向由于其较强空间位阻而最难压缩。较低压力(0.0001,0.6 GPa)时,α‑DNAN晶体密度随温度升高而降低;0.2 GPa条件下,313 K时α‑DNAN晶体的密度较308 K和323 K时低,力学性能也相应较差,说明其晶体结构的变化是压力和温度协同作用的结果。
Abstract
The change in crystal structure of α‑2,4‑dinitroanisole (α‑DNAN) under the different conditions of temperatures and pressures was studied by the method of combining theory and experiment, and its application potential in the low velocity layer of plane wave lens was discussed. The results of comprehensive experiments (variable temperature X‑ray diffraction, high pressure Raman spectra) and theoretical calculations (density functional theory, molecular dynamics) show that the α‑DNAN crystals can exist stably in the range of the studied temperature(298-358 K) and pressure(0.0001-1.5 GPa), and the phase transition phenomenon does not occur. Under temperature‑pressure action. The a‑axis direction of the α‑DNAN crystal is most easily expanded or compressed due to the large amount of π‑π action. The b‑axis direction is most difficult to compress due to its strong steric hindrance. At lower pressures (0.0001, 0.6 GPa), the density of α‑DNAN crystals decreases with temperature increasing. Under the condition of 0.2 GPa, the density of α‑DNAN crystals at 313 K is lower than that of at 308 K and 323 K, and the mechanical properties are also correspondingly worse, which indicates that the change of crystal structure is the result of the synergistic effect of pressure and temperature.
Graphic Abstract
图文摘要
2,4‑Dinitroanisole (α‑DNAN) might be a potential candidate for the slow component of plane wave lens. The phase transition, densities and mechanical properties of α‑DNAN under variable temperature and pressure were studied by theoretical and experimental methods.