CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.
LIYu‑chuan, PANGSi‑ping. Progress of all‑nitrogen ultrahigh‑energetic macterials[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 1-8.
参考文献 2
GeigerU, HaasY, GrinsteinD. The photochemistry of an arylpentazole in liquid solutions: The anionic 4‑oxidophenylpentazole (OPP)[J]. J Photochem Photobiol A, 2014, 277(5): 53-61.
参考文献 3
徐冰韬, 王鹏程, 王乾, 等.甲醇溶液中五氮唑负离子的制备与表征[J]. 含能材料, 2017, 25(3): 215-220.
XUBing‑tao, WANGPeng‑cheng, WANGQian, et al. Preparation and characterization of pentazolate in methanol[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(3): 215-220.
参考文献 4
ZarkoV E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion, Explosion, and Shock Waves, 2010, 46(2): 121-31.
参考文献 5
廉鹏, 来蔚鹏, 王伯周, 等.N5+、N5-、N8、N10结构与稳定性的密度泛函理论[J]. 火炸药学报, 2007, 30(5): 28-31.
LIANPeng, LAIWei‑peng, WANGBo‑zhou, et al. The structures and stabilities of N5+, N5-, N8, N10 by density functional theory(DFT) method[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 28-31.
参考文献 6
卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28‑34.
LUYan‑hua, HEJin‑xuan, LEIQing, et al. The research progress of pernitrogen‑compound[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.
参考文献 7
SteeleB A, OleynikI I. Pentazole and ammonium pentazolate: crystalline hydro‑nitrogens at high pressure[J]. Journal of Physical Chemistry A, 2017, 121(8):1808-1813.
参考文献 8
FanS, WilsonK J, J BartlettRodney. On the stability of N5+N5- [J]. J Phys Chem A, 2002, 106(18): 4639-4644.
参考文献 9
HuisgenR, UgiI. Zur lösung eines klassischen problems der organischen Stickstoff‑Chemie[J]. Angew Chem Int Ed, 1956. 68: 705-706.
参考文献 10
毕福强, 许诚, 樊学忠, 等.对叔丁基苯基五唑的合成及分解动力学[J]. 火炸药学报, 2012, 35(2): 15-18.
BIFu‑qiang, XUCheng, FANXue‑zhong, et al. Synthesis and decomposition kinetics of p‑tert‑butylphenylpentazole[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 15-18.
参考文献 11
张佳利, 庞思平, 李玉川, 等.1‑(对二甲胺基苯基)五唑的合成研究[J]. 含能材料, 2006, 14(5): 355-357.
ZHANGJia‑li, PANGSi‑ping, LIYu‑chuan, et al. Synthesis of 1‑(p‑dimethylaminophenyl) pentazole[J]. Chinese Journal of Energetic Materials, 2006, 14(5): 355-357.
参考文献 12
EkS, RehnS, WahlströmL Y, et al. Synthesis and Characterization of Eight Arylpentazoles[J]. Journal of Heterocyclic Chemistry, 2013, 50(2): 261-267.
参考文献 13
YangY Z, LiY C, ZhangR B, et al. Thermal stability of p‑dimethylaminophenylpentazole[J]. Rsc Advances, 2014, 4(4): 57629-57634.
参考文献 14
CarlqvistPeter, Henrik ÖstmarkA, BrinckTore. The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2010, 108(36): 7463-7467.
参考文献 15
ChristeK O, WilsonW W, SheehyJ A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angew Chem Int Ed, 1999, 38(13/14): 2004-2009.
参考文献 16
于剑昆.超级高能量密度材料N5+盐的合成与表征概况[J]. 化学推进剂与高分子材料, 2010, 8(5): 1-3.
YUJian‑kun. Synthesis and characterization of ultra high energy density material of N5+ salts[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5): 1-3.
参考文献 17
HaigesR, SchneiderS, SchroerT, et al.High energy‑density materials: Synthesis and characterization of N5+[P(N3)6]-, N5+[B(N3)4], N5+[HF2]-·HF, N5+[BF4]-, N5+[PF6]-, and N5+[SO3F]-[J]. Angew Chem Int Ed, 2004, 43: 4919-4924.
参考文献 18
VijA, PavlovichJ G, WilsonW W, et al. Experimental detection of the pentaazacyclopentadienide(pentazolate) anion, cyclo‑N5[J]. Angew Chem Int Ed, 2002, 114(16): 3177-3180.
参考文献 19
ZhangC, SunC G, HuB C, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H2O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374-376.
参考文献 20
XuY G, WangQ, LuM, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.
参考文献 21
ZhangC, YangC, HuB C, et al. A Symmetric Co(N5)2(H2O)4⋅4H2O high‑nitrogen compound formed by cobalt(Ⅱ) cation trapping of a cyclo‑N5‑anion[J]. Angew Chem Int Ed, 2017, 56(16): 4512-4514.
参考文献 22
XuY G, WangP C, LuM, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017 (DOI:10.1039/c7dt03231e)
参考文献 23
ZhangQ, ZhangW, WangK, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angew Chem Int Ed, 2018 (DOI:10.1002/ange.201710602)
参考文献 24
LeinM, FrunzkeJ, TimoshkinA, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.
参考文献 25
章冲, 胡炳成, 刘成, 等.对羟基苯基五唑及其衍生物的合成与稳定性[J].含能材料, 2016, 24(8): 769-773.
ZHANGChong, HUBing‑cheng, LIUCheng, et al. Synthesis and stability of p‑hydroxylphenylpentazole and its derivatives[J]. Chinese Journal of Energetic Materials, 2016, 24(8): 769-773.
参考文献 26
Guisado‑BarriosG, ZhangY, HarkinsA M, et al. Low temperature reaction of [Fe(TPA)(CH3CN)2]2+,with excess 3‑chloroperoxybenzoic acid in semi‑frozen acetonitrile; EPR detection of an acylperoxo iron(Ⅲ) adduct[J]. Inorganic Chemistry Communications, 2012, 20(20): 81-85.
参考文献 27
RichardN B, JohnM H, JohnC S, et al. A ceric ammonium nitrate N‑dearylation of N‑p‑anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5-, in solution[J]. Journal of Organic Chemistry, 2008, 73(4):1354-1364.
参考文献 28
RichardN B, JohnC S, LukeA B. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl) pentazole[J]. Chem Comm, 2003, 34(31):1016-1017.

    摘要

    以2,6‑二甲基‑4‑五唑基苯酚钠盐为原料,间氯过氧苯甲酸(m‑CPBA)与甘氨酸亚铁(Fe(Gly)2)为氧化切断试剂和稳定催化剂,在低温条件下成功合成了五唑钠;探索了芳基五唑氧化切断C—N键的反应条件:芳基五唑、Fe(Gly)2m‑CPBA摩尔比为1∶3∶4.5,反应时间24 h,反应温度-45 ℃,粗品收率为28%;探索了不同氧化切割试剂对五唑钠产率的影响,并分析了五唑钠产率低的原因;利用X‑射线单晶衍射仪(X‑ray single crystal diffractometer,XRD)、核磁(15N NMR1H NMR)、元素分析、红外、质谱等对五唑钠和芳基五唑切断副产物(2,6‑二甲基对苯醌)的结构进行了表征;并在此基础上推测分析了m‑CPBA与Fe(Gly)2氧化切断芳基五唑C—N键的机理历程。

    Abstract

    odium pentazole salt was prepared by treating 2,6‑dimethyl‑4‑(2H‑pentazol‑2‑yl)phenolate with m‑chloroperbenzoic acid (m‑CPBA) and ferrous bisglycinate [Fe(Gly)2] under low‑temperature conditions, thereinto, m‑CPBA and Fe(Gly)2 were oxidizer and catalyst, respectively. The synthetic conditions were optimized, as following: the molar ratio between arylpentazole, Fe(Gly)2 and m‑CPBA was 1∶3∶4.5, the reaction time was 24 h and the reaction temperature was -45 ℃ (crude yield of 28%). The effect of different oxidizing cleavage reagents on the yield of sodium pentazole salt was studied and the reason for the low yield of sodium pentazole salt was analyzed. In addition, sodium pentazole salt and the reaction by‑product (2,6‑dimethylcyclohexa‑2,5‑diene‑1,4‑dione) were characterized by X‑ray single crystal diffractometer(XRD), NMR(15NMR and 1H NMR), FT‑IR, mass spectrometry and elemental analysis. Based on these results, the mechanism of oxidizing cleavage of the C─N bond in arylpentazole by m‑CPBA and Fe(Gly)2 was speculated.

  • 1 引 言

    1

    全氮类含能材料分子具有高密度、高生成焓、分解产物无污染(仅有N2的释放)等优[1,2,3],有希望成为新一代超高能含能材料。其中N5-是最具有代表性的离子型全氮化合物之一,国内外科研人员在N5-合成方面进行了广泛的探[4],但一直未取得突破性进展。量子化学计算表[5,6,7,8]N5-因其环状共轭结构而具有芳香性,是全氮阴离子中相对稳定的结构,有望被合成并作为高能密度材料应用于发射药、推进剂和航空航天领域。

    1956年,Huisgen[9]首次成功合成了低温下稳定存在的芳基五唑化合物,之后多种稳定存在的芳基五唑被陆续合[10,11,12,13,14]。1998年,Christe[15,16,17]首次成功合成具有线状结构的N5+,这是自N3-后近百年来第一次得到全氮离子。2002年Vij[18]通过质谱首次检测到N5-离子信号峰。直到2017年,南京理工大[19]N5-合成方面取得了历史性突破,成功合成了五唑离子化合物(N5)6(H3O)3(NH4)4Cl,同时对其进行了全面的分析表征,解决了困扰含能材料领域长达半个多世纪的世界性难题。同年,陆[20]课题组在Nature上报道了5种五唑金属含能盐[Na(H2O)(N5)]·2H2O、[M(H2O)4(N5)2]·4H2O(M=Mn、Fe、Co[21])和[Mg(H2O)6(N5)2]·4H2O,除钴盐外,其它离子分解温度均高于100 ℃,具有良好的热稳定性,为与阳离子组装形成离子型全氮超高能材料奠定了一定的科学基础。同年8月陆明[22]报道了另一个新的五唑金属盐[Zn(H2O)4(N5)2]·4H2O。2018年张庆华[23]合成了由Na+N5-通过强金属配位键形成的纳米笼状金属框架Na20N60和Na24N60,但是芳基五唑的氧化切断产物及可能的机理至今未有报道。

    基于此,本研究以2,6‑二甲基‑4‑五唑基苯酚钠盐为原料,采用氧化切断C—N键的方法,合成制备了五唑钠,优化并确定了芳基五唑反应的较佳条件,并通过核磁等对其进行了表征分析;利用质谱等从不同角度分析了影响五唑钠产率的因素;在芳基五唑的切断副产物和多组平行实验的基础上,提出芳基五唑C—N键断裂的反应机理。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂2,6‑二甲基‑4‑氨基苯酚盐酸盐(自制),盐酸(36%,国药集团化学试剂有限公司),亚硝酸钠(分析纯,阿拉丁试剂有限公司),叠氮化钠,2,6‑二甲基‑4‑五唑基苯酚钠盐(自制),甲醇、乙腈、四氢呋喃、正己烷、乙酸乙酯、乙醇、石油醚(分析纯,上海泰坦科技股份有限公司),间氯过氧苯甲酸(85%,上海迈瑞尔化学技术有限公司),甘氨酸亚铁。

    仪器:EYELAPSL‑1810型磁力搅拌低温恒温水槽,日本东京理化器械株式会社;Finnigan TSQ Quantumultra AM型质谱仪,美国Thermal公司;Coolingway公司-86 ℃超低温冰箱,Bruker公司;Avance Ⅲ 500 MHz核磁共振仪,瑞士Bruker公司;TGA/SVTA 851°热重分析仪,瑞士梅特勒‑托利多;Vario EL Ⅲ型元素分析仪;傅立叶变换红外光谱仪,Nicolet is‑10,美国Thermal公司。

  • 2.2 合成路线

    2.2

    五唑钠的合成路线见Scheme 1。

    Scheme 1 Synthetic route of arylpentazole and pentazolate anion

  • 2.3 实验步骤

    2.3
  • 2.3.1 2,6‑二甲基‑4‑五唑基苯酚钠盐(1)的合成

    2.3.1

    在500 mL单口圆底烧瓶中加入2,6‑二甲基‑4‑氨基苯酚盐酸盐(15 g,0.0965 mol)、50 mL四氢呋喃和50 mL去离子水,室温搅拌至澄清;加入盐酸(7.565 mL,36%),放入-5 ℃的低温反应器中,调节转速至400 r·min-1;之后滴加NaNO2(6.26 g,0.0907 mol),12.75 mL水,反应40 min后,加入已冷却的甲醇和正己烷混合溶剂,降温至-40 ℃后,加入NaN3溶液(5.9 g,0.0908 mol),注意此期间调节转速为550 r·min-1,严格控制温度在-40 ℃,反应1.5~3.0 h,低温过滤,滤饼冷冻干燥得目标化合物1,产率65.3%。

  • 2.3.2 五唑钠的合成

    2.3.2

    在-45 ℃的冰箱中,2,6‑二甲基‑4‑五唑基苯酚钠盐(10 g,0.0498 mol)溶解于甲醇和乙腈的混合溶剂中(各100 mL),加入500 mL单口圆底烧瓶中,放在-45 ℃、400 r·min-1的低温反应槽中,搅拌10 min,加入Fe(Gly)2(32.04 g,0.1571 mol),加料结束后调节转速至600 r·min-1,反应40 min后,加入m‑CPBA(47.83 g,0.2772 mol),反应24 h,经过一系列后处理步骤得到目标产物2和副产物3。

  • 2.3.3 目标产物分离

    2.3.3

    将反应24 h的反应液低温过滤(最好在低温冰箱中),收集滤饼,分离过柱得副产物3;收集滤液,减压旋蒸去除溶剂(注意其中有大量的过氧化物,不可旋得过干),向旋干的固体中加入适量甲醇和水的混合溶剂(1∶1),室温搅拌2~4 h,过滤,收集滤液,减压旋蒸去除溶剂,硅胶制样,过柱,旋蒸去除溶剂,干燥得目标化合物2的粗品,粗品收率28%。

    化合物215N NMR (DMSO‑d6,500 MHz)δ:5.7;Anal.calcd for N5Na(%):N 75.14;MS (EI) m/z:70 [M-];IR (KBr,v/cm‑1):1377,1226。

    化合物31H NMR (DMSO‑d6,500 MHz)δ:3.34, 6.67;Anal.calcd for C2H8O2(%):C 70.49,H 5.93

  • 2. 4 五唑钠的单晶培养

    2. 4

    称取25 mg充分干燥的五唑钠样品,将其溶解在适量乙醇与乙酸乙酯的混合溶剂中,可适当升温使其完全溶解,得到无色澄清的溶液,趁热过滤,滤液冷却至室温,将滤液放置到干净的5 mL小烧杯中,室温(5~25 ℃)下缓慢自然挥发3~7天,得无色方型晶体,挑选合适晶体进行测试。

  • 3 结果与讨论

    3
  • 3.1 催化剂和氧化剂的选择

    3.1

    由于N5-结构类似于环戊二烯负离[24],极有可能与过渡金属离子络合,形成类似于二茂铁的结构。同时考虑到氧化剂的溶解性。因此,选择过渡金属盐作为催化剂,间氯过氧苯甲酸作为氧化剂,做了以下探究实验,结果如表1所示:

    表1 不同的切割试剂对产物的影响

    Table 1 Influence of the different cutting reagent on product

    entrycatalyst

    relative abundance

    of compound 2/%

    1FeCl20.06
    2CoCl2, MnCl2, NiCl2, CuCl20
    3FeSO4, Fe(NO3)2, FeBr2, FeCO30.04
    4Fe(Gly)298
    5NaGly, Mg(Gly)2, Ca(Gly)2, Zn(Gly)20
    表1
                    不同的切割试剂对产物的影响

    (1)由表1中序号1、2可知,除Fe2+外,其他过渡金属离子(Co2+,Mn2+,Ni2+,Cu2+)对芳基五唑反应不灵敏,不能对芳基五唑C—N键进行有效切断。

    (2)由表1中序号3、4可知,改变亚铁盐的阴离子,甘氨酸盐效果最为明显,五唑钠质谱信号峰最强,其他阴离子盐(FeSO4、Fe(NO3)2、FeBr2、FeCO3)对芳基五唑的切断并没有起到实质性作用。

    (3)考虑到甘氨酸盐对氧化切断C—N键效果较佳,选取了不同甘氨酸盐(甘氨酸钠,甘氨酸镁,甘氨酸钙、锌)与甘氨酸亚铁进行比较,发现其他甘氨酸盐的效果很不理想,在质谱仪中难以检测到五唑的信号峰。

    因此,由实验结果确定Fe(Gly)2作为稳定催化剂,m‑CPBA作为切断氧化剂。

  • 3.2 五唑钠合成条件优化

    3.2

    低温条件下,芳基五唑经过氧化切割生成五唑钠。由3.1实验结果,选取Fe(Gly)2作为催化剂,m‑CPBA作为氧化剂,分别考察了芳基五唑、Fe(Gly)2m‑CPBA 的摩尔比(a∶b∶c)、反应温度、反应时间对五唑钠收率的影响,结果见表2。由表2确定该反应的适宜合成条件为:化合物1与Fe(Gly)2m‑CPBA加料摩尔比为1∶3∶4.5,反应温度为-45 ℃,反应时间为24 h,粗品收率最高为28 %。

    表2 合成条件对产率的影响

    Table 2 Influence of synthetic conditions on yield

    molar ratio (a∶b∶c)yield / %temperature / ℃yield / %reaction time/hyield / %
    1∶2∶2.58.40-359.03128.40
    1∶2∶39.25-4017.391613.72
    1∶2∶415.71-4527.402020.5
    1∶3∶422.69-5026.532427.69
    1∶3∶4.528.00-5526.482827.71
    1∶3∶527.89-6026.313227.74
    表2
                    合成条件对产率的影响
  • 3.3 目标化合物产率低的原因分析

    3.3

    通过3.2实验可知,芳基五唑反应条件优化之后,五唑钠的产率依然很低。其原因主要来自两个方面:①即使在低温条件下,2,6‑二甲基‑4‑五唑基苯酚钠盐也极不稳[25]。对芳基五唑反应液取样,运用电喷雾离子化串联质谱(ESI‑MS‑MS)其进行二级裂解。结果如图1所示,主要峰属于:m/z=261为[化合物1+N5-];m/z=381为化合物1的二聚;m/z=155为m‑CPBA的还原产物间氯苯甲酸(m‑CBA);m/z=226为[化合物1+Cl-];m/z=70为五唑负离子。在低裂解能量轰击(10 eV),m/z=190为芳基五唑负离子,m/z=162为芳基五唑开环分解为芳基叠氮和一分子N2m/z=134为芳基叠氮失去一分子N2。这说明芳基五唑在反应过程中还在一直缓慢分解。至于分解量,由于反应体系成分复杂,目前没有确切的方法对芳基叠氮进行定量分析及其他表征。②在氧化切割时,虽然m‑CPBA与Fe(Gly)2体系会使芳基五唑C—N键的键能降低,但在断裂时,仍有外界环境因素使部分五唑环的N—N键断裂而开环,从而导致五唑钠产率降低。在目标化合物分离最后一步,过柱层析时会分离出部分NaN3,这也间接证明了五唑环在切割过程中会断开。

    图1
                            芳基五唑反应液的质谱图

    图1 芳基五唑反应液的质谱图

    Fig.1 Mass spectrum of arylpentazole reaction solution

  • 3.4 五唑钠晶体结构解析

    3.4

    五唑钠的分子结构和分子在晶胞中的堆积如图2所示,其晶胞参数与文献[25]结果在一定程度上具有相似性。测试结果表明,该晶体空间群为‑P62,每个五唑钠单元由1个五唑负离子,1个钠离子组成。晶体学参数为:a=18.388(5) Å,b=18.388(5) Å,c=18.305(6) Å, α=β=90°,γ=120°,V=5360(3),Z=24,μ=0.172 mm-1,F(000)=2078。由于钠离子的影响,五唑钠的5个N—N键长度有些许的区别,从1.289到1.476 Å不等。五元环内部夹角范围为103.56°到110.79°。五元环的二面角都是0°,表明五个氮是处于同一平面的,形成一个共轭体系。同时如图3所示,N5-氮谱图中只出现一处峰,这也说明了五氮唑环中5个氮原子具有相同的化学环境,形成共轭结构。

    图2
                            化合物2的单晶结构、晶胞堆积图

    图2 化合物2的单晶结构、晶胞堆积图

    Fig.2 Single crystal structure and packing program of compound 2

    图3
                            化合物2的核磁图谱

    图3 化合物2的核磁图谱

    Fig.3 NMR of compound 2

  • 3.5 五唑钠的热稳定性和红外图谱分析

    3.5

    在氮气流速为30 mL·min-1,升温速率5 ℃·min-1,温度范围50~500 ℃,样品量为0.2000 mg条件下得到五唑钠的TG‑DSC曲线,结果见图4。由TG‑DSC曲线可知,在50~110 ℃时,样品无明显质量损失和放热峰出现,说明样品中并无水分子。同时TG‑DSC曲线表明,五唑钠存在一个放热峰:139.14 ℃,当温度达到110.24 ℃时,样品开环分解失重,当温度为149.50 ℃时,样品失重37.5%,之后随着温度的升高,失重曲线趋于平缓。五唑钠红外光谱和水的标准光谱如图5所示,根据参考文献[25]中的类似化合物波谱归属及结构特征,1256 cm-1和1244 cm-1可归属为五唑钠中N—N键的伸缩振动吸收峰。与水的标准图谱相比,五唑钠图谱中未出现其特征吸收峰,这也直接说明了制备的五唑钠中没有水分子。

    图 4
                            五唑钠的TG‑DSC曲线

    图 4 五唑钠的TG‑DSC曲线

    Fig.4 TG‑DSC curves of sodium pentazole

    图 5
                            五唑钠的红外图谱

    图 5 五唑钠的红外图谱

    Fig.5 FTIR spectra of sodium pentazole

  • 3.6 m‑CPBA和Fe(Gly)2氧化切割机理推测分析

    3.6

    由于反应体系中加入过量的过氧化物,猜测可能是自由基参与的反应。因此,我们尝试加入Tempo、BHT、1,4‑环己二烯等常用的自由基捕捉剂进行反应,但是在反应体系中并未检测到自由基的存在。根据上述的实验结果和相关文[26,27,28],本研究对Fe(Gly)2m‑CPBA切割芳基五唑C—N键的机理进行了如Scheme 2所示的推测:首先在-45 ℃条件下,Fe(Gly)2m‑CPBA在CH3OH和CH3CN混合溶剂中发生反应,Fe(Gly)2中的Fe2+得到一个活性的配位[26],配位氧来自于m‑CPBA,生成中间体4。由3.3的质谱分析可知,m‑CPBA参与反应后失去一个氧原子,生成m‑CBA。之后中间体4中的活性氧进攻芳基五唑C—N键中带部分正电荷的碳原子,与碳正原子及其旁边的碳原子形成一个三元环,使得芳基五唑中的C—N键键能减弱,更加容易断裂,得到过渡态5。之后C—N键断裂,N5-离去,芳基五唑以2,6‑二甲基对苯醌的形式出现。而中间体4会失去配位氧,重新变成Fe(Gly)2,循环参与反应。在此机理中,甘氨酸离子和亚铁离子缺一不可,甘氨酸作为Fe2+的载体,同时又起到稳定五唑环的作用,与3.1的探索实验结果相符合。Fe(Gly)2在其中起到催化剂的作用,反应前后质量基本不变,并且可以回收重复利用。多次实验结果显示,Fe(Gly)2重复利用可在5次以上,五唑钠的收率浮动不超过5%。

    Scheme 2 Oxidation and cleavage proposed mechanism of Fe(Gly)2 and m‑CPBA

    此外,多次实验结果和单晶结构也表明:2,6‑二甲基‑4‑五唑基苯酚钠中C—N键被切断后,芳基五唑分为两部分,即五唑钠和2,6‑二甲基对苯醌,二者摩尔比接近0.9∶1。2,6‑二甲基对苯醌(3)的单晶结构图图6所示。由图6可见,2,6‑二甲基对苯醌是一个平面分子,其空间群为P121/c1。晶体学参数为a=10.5173(5) Å,b=3.8997(2) Å,c=17.0674(8) Å,α=γ=90°,β=92.487°,V=699.35(6),Z=4,μ=0.093 mm-1F(000)=288。以氘代二甲基亚砜(DMSO‑d6)为溶剂,对化合物3进行核磁(1H HNR)测试,结果如图7所示,谱图中出现两处单峰,化学位移值符合化合物2的结构。

    图6
                            化合物3的单晶结构、晶胞堆积图

    图6 化合物3的单晶结构、晶胞堆积图

    Fig.6 Single crystal structure and packing program of compound 3

    图7
                            化合物3的氢核磁图谱

    图7 化合物3的氢核磁图谱

    Fig.7 1H HNR spectra of compound 3

  • 4 结 论

    4

    (1) 以2,6‑二甲基‑4‑五唑基苯酚钠盐等为原料,甘氨酸亚铁、间氯过氧苯甲酸为催化剂和氧化剂,在低温条件下合成了五氮唑钠盐确定了Fe(Gly)2m‑CPBA作为芳基五唑的氧化切断试剂体系,对五唑钠的合成条件优化确定最优条件为:芳基五唑、Fe(Gly)2m‑CPBA摩尔比为1∶3∶4.5,反应时间为24 h,反应温度为-45 ℃,粗品收率为28%。芳基五唑的不稳定性是五唑钠产率低的主要原因。

    (2) 在实验、核磁及晶体结构的基础上,提出Fe(Gly)2m‑CPBA氧化切断芳基五唑C—N键的机理历程:在混合溶剂中Fe(Gly)2得到配位氧,进而进攻芳基五唑C—N键中显示部分正电荷的碳原子,形成三元环,减弱C—N键键能,使其比较容易断开,之后C—N键断裂,得到五唑负离子和氧化副产物2,6‑二甲基苯醌。

  • 参考文献

    • 1

      李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.

      LI Yu‑chuan, PANG Si‑ping. Progress of all‑nitrogen ultrahigh‑energetic macterials[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 1-8.

    • 2

      Geiger U, Haas Y, Grinstein D. The photochemistry of an arylpentazole in liquid solutions: The anionic 4‑oxidophenylpentazole (OPP)[J]. J Photochem Photobiol A, 2014, 277(5): 53-61.

    • 3

      徐冰韬, 王鹏程, 王乾, 等.甲醇溶液中五氮唑负离子的制备与表征[J]. 含能材料, 2017, 25(3): 215-220.

      XU Bing‑tao, WANG Peng‑cheng, WANG Qian, et al. Preparation and characterization of pentazolate in methanol[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(3): 215-220.

    • 4

      Zarko V E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion, Explosion, and Shock Waves, 2010, 46(2): 121-31.

    • 5

      廉鹏, 来蔚鹏, 王伯周, 等.N5+、N5-、N8、N10结构与稳定性的密度泛函理论[J]. 火炸药学报, 2007, 30(5): 28-31.

      LIAN Peng, LAI Wei‑peng, WANG Bo‑zhou, et al. The structures and stabilities of N5+, N5-, N8, N10 by density functional theory(DFT) method[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 28-31.

    • 6

      卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28‑34.

      LU Yan‑hua, HE Jin‑xuan, LEI Qing, et al. The research progress of pernitrogen‑compound[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.

    • 7

      Steele B A, Oleynik I I. Pentazole and ammonium pentazolate: crystalline hydro‑nitrogens at high pressure[J]. Journal of Physical Chemistry A, 2017, 121(8):1808-1813.

    • 8

      Fan S, Wilson K J, Rodney J Bartlett. On the stability of N5+N5- [J]. J Phys Chem A, 2002, 106(18): 4639-4644.

    • 9

      Huisgen R, Ugi I. Zur lösung eines klassischen problems der organischen Stickstoff‑Chemie[J]. Angew Chem Int Ed, 1956. 68: 705-706.

    • 10

      毕福强, 许诚, 樊学忠, 等.对叔丁基苯基五唑的合成及分解动力学[J]. 火炸药学报, 2012, 35(2): 15-18.

      BI Fu‑qiang, XU Cheng, FAN Xue‑zhong, et al. Synthesis and decomposition kinetics of p‑tert‑butylphenylpentazole[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 15-18.

    • 11

      张佳利, 庞思平, 李玉川, 等.1‑(对二甲胺基苯基)五唑的合成研究[J]. 含能材料, 2006, 14(5): 355-357.

      ZHANG Jia‑li, PANG Si‑ping, LI Yu‑chuan, et al. Synthesis of 1‑(p‑dimethylaminophenyl) pentazole[J]. Chinese Journal of Energetic Materials, 2006, 14(5): 355-357.

    • 12

      Ek S, Rehn S, Wahlström L Y, et al. Synthesis and Characterization of Eight Arylpentazoles[J]. Journal of Heterocyclic Chemistry, 2013, 50(2): 261-267.

    • 13

      Yang Y Z, Li Y C, Zhang R B, et al. Thermal stability of p‑dimethylaminophenylpentazole[J]. Rsc Advances, 2014, 4(4): 57629-57634.

    • 14

      Peter Carlqvist, Henrik Östmark A, Tore Brinck. The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2010, 108(36): 7463-7467.

    • 15

      Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angew Chem Int Ed, 1999, 38(13/14): 2004-2009.

    • 16

      于剑昆.超级高能量密度材料N5+盐的合成与表征概况[J]. 化学推进剂与高分子材料, 2010, 8(5): 1-3.

      YU Jian‑kun. Synthesis and characterization of ultra high energy density material of N5+ salts[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5): 1-3.

    • 17

      Haiges R, Schneider S, Schroer T, et al.High energy‑density materials: Synthesis and characterization of N5+[P(N3)6]-, N5+[B(N3)4], N5+[HF2]-·HF, N5+[BF4]-, N5+[PF6]-, and N5+[SO3F]-[J]. Angew Chem Int Ed, 2004, 43: 4919-4924.

    • 18

      Vij A, Pavlovich J G, Wilson W W, et al. Experimental detection of the pentaazacyclopentadienide(pentazolate) anion, cyclo‑N5[J]. Angew Chem Int Ed, 2002, 114(16): 3177-3180.

    • 19

      Zhang C, Sun C G, Hu B C, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H2O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374-376.

    • 20

      Xu Y G, Wang Q, Lu M, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.

    • 21

      Zhang C, Yang C, Hu B C, et al. A Symmetric Co(N5)2(H2O)4⋅4H2O high‑nitrogen compound formed by cobalt(Ⅱ) cation trapping of a cyclo‑N5‑anion[J]. Angew Chem Int Ed, 2017, 56(16): 4512-4514.

    • 22

      Xu Y G, Wang P C, Lu M, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017 (DOI:10.1039/c7dt03231e)

    • 23

      Zhang Q, Zhang W, Wang K, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angew Chem Int Ed, 2018 (DOI:10.1002/ange.201710602)

    • 24

      Lein M, Frunzke J, Timoshkin A, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.

    • 25

      章冲, 胡炳成, 刘成, 等.对羟基苯基五唑及其衍生物的合成与稳定性[J].含能材料, 2016, 24(8): 769-773.

      ZHANG Chong, HU Bing‑cheng, LIU Cheng, et al. Synthesis and stability of p‑hydroxylphenylpentazole and its derivatives[J]. Chinese Journal of Energetic Materials, 2016, 24(8): 769-773.

    • 26

      Guisado‑Barrios G, Zhang Y, Harkins A M, et al. Low temperature reaction of [Fe(TPA)(CH3CN)2]2+,with excess 3‑chloroperoxybenzoic acid in semi‑frozen acetonitrile; EPR detection of an acylperoxo iron(Ⅲ) adduct[J]. Inorganic Chemistry Communications, 2012, 20(20): 81-85.

    • 27

      Richard N B, John M H, John C S, et al. A ceric ammonium nitrate N‑dearylation of N‑p‑anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5-, in solution[J]. Journal of Organic Chemistry, 2008, 73(4):1354-1364.

    • 28

      Richard N B, John C S, Luke A B. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl) pentazole[J]. Chem Comm, 2003, 34(31):1016-1017.

邵艳丽

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

邮 箱:1632009113@qq.com

作者简介:邵艳丽(1993-),女,硕士研究生,主要从事含能材料方面的研究。e‑mail:1632009113@qq.com

王乾

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

王鹏程

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

张晓鹏

机 构:甘肃银光化学工业集团有限公司, 甘肃 白银 730999

Affiliation:The Gansu Yinguang Chemical Industry Group Co. LTD, Baiyin 730999, China

姜振明

机 构:甘肃银光化学工业集团有限公司, 甘肃 白银 730999

Affiliation:The Gansu Yinguang Chemical Industry Group Co. LTD, Baiyin 730999, China

陆明

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

角 色:通讯作者

Role: Corresponding author

邮 箱:luming@mail.njust.edu.cn

作者简介:陆明(1963-),男,教授,主要从事含能材料的设计与合成研究。e‑mail:luming@mail.njust.edu.cn

entrycatalyst

relative abundance

of compound 2/%

1FeCl20.06
2CoCl2, MnCl2, NiCl2, CuCl20
3FeSO4, Fe(NO3)2, FeBr2, FeCO30.04
4Fe(Gly)298
5NaGly, Mg(Gly)2, Ca(Gly)2, Zn(Gly)20
molar ratio (a∶b∶c)yield / %temperature / ℃yield / %reaction time/hyield / %
1∶2∶2.58.40-359.03128.40
1∶2∶39.25-4017.391613.72
1∶2∶415.71-4527.402020.5
1∶3∶422.69-5026.532427.69
1∶3∶4.528.00-5526.482827.71
1∶3∶527.89-6026.313227.74
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image002.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image003.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image004.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image005.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image006.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image008.png
html/hncl/CJEM2018117/media/6cfc3c3c-b802-4c08-813b-39ebefcae756-image009.png

表1 不同的切割试剂对产物的影响

Table 1 Influence of the different cutting reagent on product

表2 合成条件对产率的影响

Table 2 Influence of synthetic conditions on yield

图1 芳基五唑反应液的质谱图

Fig.1 Mass spectrum of arylpentazole reaction solution

图2 化合物2的单晶结构、晶胞堆积图

Fig.2 Single crystal structure and packing program of compound 2

图3 化合物2的核磁图谱

Fig.3 NMR of compound 2

图 4 五唑钠的TG‑DSC曲线

Fig.4 TG‑DSC curves of sodium pentazole

图 5 五唑钠的红外图谱

Fig.5 FTIR spectra of sodium pentazole

图6 化合物3的单晶结构、晶胞堆积图

Fig.6 Single crystal structure and packing program of compound 3

图7 化合物3的氢核磁图谱

Fig.7 1H HNR spectra of compound 3

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.

      LI Yu‑chuan, PANG Si‑ping. Progress of all‑nitrogen ultrahigh‑energetic macterials[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 1-8.

    • 2

      Geiger U, Haas Y, Grinstein D. The photochemistry of an arylpentazole in liquid solutions: The anionic 4‑oxidophenylpentazole (OPP)[J]. J Photochem Photobiol A, 2014, 277(5): 53-61.

    • 3

      徐冰韬, 王鹏程, 王乾, 等.甲醇溶液中五氮唑负离子的制备与表征[J]. 含能材料, 2017, 25(3): 215-220.

      XU Bing‑tao, WANG Peng‑cheng, WANG Qian, et al. Preparation and characterization of pentazolate in methanol[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(3): 215-220.

    • 4

      Zarko V E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion, Explosion, and Shock Waves, 2010, 46(2): 121-31.

    • 5

      廉鹏, 来蔚鹏, 王伯周, 等.N5+、N5-、N8、N10结构与稳定性的密度泛函理论[J]. 火炸药学报, 2007, 30(5): 28-31.

      LIAN Peng, LAI Wei‑peng, WANG Bo‑zhou, et al. The structures and stabilities of N5+, N5-, N8, N10 by density functional theory(DFT) method[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 28-31.

    • 6

      卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28‑34.

      LU Yan‑hua, HE Jin‑xuan, LEI Qing, et al. The research progress of pernitrogen‑compound[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.

    • 7

      Steele B A, Oleynik I I. Pentazole and ammonium pentazolate: crystalline hydro‑nitrogens at high pressure[J]. Journal of Physical Chemistry A, 2017, 121(8):1808-1813.

    • 8

      Fan S, Wilson K J, Rodney J Bartlett. On the stability of N5+N5- [J]. J Phys Chem A, 2002, 106(18): 4639-4644.

    • 9

      Huisgen R, Ugi I. Zur lösung eines klassischen problems der organischen Stickstoff‑Chemie[J]. Angew Chem Int Ed, 1956. 68: 705-706.

    • 10

      毕福强, 许诚, 樊学忠, 等.对叔丁基苯基五唑的合成及分解动力学[J]. 火炸药学报, 2012, 35(2): 15-18.

      BI Fu‑qiang, XU Cheng, FAN Xue‑zhong, et al. Synthesis and decomposition kinetics of p‑tert‑butylphenylpentazole[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 15-18.

    • 11

      张佳利, 庞思平, 李玉川, 等.1‑(对二甲胺基苯基)五唑的合成研究[J]. 含能材料, 2006, 14(5): 355-357.

      ZHANG Jia‑li, PANG Si‑ping, LI Yu‑chuan, et al. Synthesis of 1‑(p‑dimethylaminophenyl) pentazole[J]. Chinese Journal of Energetic Materials, 2006, 14(5): 355-357.

    • 12

      Ek S, Rehn S, Wahlström L Y, et al. Synthesis and Characterization of Eight Arylpentazoles[J]. Journal of Heterocyclic Chemistry, 2013, 50(2): 261-267.

    • 13

      Yang Y Z, Li Y C, Zhang R B, et al. Thermal stability of p‑dimethylaminophenylpentazole[J]. Rsc Advances, 2014, 4(4): 57629-57634.

    • 14

      Peter Carlqvist, Henrik Östmark A, Tore Brinck. The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2010, 108(36): 7463-7467.

    • 15

      Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angew Chem Int Ed, 1999, 38(13/14): 2004-2009.

    • 16

      于剑昆.超级高能量密度材料N5+盐的合成与表征概况[J]. 化学推进剂与高分子材料, 2010, 8(5): 1-3.

      YU Jian‑kun. Synthesis and characterization of ultra high energy density material of N5+ salts[J]. Chemical Propellants & Polymeric Materials, 2010, 8(5): 1-3.

    • 17

      Haiges R, Schneider S, Schroer T, et al.High energy‑density materials: Synthesis and characterization of N5+[P(N3)6]-, N5+[B(N3)4], N5+[HF2]-·HF, N5+[BF4]-, N5+[PF6]-, and N5+[SO3F]-[J]. Angew Chem Int Ed, 2004, 43: 4919-4924.

    • 18

      Vij A, Pavlovich J G, Wilson W W, et al. Experimental detection of the pentaazacyclopentadienide(pentazolate) anion, cyclo‑N5[J]. Angew Chem Int Ed, 2002, 114(16): 3177-3180.

    • 19

      Zhang C, Sun C G, Hu B C, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H2O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374-376.

    • 20

      Xu Y G, Wang Q, Lu M, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.

    • 21

      Zhang C, Yang C, Hu B C, et al. A Symmetric Co(N5)2(H2O)4⋅4H2O high‑nitrogen compound formed by cobalt(Ⅱ) cation trapping of a cyclo‑N5‑anion[J]. Angew Chem Int Ed, 2017, 56(16): 4512-4514.

    • 22

      Xu Y G, Wang P C, Lu M, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017 (DOI:10.1039/c7dt03231e)

    • 23

      Zhang Q, Zhang W, Wang K, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angew Chem Int Ed, 2018 (DOI:10.1002/ange.201710602)

    • 24

      Lein M, Frunzke J, Timoshkin A, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.

    • 25

      章冲, 胡炳成, 刘成, 等.对羟基苯基五唑及其衍生物的合成与稳定性[J].含能材料, 2016, 24(8): 769-773.

      ZHANG Chong, HU Bing‑cheng, LIU Cheng, et al. Synthesis and stability of p‑hydroxylphenylpentazole and its derivatives[J]. Chinese Journal of Energetic Materials, 2016, 24(8): 769-773.

    • 26

      Guisado‑Barrios G, Zhang Y, Harkins A M, et al. Low temperature reaction of [Fe(TPA)(CH3CN)2]2+,with excess 3‑chloroperoxybenzoic acid in semi‑frozen acetonitrile; EPR detection of an acylperoxo iron(Ⅲ) adduct[J]. Inorganic Chemistry Communications, 2012, 20(20): 81-85.

    • 27

      Richard N B, John M H, John C S, et al. A ceric ammonium nitrate N‑dearylation of N‑p‑anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5-, in solution[J]. Journal of Organic Chemistry, 2008, 73(4):1354-1364.

    • 28

      Richard N B, John C S, Luke A B. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl) pentazole[J]. Chem Comm, 2003, 34(31):1016-1017.