CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
引用本文 ↓

潘永飞,汪营磊,赵宝东,等. 硝基吡唑及其衍生物的合成、性能及应用研究进展[J]. 含能材料,2018,26(9):796-812.

PAN Yong‑fei,WANG Ying‑lei,ZHAO Bao‑dong,et al. Research Progress in Synthesis, Properties and Applications of Nitropyrazoles and Their Derivatives[J]. 􁀌Chinese Journal of Energetic Materials(Hanneng Cailiao)􁀌, DOI:10.11943/.

参考文献 1
汪营磊,姬月萍,陈斌,等.3,4‑二硝基吡唑合成与性能研究[J].含能材料,2011,19(4):377-379.
WANGYing‑lei,JIYue‑ping,CHENBin,et al. Improved synthesis of 3,4‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011,19(4):377-379.
参考文献 2
杨克明,曹端林,李永祥,等.1‑甲基‑3,5‑二硝基‑1,2,4‑三唑的合成及表征[J].含能材料,2011(6):501-504.
YANGKe‑ming,CAODuan‑lin,LIYong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,5‑dininitro‑ 1,2,4‑trazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011(6):501-504.
参考文献 3
柴春鹏,甘志勇,李娜,等.3‑硝基‑1,2,4‑三唑‑5‑酮银盐的合成和热分解性能[J].火炸药学报,2011,34(2):36-38.
CHAIChun‑peng,GANZhi‑yong,LINa,et al. Synthesis and thermal decomposition behavior of 3‑nitro‑1,2,4‑triazol‑5‑one silver salt[J].Chinese Journal of Explosives & Propellants,2011,34(2):36-38.
参考文献 4
高红旭,赵凤起,胡荣祖,等.六硝基六氮杂异戊兹烷的热分解反应动力学参数和热安全性评估[J].火炸药学报,2013,36(5):41-48.
GAOHong‑xu,ZHAOFeng‑qi,HURong‑zu,et al. Estimation of the kinetic parameters of thermal decomposition reaction and thermal safety on hexanitrohexaazaisowurtzitane[J].Chinese Journal of Explosives & Propellants,2013,36(5):41-48.
参考文献 5
阳世清,徐松林,雷永鹏.氮杂环含能化合物的研究进展[J].含能材料,2006,14(6):475-484.
YANGShi‑qing,XUSong‑lin,LEIYong‑peng. The research progress of nitrogen heterocyclic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(6):475-484.
参考文献 6
AgrawalJ P, HodgsonR.Organic Chemistry of Explosives[M].John Wiley: New York, 2007: 294-296.
参考文献 7
PagoriaP F,LeeJ S,MitchellA R,et al.A review of energetic materials synthesis[J].ThermochimActa, 2002,384:187.
参考文献 8
LarinaL, LopyrevL.Nitroazoles:Synthesis,Structure and Applications[M].New York: Springer,2009.
参考文献 9
杨雨璋.多氮含能复合物的制备及其稳定性的研究[D].北京:北京理工大学,2016.
YANGYu‑zhang.Study on the synthesis and stability of poly nitrogen energetic compounds[D].Beijing:Beijing Institute of Technology,2016.
参考文献 10
唐伟强,任慧,焦清介,等.3,4‑二硝基吡唑的性能表征及应用[J].含能材料,2017,25(1):44-48.
TANGWei‑qiang,RENHui,JIAOQing‑jie,et al. Property characterization of 3,4‑dinitropyrazole and its application[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2017,25(1):44-48.
参考文献 11
DheerajKumar,ChunlinHe,LaurenA. Mitchell,et al. Connecting energetic nitropyrazole and aminotetrazole moieties with N,N′‑ethylene bridges: A promising approach for fine tuning energetic properties[J].J Mater Chem A,2016,4(23):9220-9228.
参考文献 12
NagarjunaKommu,BalarajuM,VikasD Ghule,et al.Synthetic manifestation of nitro substituted tetrazole‑N‑(hetero)aryl derivatives and energetic studies[J].J.Mater. Chem. A,2017,5(16):7366-7371.
参考文献 13
YongxingTang, DheerajKumar, Jean'neM Shreeve. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J].J Am Chem Soc,2017,139 (39):13684-13687.
参考文献 14
DepanjanSarkar,AnirbanSom,ThalappilPradeep. Catalytic paper spray ionization mass spectrometry with metalnanotubes and the detection of 2, 4, 6‑trinitrotoluene[J].Anal Chem,2017,89 (21) :11378-11382.
参考文献 15
赵廷兴,李磊,董战,等.硝基唑类含能化合物的合成研究进展[J].有机化学,2013,34(2):304-315.
ZHAOTing‑xing,LILei,DONGZhan,et al. Research progress on the synthesis of energetic nitroazoles[J].Chinese Journal of Organic Chemistry,2013,34(2):304-315.
参考文献 16
GaoH,ShreeveJ M.Azole‑based energetic salts[J].Chemical Reviews,2011,111(11):7377-7436.
参考文献 17
李翠屏,孙天旭,陈新志.3‑硝基吡唑的合成[J]. 染料与染色,2004,41(3):168-169.
LICui‑ping,SUNTian‑xu,CHENXin‑zhi. Synthesis of 3‑nitropyrazole[J].Dyestuffsand Coloration,2004,41(3):168-169.
参考文献 18
AdrianHuang,KellieWo,SoYeun Christine Lee,et al. Regioselective synthesis,NMR,and crystallographic analysis of N1‑substituted pyrazoles[J].J Org Chem,2017,82(17):8864-8872.
参考文献 19
LahmG P,CordovaD,BarryJ D. New and selective ryanodine receptor activators for insect control[J]. Bioorganic & Medicinal Chemistry,2009,17(12):4127-4133.
参考文献 20
MowbrayC E,BurtC,CorbauR,et al. Pyrazole NNRTIs 4: selection of UK‑453,061(lersivirine)as adevelopment candidate[J].Bioorganic and Medicinal Chemistry Letters,2009,19 (20):5857-5860.
参考文献 21
EmmaCavero,SantiagoUriel,PilarRomero,et al. Tetrahedral zinc complexes with liquid crystalline and luminescent properties: interplay between nonconventional molecular shapes and supramolecular mesomorphic order[J].JAmChemSoc,2007,129(37),11608-11618.
参考文献 22
王凤.5‑氨基吡唑、1,2,4‑吡唑膦衍生物及其CuⅡ、FeⅡ配合物的合成与结构研究[D].太原:山西师范大学,2014.
WANGFeng.Synthesis and Structural Research of 5‑Amino Pyrazole, 1,2,4,‑Diazaphospholes Derivatives and CuⅡ, FeⅡ Metal Complese[D]:Taiyuan: Shanxi Normal University,2014.
参考文献 23
Janssen J W A M,KoenersH J. The preparation of 3(5)‑nitrepyrazoles by thermal rearran‑ gement of N‑nitropyrazoles[J].J Org Chem,1973,38(10):1777-1782.
参考文献 24
PriceD,MorrisJ. Synthesis of new energetic melt‑pour candidates[C]//Insensitive Munitions and Energetic Materials Technology Symposium,2009.
参考文献 25
VerbruggenR,VieheH G. Cycloaddition with 2‑chloro‑1‑nitroethelene[J].Chimia,1975,29(8):350-352.
参考文献 26
李洪丽,熊彬,姜俊,等.3‑硝基吡唑及其盐类的合成与表征[J].火炸药学报,2007,31 (2):102-108.
LIHong‑li,XIONGBin,JIANGJun,et al. Synethsi and characterization of 3‑nitropyrazole and its salts[J]. Chinese Journal of Explosives & Propellants,2007,31(2):102-108.
参考文献 27
田新,李金山,王军.3,4‑二硝基吡唑的合成[J].合成化学,2012,20(1):117-122.
TIANXin,LIJin‑shan,WANGJun. Synthesis of 3,4‑dinitropyrazoles[J].Chinese Journal of Synthetic Chemistry,2012,20(1):117-122.
参考文献 28
HüttelR,BücheleF.Uber N‑nitro‑pyrazole[J].Chemische Berichte,1955,88(10):1586-1590.
参考文献 29
KanishchevM I,KorneevaN V,ShevelevS A,et al.Nitropyrazoles(Review)[M].Plenum Publishing Corporation,1988:435-453.
参考文献 30
RaoE N,RaviP,TewariS P. Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles[J].Journal of Molecular Structure,2013(1043):121-131.
参考文献 31
RaviP.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles[J].Journal of Molecular Structure,2015,1079:433-447.
参考文献 32
SenomyxInc,KaranewskyDonald S,FotsingJoseph R,et al.Identification of human T2R receptors that respond to bitter compounds that elicit the bitter taste in compositions, and the use thereof in assays to identify compounds that inhibit (block) bitter taste in compositions and use thereof: US9247759[P],2016.
参考文献 33
李永祥,党鑫,曹端林,等.4‑硝基吡唑的一锅两步法合成及其晶体结构[J].含能材料,2018, 26(5):404 409.
LIYong‑xiang,DANGXin,CAODuan‑lin,et al. One‑pot two steps synthesis of 4‑nitropyrazole and its crystal structure[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2018,26(5):404-409.
参考文献 34
郭俊玲,曹端林,王建龙,等.硝基吡唑类化合物的合成研究进展[J].含能材料,2014,22(6): 872-879.
GUOJun‑ling,CAODuan‑lin,WANGJian‑long,et al.Review on synthesis of nitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2014,22(6):872-879.
参考文献 35
KatritzkyA R,ScrivenE F V,MajumderS,et al. Direct nitration of five membered heterocycles[J]. Arkivoc(ⅲ),2005,36(10):179-191.
参考文献 36
RaviP,GoreG M,TewariS P,et al. A simple and environmentally benign nitration of pyrazoles by impregn nitration of pyrazoles by impregnated bismuth nitrate[J].Journal of HeterocyclicChemistry,2013,50(6):1322-1327.
参考文献 37
DONGJ ,ZHONGB,YUANH,et al.Alk kinase inhibitor, and preparation method and use thereof:WO 201580685 A1[P],2017.
参考文献 38
郭恒杰,曹端林,李永祥.1‑甲基‑3,4,5‑三硝基吡唑合成工艺研究进展[J].云南化工,2018, 45(5):88-90.
GUOHeng‑jie,CAODuan‑lin,LIYong‑xiang. Prospect on studying 1‑methyl‑3,4,5‑trinitro‑pyrazole synthesis[J].Yunnan Chemical Technology,2018,45(5):88-90.
参考文献 39
CorteR,LUCCAI De Fang,et al. Macrocycles with Hetrocyclic P2' Groups as Factor Xia Inhibitors: WO2015116886 A1 [P],2015.
参考文献 40
IoannidisStephanos,TalbotAdam Charles,FollowsBruce,et al. Pyrrolo and Pyrazolo‑Pyrimidines as Ubiquitin‑specific Protease 7 Inhibitors: US2016185785A1[P],2016.
参考文献 41
SuJin Han,HyunTae Kim,JungMin Joo. Direct C‑H alkenylation of functionalized pyrazoles[J].J Org Chem,2016,81:689-698.
参考文献 42
BiffinME C, BrownDJ,PorterQN.A novel route from 4‑methoxy‑5‑nitropyrimi‑nitropyrimi‑dine to 3‑amino‑4‑nitropyrazole and pyrazolo[3,4‑b]pyra‑zine[J].Terahedron Lett,1967,21(8):2029-2031.
参考文献 43
BiffinM E C,BrownD J, Porter Q N. Pyrimidine reactions.PartⅩⅧ.The conversion of 4‑methoxy‑5‑nitropyri‑mideine into 3‑amino‑4‑nitropyrazole by hydrazine[J].J Chem Soc(C),1968, 17:2159-2162.
参考文献 44
ShevelevS A,VinogradovV M,DalingerI L,et al. Nitropyrazoles 8. 3(5)‑amino‑4‑nitropyra‑ zoles:convenient synthesis and study of nitration[J].Russian Chemical Bulletin,1993,42(11):1861-1864.
参考文献 45
LatypovNV,SilevichVA,IvanovPA,et al. Diazotization ofaminonitropyrazoles[J].Chemistry of Hetero‑cyclic Compounds,1976,12(12):1355-1359.
参考文献 46
VinogradovV M, CherkasovaT I, DalingerI L, et al. Nitropyrazoles 5. Synthesis of substituted 3‑nitropyra‑zoles from 3‑amino‑4‑cyanopyrazole[J].Russian Chemical Bulletin,1993, 42(9):1552-1554.
参考文献 47
汪营磊,姬月萍,葛忠学,等.一锅法合成3,4‑二硝基吡唑.含能材料与钝感弹药技术学术研讨会论文集[C]//三亚,2012:172-175.
WANGYing‑lei,JIYue‑ping,GEZhong‑xue,et al. Synthesis and Properties of 3,4‑Dinitropyrazole. Symposium Proceedings of Energetic Materials and Insensitive Munitions Technology[C]//Sanya, 2012:172-175.
参考文献 48
刘威,李永祥.3,4‑二硝基吡唑合成工艺研究展望[J].江西化工,2015(5):8-12.
LIUWei,LIYong‑xiang. Prospect on studying 3,4‑nitropyrazole synthesis[J].Jiangxi Chemical Industry, 2015(5):8-12.
参考文献 49
StefanE K.Derivatives of 3(5),4‑dinitropyrazole as potential energetic plasticisers[J].Chem Eng,2011,26(5):929-935.
参考文献 50
RaviP,KotiReddy C K,SaikiaA,et al. Nitrodeiodination of polyiodopyrazoles[J].Propellants, Explosives, Pyrotechnics,2012,37(2):167-171.
参考文献 51
田新.3,4‑二硝基吡唑合成及性能研究[D].北京:中国工程物理研究院,2012.
TIANXin.Improved synthesis of 3,4‑dinitropyrazole[D].Bei jing:China Academy of Engineer Physic,2012.
参考文献 52
田新,李金山.3,4‑二硝基吡唑热分解及非等温动力学[J].化学研究与应用,2013,25(2): 206-209.
TIANXin,LIJin‑shan. Thermal decomposition and non‑isothermal kinetics of 3,4‑dinitropyrazole[J].Chemical Research and Application,2013,25(2):206-209.
参考文献 53
杜闪.3,4‑二硝基吡唑的合成及其性能研究[D].太原:中北大学, 2012.
DUShan.Synthesis and properties of 3,4‑dinitropyrazole[D].Taiyuan:North University of China,2012.
参考文献 54
杜闪,李永祥,王建龙,等.3,4‑二硝基吡唑合成方法及性能研究综述[J].化学研究,2011, 22(5):106-110.
DUShan,LIYong‑xiang,WANGJian‑long,et al. Review for synthetic method and properties of 3,4‑dinitro‑ pyrazole[J].Chemical Research,2011,22(5):106-110.
参考文献 55
李永祥,曹端林,王建龙.三种新型低熔点炸药的合成及表征[J].兵工学报,2013,34(1):36-40.
LiYong‑xiang,CAODuan‑lin,WANGJian‑long. Synthesis and characterization studies on novel three explosives with low melting point[J].Journal of China Ordnance,2013,34(1):36-40.
参考文献 56
曹端林,李雅津,杜耀,等.熔铸炸药载体的研究评述[J].含能材料,2013,21(2):157‑165.
CAODuan‑lin,LIYa‑jin,DUYao,et al. Review on carriers for melt‑cast explosives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2):157-165.
参考文献 57
张巧玲,李雅津,焦清介,等.1‑甲基‑3,4‑二硝基吡唑合成与表征[J].含能材料,2015,23(3): 222-225.
ZHANGQiao‑ling,LIYa‑jin,JIAOQing‑jie,et al. Optim ization on synthesis process and characterization of 1‑methyl‑3,4‑dinitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3)3:222-225.
参考文献 58
朱翔.微通道反应器中3,4‑二硝基吡唑合成工艺研究[D].南京:南京理工大学,2017.
ZHUXiang.Study on the synthetical of 3,4‑bisnitropyrazole in microreactor[D].Nanjing:Nanjing University of Science & Technology,2017.
参考文献 59
汪营磊,张志忠,王伯周,等.3,5‑二硝基吡唑合成研究[J].含能材料,2007,15(6):574-576.
WANGYing‑lei,ZHANGZhi‑zhong,WANGBo‑zhou,et al.Synthesis of 3,5‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2007,15(6):574‑576.
参考文献 60
成健.不同硝化体系中3,5‑二硝基吡唑的合成[D].南京:南京理工大学,2007.
CHENGJian. Synthesis of 3,5‑Dinitropyrazole under different nitrification system[D].Nanjing:Nanjing University of Science and Technology,2007.
参考文献 61
周智明,陶文昌,章军.一种1‑甲基‑3,4,5‑三硝基吡唑(MTNP)中间体3,5‑二硝基吡唑的高选择性、高产率的无溶剂制备方法:CN105669557A[P],2016.
ZHOUZhi‑ming,TAOWen‑chang,ZHANGJun. High‑selectivity and high‑yield non‑solvent preparation method of 1‑methyl‑3,4,5‑trinitropyrazole (MTNP) intermediate 3,5‑dinitropyrazole:CN105669557A[P],2016.
参考文献 62
刘伟,王建龙,曹端林,等.3,5‑二硝基吡唑的合成工艺研究[J].应用化工,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.
LIUWei,WANGJian‑long,CAODuan‑lin,et al.Synthesis of 3, 5‑dinitropyrazole[J]. Applied Chemical Industry,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.
参考文献 63
KatritzkyA R.Physical methods in heterocyelic chemistry[M].New York:Academic Press,1974.
参考文献 64
李永祥,曹端林,王建龙,等.一种1‑甲基‑3,4‑二硝基吡唑的制备方法:CN103467381A[P],2013.
LIYong‑xiang,CAODuan‑lin,WANGJian‑long,et al. A preparation method of 1‑methyl‑3,4‑dinitropyrazole: CN103467381A[P],2013.
参考文献 65
李永祥,郭俊玲,宋磊,等.1‑甲基‑3,4‑二硝基吡唑的合成、性能及晶体结构[J].火炸药学报,2015,38(3):64-68.
LIYong‑xiang,GUOJun‑ling,SONGLei,et al. Synthesis,performance and crystal structure of 1‑methyl‑ 3,4‑dinitropyrazole[J]. Chinese Journal of Explosives & Propellants,2015,38(3):64-68.
参考文献 66
ZaitsevAA,DalingerIL,ShevelevSA.Dinitropyrazoles[J].Russian Chemical Reviews,2009, 78(7):589-627.
参考文献 67
SchmidtR D,LeeG S,PagoriaP F. Synthesis and properties of a new explosive 4‑amino‑3,5‑ dinitro‑1H‑pyrazole(LLM‑116),UCRL‑ID‑148510[R].Livermore:Lawrence Livermore National Laboratory,2001.
参考文献 68
SchmidtR D,LeeG S,PagoriaP F,et al. Sythesis of 4‑amino‑3,5‑dinitro‑1H‑pyrazole using vicarious nucleophilic substitution of hydrogen[J].J Heterocyclic Chem,2001,38:1227-1230.
参考文献 69
汪营磊,张志忠,王伯周,等.VNS反应合成LLM‑116[J].火炸药学报,2007,30(6):20-23.
WANGYing‑lei,ZHANGZhi‑zhong,WANGBo‑zhou,et al.Synthesis of LLM‑116 by VNS reaction[J]. Chinese Journal of Explosives&Propellants,2007,30(6):20-23.
参考文献 70
StefanE K,NikolajV Latypova.Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51:1621-1627.
参考文献 71
ManZhang,HuiqiGao,ChuanLi,et al. Towards improved explosives with a high performance: N‑(3,5‑dinitro‑1H‑pyrazol‑4‑yl)‑1H‑tetrazol‑5‑amine and its salts[J].J Mater Chem A,2017,5:1769-1777.
参考文献 72
DalingerI L,PopovaG P,VatsadzeI A,et al. Synthesis of 3,4,5‑trinitropyrazole[J].Russ Chem Bul,2009,58(10):2185.
参考文献 73
HerveG. Dinitropyrazole derivatives,their preparation and energetic compositions comorising them: US 8440839[P], 2013.
参考文献 74
StefanEk,NikolajV Latypov. Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51(6):1621-1627.
参考文献 75
HerveG,RousselC,GraindorgeH.Selective preparation of 3,4,5‑trinitro‑1H‑pyrazole:A stable all‑carbon‑nitrated arene[J].Angew Chem Int Ed,2010,49(18):3177-3181.
参考文献 76
RaviP,TewariS P. Solvent free microwave assisted isomerization of N‑nitropyazoles[J].Propellants, Explosives,Pyrotechnics,2013,38(1):147-151.
参考文献 77
ChuanLi,ManZhang,QishanChen,et al. 1‑(3,5‑Dinitro‑1H‑pyrazol‑4‑yl)‑3‑nitro‑1H‑1,2,4‑triazol‑5‑amine (HCPT) and its energetic salts:highly thermally stable energetic materials with high‑performance[J].Dalton Trans,2016,45:17956-17965.
参考文献 78
ZhaoX,ZhangJ C,LiS H,et al. A green and facile approach for synthesis of nitro heteroaromatics in water[J]. Organic Process Research & Development,2014,18(7):886-890
参考文献 79
赵秀秀.硝基唑类含能化合物的合成与反应性研究[D].北京:北京理工大学,2016.
ZHAOXiu‑xiu. Synthesis and reactivity of nitrozoles energetic compounds[D].Beijing:Beijing Institute of Technology,2016.
参考文献 80
吴军鹏.3,4,5‑三硝基吡唑的合成研究及其与苦基氯缩合反应探索[D].太原:中北大学,2017.
WUJun‑peng. Study on synthesis of 3,4,5‑trinitro‑1H‑pyrazole and exploration its condensation reaction with picryl chloride[D].Taiyuan:North University of China,2017.
参考文献 81
RaviP,GirishG M,SikderA K,et al. Thermal decomposition kinetics of 1‑methyl‑3,4,5‑trinitropyrzole[J]. Thermochimica Acta,2012,528(2):53-57.
参考文献 82
RaviP,TewariS P. Facile and environmentally friendly synthesis of nitropyrazoles using montmorillonite K‑10 impregnated with bismuth nitrate[J].Catalysis Communications,2012,19(19):37-41.
参考文献 83
RaviP,TewariS P.Faujasite catalyzed nitrodeiodination of iodopyrazoles[J].Catalysis Communications,2013, 42(23):35-39.
参考文献 84
DalingerI L,VatsadzeI A,ShkinevaT K,et al. The specific reactivity of 3,4,5‑trinitro‑1H‑pyrazole[J].Mendeleev Commun,2010,20(5):253-254.
参考文献 85
DalingerI L,VatsadzeI A,ShkinevaT K,et al. Synthesis and comparison of the reactivity of 3,4,5‑1H‑Trinitropyrazole and Its N‑methyl derivative[J].Journal of Heterocyclic Chemistry,2013,50(4): 911-924.
参考文献 86
李雅津,曹端林,李永祥,等.1‑甲基‑3,4,5‑三硝基吡唑的合成与表征[J].火炸药学报,2013, 36(3):28-30.
LIYa‑jin,CAODuan‑lin,LIYong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,4,5‑trinitropyra‑zoles[J].Chinese Journal of Explosives & Propellants,2013,36(3):28-30.
参考文献 87
郭俊玲,李永祥,王建龙,等.1‑甲基‑3,4,5‑三硝基吡啶的一步法合成及热性能[J].含能材料,2015,23(3):304-306.
GUOJun‑ling,LIYong‑xiang,WANGJian‑long,et al. One‑step synthesis and thermal behavior of 1‑methy‑ 3,4,5‑trinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3):304-306.
参考文献 88
Heng‑jieGuo,XinDang,FengYang,et al. Solubility and thermodynamic properties of a kind of explosives in four binary solvents[J].Journal of Molecular Liquids, 2017,247:313-327.
参考文献 89
郭俊玲,李永祥,王建龙,等.超酸消化法合成1‑甲基‑3,4,5‑三硝基吡吡唑[J].合成化学,2015,23(2):161-163.
GUOJun‑ling,LIYong‑xiang,WANGJian‑long,et al. Synthesis of 1‑Methl‑3,4,5‑trinitropyrazole by Nitration with Super Acids[J].Chinese Journal of Synthetic Chemistry,2015,23(2):161-163.
参考文献 90
吴霏,李永祥,郝彩丽,等.N2O5/发烟硫酸体系一步法合成1‑甲基‑3,4,5‑三硝基吡唑[J].含能材料,2016,24(6):618-620.
WUFei,LIYong‑xiang,HAOCai‑li,et al. One Step Synthesis of MTNP with N2O5/oleum system[J]. Chinese Journal Energetic Materia(Hanneng Cailiao),2016,24(6):618-620.
参考文献 91
陶文昌.1‑甲基‑3,4,5‑三硝基吡唑(MTNP)的制备及性能[D].北京:北京理工大学,2016.
TAOWen‑chang.Preparation and Properties of 1‑Methyl‑3,4,5‑Trinitropyrazole (MTNP)[D].Beijing:Beijing Institute of Technology,2016.
参考文献 92
王军,景梅,张晓玉,等.硝基二唑炸药爆炸参数的经验计算(Ⅱ)[J].含能材料,2013,21(5): 609-611.
WANGJun,JINGMei,ZHANGXiao‑yu,et al. Empirical calculation of the explosive prameters of nitrodiazole explosives(Ⅱ)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2013,21(5):609-611
参考文献 93
DrukenmullerI E,KlapotkeT M,MorgensternY,et al. Metal salts of dinitro‑,trinitropyrazole,and trinitroimi‑ dazole[J].Zeitschrift fur Anorganische und Allgemeine Chemie,2014,640(11):2139-2149.
参考文献 94
吴军鹏,曹端林,王建龙,等.3,4,5‑三硝基吡唑及其衍生物的研究进展[J].含能材料,2016,24(11):1121-1130.
WUJun‑peng,CAODuan‑lin,WANGJian‑long,et al. Progress on 3,4,5‑trinitro‑1H‑pyrazole and its derivatives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2016,24(11):1121-1130.
参考文献 95
ZhangY,GuoY,JooY H,et al. 3,4,5‑trinitropyrazole‑based energetic salts[J].Chemistry‑a European Journal,2010,16(35):10778-10784.
参考文献 96
YanqiangZhang,YangenHuang,DamonA.Parrish,et al.4‑Amino‑3,5‑dinitropyrazolatesalts—highly insensitive energetic materials[J].Journal of Materials Chemistry,2011,21,6891-6897.
参考文献 97
PingYin,JiahengZhang,ChunlinH,et al. Polynitro‑substituted pyrazoles and triazoles as potential energetic materials and oxidizers[J]. J Mater Chem A,2014(2): 3200-3208.
参考文献 98
ZhaoX X,LiS H,WangY,et al. Design and synthesis of energetic materials towards high density and positive oxygen balance by N‑dinitromethyl functionalization of nitroazoles[J]. J Mater Chem A,2016(4): 5495-5504.
参考文献 99
YaJin Li,YongXiang Li,YanHong Wang,et al. Theoretical calculation of the detonation parameters of nitropyrazolesexplosives[J]. Advanced Materials Research,2014,853:395-400.
参考文献 100
YalkowskyS H. Carnelley's rule and the prediction of melting point[J].Journal of Pharmaceutical Sciences,2014,103(9):2629-2634.
参考文献 101
闫涛,王建华,刘玉存,等.二唑类熔铸炸药载体的分子设计[J].含能材料,2016,24(2):202-208.
YANTao,WANGJian‑hua,LIUYu‑cun,et al. Molecular design of diazole carriers for melt‑cast explosives[J]. Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(2):202-208.
参考文献 102
蒋涛,张晓玉,景梅,等.1‑氨基‑3,5‑二硝基吡唑的合成、晶体结构及热性能[J].含能材料,2014,22(5):654‑657.
JIANGTao,ZHANGXiao‑yu,JINGMei,et al. Synthesis, crystal structure and thermal property of 1‑amino‑3,5‑dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2014,22(5):654-657.
参考文献 103
尹磊,张至斌,张建国,等.3,4‑二硝基吡唑的晶体结构[J].含能材料,2016,24(10):965-968.
YILei,ZHANGZhi‑bin,ZHANGJian‑guo,et al. Crystal Structure of 3,4‑Dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(10):965-968.
参考文献 104
杜闪,赵家乐,李永祥,等.熔铸炸药载体的研究进展及其性能比较[J].化工中间体,2011(6):32-35.
DUShan,ZHAOJia‑le,LIYong‑xiang,et al. Study progress on melt‑cast explosives carriers and comparition of their performance[J].Chenmical Intermediate,2011(6):32-35.
参考文献 105
ReddyD,SurapaneniC R,NathanielGet al. Melt‑cast explosive material: US7304164B1[P],2007.
参考文献 106
王伯周,汪营磊,张志忠,等.4‑氨基‑3,5‑二硝基吡唑(LLM‑116)缩合物的合成与表征[J].含能材料,2009,17(3):293-295.
WANGBO‑zhou,WANGYing‑lei,ZHANGZhi‑zhong,et al.Synthesis and characterization of 4‑amino‑ 3,5‑dinitropyrazole(LLM‑116) condensation products[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2009,17(3): 293-295.

    摘要

    硝基吡唑及其衍生物具有高生成热,良好的热稳定性和爆轰性能,在含能材料领域具有广阔的应用前景。从硝基吡唑及其衍生物的合成、性能及应用等角度对其近年来的研究进展进行了简要综述,梳理了硝基吡唑及其衍生物合成研究的发展方向和趋势,指出了今后研究的重点方向:认为必须探索、寻找新的合成路线并优化其工艺条件,缩短反应步骤、提高反应效率,实现硝基吡唑化合物高品质化、规模化、稳定化制备,进一步探索绿色环保、可循环使用的高效重排试剂、萃取剂及重结晶介质,加强1‑甲基‑3,4,5‑三硝基吡唑(MTNP)与3,4‑二硝基吡唑3,4‑DNP)的基础性能综合研究,开展其熔融‑凝固后的体积收缩特性及安全性能研究,综合评估其在熔铸炸药中的应用可行性,拓展其在高能钝感炸药中的应用。

    Abstract

    Nitropyrazole and its derivatives have high heat of formation, good thermal stability and detonation performances, which have broad application prospects in the field of energetic materials. Their research progress in recent years is briefly reviewed from the aspects of synthesis, properties and applications of nitropyrazole and its derivatives, and the development direction and trend of the research on the synthesis of nitropyrazole and its derivatives are combed. Several important directions in the future research are pointed out: considering that ones have need to explore and find new synthetic routes and optimize their technological conditions, shorten reaction steps, improve reaction efficiency, and realize high‑quality, large‑scale and stabilization preparation of nitropyrazole compounds, and to further explore the green environmental protection and recyclable high‑efficiency rearrangement reagents, extraction agents and recrystallization media, strengthen the comprehensive research on the basic properties of MTNP and 3,4‑DNP, carry out the research on their volume shrinkage characteristics and safety properties after melting and solidification, comprehensively evaluate the feasibility of their application in fused cast explosives, and further expand their application research in high energy insensitive explosives.

    PAN Yong‑fei,WANG Ying‑lei,ZHAO Bao‑dong,et al. Research Progress in Synthesis, Properties and Applications of Nitropyrazoles and Their Derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2018,26(9):796-812.

  • 1 引 言

    1

    氮杂环类含能化合物中氮、氧原子电负性高,含氮量高,分子中含有大量高能量的N—N键和C—N键,且氮杂芳环体系能形成类苯结构的共轭大π键,因此该类化合物具有钝感、生成焓高、密度高、热稳定性好以及环境友好等性质特点[1,2,3,4,5,6,7,8],近年来受到研究人员的广泛关注[9,10,11,12,13,14]

    作为氮杂环类化合物的杰出代表,硝基吡唑及其衍生物是具有芳香性的稳定物质,结构中存在π电子体系,易于进行硝化、磺化、卤化等亲电取代反应[15],其显著的特点是耐氧化、耐热、耐水解[16],广泛应用于民用领域,如医药、农药、光敏材料、精细化工等方面[17,18,19,20,21,22]。然而,将硝基吡唑及其衍生物作为含能材料的研究相对较少。

    20世纪70年代以来,国外对硝基取代吡唑的相关研究发现多硝基吡唑在含能材料应用方面具有许多优点[23],硝基吡唑及其衍生物结构中吡唑环张力较大,且环上硝基基团的存在使其密度和氮含量增加,氧平衡更接近于理想值,可以改善目标化合物的爆轰性能。研究表明[24],该类化合物具备了优良含能材料的高能钝感特性,有望成为梯恩梯(TNT)的替代物,作为一种优良的熔铸炸药载体用于军用混合炸药。本文主要介绍了16种硝基吡唑及其衍生物的合成及应用情况(Scheme 1),综述了一硝基吡唑、二硝基吡唑、三硝基吡唑及其衍生物系列含能化合物的结构特点、制备方法、理化性质、爆炸性能及其在含能材料中的应用,为该类含能材料的研究和发展提供参考。

    Scheme 1 Structures of the 16 kinds of nitropyrazole and its derivatives

  • 2 硝基吡唑及其衍生物的合成

    2
  • 2.1 一硝基吡唑及其衍生物的合成

    2.1
  • 2.1.1 3‑硝基吡唑(3‑NP)的合成

    2.1.1

    1970年,Janssen等[23]N‑硝基吡唑溶解到苯甲醚中,145 ℃下油浴反应10 h,冷却析出白色结晶固体,过滤、减压干燥得到3‑NP粗品,然后以苯为溶剂,进行重结晶,得到纯品3‑NP。1975年,Viehe等[25]以重氮甲烷和氯硝基乙烯为原料,经过一步环化合成了3‑NP,该法操作简单,具有工业化生产潜力,但所使用的原料较为活泼,不便储存,且反应时危险系数较大,致使此方法有很大的局限性,合成线路如Scheme 2。

    Scheme 2 Synthetic route of 3‑NP [25]

    2004年,李翠屏等[17]将吡唑加入硝硫混酸中,在保持温度不超过15 ℃的条件下反应3.5 h,得到N‑硝基吡唑,然后在正辛醇中于185~190 ℃下加热回流,得到3‑NP,合成线路如Scheme 3所示。

    Scheme 3 Synthetic route of 3‑NP [17]

    2008年,李洪丽等[26]以吡唑为原料,经HNO3‑Ac2O‑HAc三元硝化体系,室温下反应得到N‑硝基吡唑,N‑硝基吡唑在苯甲腈中回流,得到3‑NP。并对合成工艺进行了优化,吡唑的最佳硝化条件为:反应温度为室温(约25 ℃),反应时间为2 h,吡唑和浓硝酸的料比为10 g∶7.5 mL;N‑硝基吡唑重排反应的最佳条件为:以苯甲腈为反应介质,反应温度为180 ℃,反应时间为3 h;硝化收率为85.5%,重排收率为92.8%,总收率达到79.3%。

    2012年田新等[27]先将发烟硝酸滴加到吡啶和乙酸的混合溶液中,再向体系中滴入乙酸酐,室温下反应1 h,过滤干燥得到N‑硝基吡唑,N‑硝基吡唑与苯甲腈溶液混合,搅拌下于180 ℃反应3 h,过滤干燥得到3‑NP,收率92%。以上合成路线中,均由N‑硝基吡唑重排形成目标物3‑NP,重排溶剂分别为苯甲醚、正辛醇和苯甲腈,其中苯甲醚沸点较低,重排反应时间较长;正辛醇在高温条件下容易受到氧化,导致产品质量较差;而用苯甲腈作为介质可以避免时间长、质量差等缺点。因此,应考虑选用苯甲腈为反应介质[26]

  • 2.1.2 4‑硝基吡唑的合成(4‑NP)

    2.1.2

    1955年,Hüttel等[28]N‑硝基吡唑为原料在浓硫酸中,在90 ℃下重排24 h得到了4‑NP。1988年,Kanishchev等[29]将吡啶加入硝硫混酸中,在110 ℃下反应48 h得到4‑NP。以上两种方法的不足之处是反应时间长、反应温度较高。

    2013年,Rao等[30]N‑硝基吡唑加入H2SO4中,室温下搅拌20 h后,将反应混合液倒入冰水中,用乙醚萃取,有机层用硫酸钠干燥,蒸馏得到无色固体物质即为4‑NP,最后使用乙醚/己烷重结晶得4‑NP纯品,反应式如Scheme 4所示。

    Scheme 4 Synthetic route of 4‑NP[30]

    2015年,Ravi等[31]以4‑碘代吡唑为原料,发烟硝酸为硝化剂,八面沸石或二氧化硅为固体催化剂,在四氢呋喃溶液中合成了4‑NP。

    2016年,Karanewsky等[32]将吡唑分批加入浓硫酸中,通过冰浴将反应温度控制在50 ℃以下,然后滴加浓硝酸,保持温度在50 ℃以下。滴加完毕除去冰水浴,将反应加热至60 ℃,搅拌4 h,将反应物通过冰水浴冷却并用NaOH水溶液碱洗,再经过滤、洗涤、真空干燥得4‑NP,收率42%。

    2018年,李永祥等[33]以吡唑为原料,以发烟硝酸(90%)/发烟硫酸(20%)为硝化剂通过一锅两步法合成了4‑NP,并得到了较佳的合成工艺为∶n(发烟硝酸)∶n(发烟硫酸)∶(浓硫酸)∶n(吡唑)=1.5∶3∶2.1∶1,反应温度为50 ℃,反应时间1.5 h,收率最高为85%,合成路线见Scheme 5。

    Scheme 5 One‑pot two steps synthetic route of 4‑NP[33]

  • 2.1.3 1‑甲基‑3‑硝基吡唑(3‑MNP)

    2.1.3

    3‑MNP的熔点为80~83 ℃,密度1.47 g·cm-3,爆速6.62 km·s-1,爆压17.11 GPa,可用作含能材料及其中间体[34]。Katritzky等[35]在冰浴条件下将N‑甲基吡唑加入三氟醋酐中保温1 h,冷却条件下,将浓硝酸加入上述混合物中,室温下搅拌12 h,过量的三氟乙酸和硝酸真空下移去,得硝化衍生物粗品,柱色谱纯化得3‑MNP,合成路线见Scheme 6。

    Scheme 6 Synthetic route of 3‑MNP[35]

    Ravi等[36]报道了在室温下,将1‑甲基吡唑与二氧化硅‑硝酸铋(方法i)和二氧化硅‑硫酸‑硝酸铋(方法ii)在四氢呋喃(THF)中混合搅拌反应6 h,经过滤,除去溶剂,柱色谱纯化得到3‑MNP,其中方法i的收率为95%,方法ii收率为98%。该方法简单快速,产率较高,且反应条件温和,是一种低毒、高效又绿色环保的合成方法(Scheme 7)。

    Scheme 7 Synthetic route of 3‑MNP [36]

    DONG Jiaqiang等[37]将3‑NP和N,N‑二甲基甲酰胺加入反应烧瓶中,在冰盐浴中搅拌20 min,然后分批缓慢加入叔丁醇钠,在0 ℃下搅拌3 h,反应完成后,加入过量的饱和氯化铵水溶液终止反应,乙酸乙酯萃取,有机相用饱和氯化钠水溶液洗涤、干燥并浓缩,得到黄色固体3‑MNP,收率92%。

  • 2.1.4 1‑甲基‑4‑硝基吡唑(4‑MNP)

    2.1.4

    4‑MNP的熔点为92 ℃,密度1.40 g·cm-3,爆速6.42 km·s-1,爆压15.52 GPa,可用作含能材料及制备其他含能材料化合物的中间体[34]。郭恒杰等[38]以1‑甲基吡唑为原料,浓硫酸和浓硝酸为硝化剂,常温反应,结束后将反应混合物倒入冰水,析出白色固体物质,过滤、干燥得4‑MNP(Scheme 8)。

    Scheme 8 Synthetic route of 4‑MNP[38]

    CORTE JAMES R[39]将NaH加入到4‑NP的四氢呋喃溶液中,室温下搅拌5 min,加入CH3I,室温下搅拌过夜,乙酸乙酯萃取,盐水洗涤,浓缩有机层,用正相色谱法纯化得到白色固体4‑MNP,收率80%。Ioannidis等[40]对该方法进行了改进,将NaH加入到4‑NP的乙腈溶液中,体系中通氮气保护,加入碘甲烷,在23 ℃下搅拌16 h,产物用乙酸乙酯萃取,合并有机层用无水硫酸钠干燥,过滤并真空浓缩,最后通过柱色谱纯化,用乙酸乙酯/石油醚(1∶5 V/V)洗脱,得到4‑MNP,收率提高至93%。但因NaH化学反应活性较高,在潮湿空气中易发生自燃,且受热或与潮气、酸类接触即放出热量和氢气,易引发燃烧和爆炸,限制了该方法的进一步推广。

    Su Jin Han等[41]对上述方法进行了简化,向4‑NP的DMF溶液中加入K2CO3和CH3I,25 ℃下搅拌14 h后,反应液经乙酸乙酯萃取,盐水洗涤,硫酸钠干燥并过滤,浓缩滤液,通过柱色谱纯化(己烷/乙酸乙酯=1∶3),得到4‑MNP,收率98%。该法用K2CO3替代了NaH,降低了反应过程中风险性,提高了反应产率。

  • 2.1.5 3‑氨基‑4硝基吡唑(4‑ANP)

    2.1.5

    4‑ANP也是一种重要的硝基吡唑含能衍生物。Biffin等[42,43]以5‑硝基‑4甲氧基嘧啶为原料与肼反应合成了4‑ANP,该反应通过肼进攻5‑硝基‑4‑甲氧基嘧啶的2号碳位,发生亲核取代反应,使得C—N键断裂,进一步发生分子内亲核取代反应,最终得到目标产物,得率60%。该方法中原料肼毒性极强,不符合绿色化学的发展要求。

    1993年,Shevelev[44]报道了以3‑甲基吡唑为原料,经硝化、氧化、氨化、脱羧等步骤合成了4‑ANP,但该方法步骤繁琐,产率较低。

  • 2.1.6 一硝基吡唑金属盐的合成

    2.1.6

    李洪丽等[26]将硝基吡唑分批溶于NaOH水溶液中,60 ℃反应40 min后,滴加CuSO4·5H2O水溶液,68~72 ℃下反应2 h,降温后过滤,真空干燥得到灰蓝色粉末状固体硝基吡唑铜盐(收率为92.3%);将硝基吡唑分批溶于NaOH水溶液中,70 ℃反应1 h后,滴加Pb(NO3)2水溶液,70~72 ℃下反应2 h,降温后过滤,真空干燥得到白色固体硝基吡唑的碱式铅盐(收率为92.3%),合成线路见Scheme 9。

    Scheme 9 Synthetic route of metal salts of NP [26]

  • 2.2 二硝基吡唑及其衍生物的合成

    2.2
  • 2.2.1 3,4‑二硝基吡唑的合成(3,4‑DNP)

    2.2.1

    3,4‑DNP是一种白色晶体或白色针状物质,作为一种性能优异的氮杂环类含能化合物,与TNT相比3,4‑DNP具有密度大、熔点低、爆速高、爆压大等优点[1]。其熔点为86~88 ℃、密度为1.87 g·cm-3、爆速为8.1 km·s-1、爆压为29.4 GPa。

    有关3,4‑DNP的合成早在1967年就有文献[42]报道,但真正以吡唑为原料的合成方法是在1973年由Janssen提出的[23],此后研究者对其合成方法进行了明显改进。1976年,Latypov等[45]以4‑ANP为原料,在20%硫酸和10% NaNO2体系中重氮化,在50 ℃下反应3 h,冷却后经萃取、干燥、重结晶得到3,4‑DNP,产率36%,其合成路线如Scheme 10所示。1993年,Vinogradov等[46]将3‑硝基‑4氰基吡唑,100 ℃下在硝硫混酸体系中水解、硝化得到了3,4‑DNP,合成路线如Scheme 11所示。以上两种方法由于原料(4‑ANP、3‑硝基‑4氰基吡唑)合成步骤繁琐,不易得,导致该方法工艺复杂,生产成本较高,产率较低。

    Scheme 11 Synthetic route of 3,4‑DNP [46]

    Scheme 10 Synthetic route of 3,4‑DNP [45]

    2005年Katritzky等[35]以吡唑为原料,将其在发烟硝酸和三氟乙酸酐(TFAA)体系中直接硝化后一步合成了3,4‑DNP,其合成路线如Scheme 12所示。

    Scheme 12 One‑step synthetic route of 3,4‑DNP [35]

    2012年,汪营磊等[47]将吡唑在浓硝酸、三氟乙酸酐和发烟硫酸体系中硝化,在30~33 ℃下反应2 h,得到了目标产物3,4‑DNP。该方法使用三氟乙酸酐作为硝化剂成分一步合成3,4‑DNP,由于三氟乙酸酐价格昂贵,且具有催泪性和腐蚀性,对人体皮肤和豁膜具有强烈刺激作用,与硝酸混合后高温下易爆炸,因此该方法并不适合于工业化生产。

    2015年,刘威等[48]以吡唑为原料,以发烟硫酸/发烟硝酸,发烟硫酸/硝酸钾等超酸体系为硝化剂,进行了一步法合成3,4‑DNP的探索,通过薄层色谱对反应进行跟踪,实验发现在适当的温度和料比下,超酸体系可生成目标产物3,4‑DNP,但其产率并不高,且生成的3,4‑DNP中包含其它硝基衍生物,分离提纯困难。

    2011年,Stefan E K等[49]以吡唑为原料经两步法合成了3,4‑DNP。将吡唑在醋酐和浓硝酸中冰水浴下反应1 h,然后将反应液在180 ℃下密封反应4 h,再将得到的产物用浓硫酸和硝酸硝化后得到3,4‑DNP,产率可达90%。与通常三步法合成3,4‑DNP相比,这种方法将氮硝化和重排反应简化成了一步,不仅可以省去中间体N‑硝基吡唑的分离提纯过程,还可避免额外使用昂贵的重排溶剂,大大降低了制备成本,简化了生产工艺。其合成路线如Scheme 13所示。

    Scheme 13 Two‑step synthetic route of 3,4‑DNP [49]

    2012年,Ravi等[50]也通过两步法合成了3,4‑DNP。以吡唑为原料,将其在碘和碘化钾的氨水溶液中反应生成3,4‑二碘吡唑,然后将3,4‑二碘吡唑在硝酸和四氢呋喃(THF)体系中硝化后可得目标产物3,4‑DNP。该法中因碘代反应时间较长、3,4‑二碘吡唑的产率低和反应废水处理困难等缺点很难应用于工业化生产。其合成路线如如Scheme 14所示。

    Scheme 14 Synthetic route of 3,4‑DNP [50]

    目前,三步法合成3,4‑DNP是研究最多也是相对最为成熟的方法。田新等[51,52]经三步反应合成了3,4‑DNP,单步收率达41%,通过实验发现在N‑硝基吡唑重排为3‑NP过程中以苯甲腈作介质的效果更好;汪营磊等[1]以吡唑为原料,先后经过在冰醋酸和发烟硝酸中N‑硝化、在苯腈中热重排(重排率92.67%)、在硝硫混酸中C‑硝化等三步反应得到3,4‑DNP,并研究了反应温度、料比、时间对消化反应的影响,确定较佳反应条件为:反应温度55~60 ℃,3‑NP与浓硝酸的物质的量之比为1∶2,反应时间1 h,总收率为55%;杜闪等[53,54,55]将吡唑溶解在冰醋酸、发烟硝酸和Ac2O中硝化得N‑硝基吡唑,再将N‑硝基吡唑溶解在正辛醇中加热回流,在185~190 ℃下反应得到3‑NP,得率为87.8%。将发烟浓硝酸和浓硫酸组成的混酸溶液慢慢滴加到3‑NP和浓硫酸组成的溶液中,反应1 h后处理得3,4‑DNP(Scheme 15),该方法目前制备规模已达到公斤级,工艺技术相对成熟[56]

    Scheme 15 Three‑step synthetic route of 3,4‑DNP[56]

    上述三种路线均经过吡唑硝化为N‑硝基吡唑、重排为3‑NP、再硝化得3,4‑DNP三步,不同之处是重排过程中所用的高沸点溶剂,分别为苯腈、苯甲腈和正辛醇,所用的这些重排溶剂有毒且价格昂贵;此外,三步法还存在如:3,4‑DNP的综合产率(50%左右)还有待提高,碳硝化实验放大后难以得到高纯度目标产物(纯度在90%左右),生产工艺难以实现连续化工业生产等局限性。

    2015年,张巧玲等[57]将3‑NP分批加入到20%发烟硫酸中,缓慢滴加96.5%的发烟硝酸,升温控制在95~110 ℃,反应0.5 h,冷却后,乙醚多次萃取,蒸去溶剂,干燥,得到3,4‑DNP粗品,利用芳烃类溶剂重结晶,采用甲苯和苯两种溶剂对目标产物进行精制,在65 ℃下,用苯将粗品重结晶,得率57.93%。该方法对于3,4‑DNP的重结晶溶剂进行了优化,提高了产品品质,合成线路见Scheme 16。

    Scheme 16 Synthetic route of 3,4‑DNP [57]

    2017年,朱翔[58]将微通道反应器引入到3,4‑DNP的合成反应中。在微反应器中,以吡唑为原料,通过硝酸‑乙酸酐体系硝化、热重排、硝硫混酸体系硝化3步反应来合成3,4‑DNP,经过红外光谱、质谱、核磁共振氢谱对合成产物进行了结构表征,确认为目标产物,总产率大于73%,纯度可达到98%以上。该方法避免了在常规釜式反应器中合成3,4‑DNP存在的安全生产、环境污染、选择性硝化等问题,且得到的目标产物产率和纯度较高。

  • 2.2.2 3,5‑二硝基吡唑的合成(3,5‑DNP)

    2.2.2

    3,5‑DNP的熔点173~174 ℃,密度1.80 g·cm-3,爆速8.34 km·s-1,爆压30.67 GPa,分解温度316.8 ℃,且分子对称分布,比较稳定,可作为一种单质炸药,也可作为一种关键中间体用于不敏感炸药的合成[34]

    1973年,Janssen等[23]将1,3‑二硝基吡唑溶在苯腈中,重排后的混合物用己烷稀释并用NaOH溶液萃取,得到含少量5‑硝基吡唑的产物,用苯结晶得到纯3,5‑DNP。

    汪营磊等[59]向溶有3‑NP的冰醋酸中滴加浓硝酸和醋酸酐,等反应结束后倒入碎冰,析出白色固体,经过滤、洗涤、干燥得1,3‑二硝基吡唑;将1,3‑二硝基吡唑溶在苯腈中,油浴加热至147 ℃,保温77 h,冷却至室温,通氨气,得到3,5‑二硝基吡唑铵盐;将3,5‑二硝基吡唑铵盐溶于水,并用盐酸中和,乙醚萃取,无水Mg2SO4干燥,过滤,除去乙醚得到3,5‑DNP,用水重结晶,得纯3,5‑DNP,合成线路见Scheme 17。

    Scheme 17 Synthetic route of 3,5‑DNP[59]

    成健[60]也研究了不同硝化体系中的3,5‑DNP的合成,主要以吡唑为原料,经过硝化、σ重排、硝化和σ重排四步反应得到3,5‑DNP。该方法使用N2O5作为硝化剂,反应温度易控制,无需废酸处理,产物分离简单,不发生氧化等副反应,符合现代绿色化学的需求。因此,采用绿色硝化剂N2O5的方法是合成3,5‑DNP的较优方法。

    周智明等[61]以吡唑为起始原料,经过硝化在1位引入N—NO2,经过无溶剂重排反应转位至3位生成C—NO2;再在1位引入N—NO2,经过无溶剂重排反应转位至5位生成C—NO2,得到的3,5‑DNP,该方法简便,选择性高,产率高,所采用的无溶剂重排法是解决环境污染的一个重要方法,不仅避免了使用一些高毒类的有机溶剂,降低了成本,而且解决了后处理繁琐的问题,符合绿色化学的要求。

    刘伟等[62]以3‑NP为原料,经过发烟硝酸‑乙酸酐体系硝化、邻二氯苯重排、乙醚提纯合成了3,5‑DNP。考察了硝化和重排两步反应的条件,得出硝化的最佳工艺条件为:n(3‑NP)∶n(发烟硝酸)∶n(乙酸酐)=1∶1.5∶2.25,反应温度50 ℃,反应时间4 h,得率85.9%;重排工艺的最佳工艺条件为:重排试剂为邻二氯苯,重排温度为170 ℃,重排时间8h,乙醚对重排产物提纯,得率78.3%。该工艺路线硝化条件简单,重排产物直接析出,简化了后处理工艺,且各步产物得率、纯度较高,是一种经济绿色的合成3,5‑DNP的工艺。合成线路见Scheme 18。

    Scheme 18 Synthetic route of 3,5‑DNP [62]

  • 2.2.3 1‑甲基‑3,4‑二硝基吡唑(3,4‑MDNP)

    2.2.3

    3,4‑MDNP是典型的硝基吡唑类化合物,有良好的热稳定性[57],MDNP的熔点为20~23 ℃,密度为1.67 g·cm-3,常温下(25 ℃)为液态,在300 ℃下的热力学状态稳定,爆速和爆压分别为7.76 km·s-1、25.57 GPa,可作为一种液体单质炸药[15],在熔铸炸药中可降低液相载体的熔点,是具有潜在应用价值的含能材料。

    1978年,新西兰Grimmett等[63]用5倍量的发烟硝酸在80%硫酸中硝化1‑甲基吡唑,100 ℃条件下反应18 h,合成得到3,4‑MDNP,测得其熔点为20 ℃,但得率仅有20%;将1‑甲基‑3‑NP在80%的硫酸和硝酸体系中硝化,也得到化合物3,4‑MDNP。

    2012年Ravi等[50]将蒙脱石K‑10浸渍到硝酸铋的四氢呋喃悬溶液中,硝化1‑甲基吡唑得3,4‑MDNP;常温下用该硝化体系硝化1‑甲基‑3‑NP也可得到3,4‑MDNP,且两种方法得率均在95%以上,但该反应条件苛刻,反应时间较长,成本较高,且后续分离困难。合成线路见Scheme 19。

    Scheme 19 Synthetic route of 3,4‑MDNP [50]

    2013年李永祥等[64,65]以3,4‑DNP为原料、N,N‑二甲基甲酰胺(DMF)为溶剂、碳酸二甲酯(DMC)为甲基化试剂、无水碳酸钾为催化剂,通过甲基化反应制备3,4‑MDNP(Scheme 20),将3,4‑DNP加入DMF中待完全溶解后,加入碳酸钾,水浴升至90 ℃,滴加碳酸二甲酯,水浴保温6.5 h。反应结束,将反应液倒入蒸馏水中,搅拌,静置得深红色液体,用二氯甲烷多次萃取,减压蒸馏,用苯重结晶,真空低温干燥得到目标化合物3,4‑MDNP,收率95.6%。该方法操作简单,收率较高,且以碳酸二甲酯代替了传统的硫酸二甲酯、卤代甲烷等剧毒物质作为甲基化试剂,是一种绿色合成工艺,可以推广使用。

    Scheme 20 Synthetic route of 3,4‑MDNP[64]

    2015年,张巧玲等[57]以3‑NP为原料,在发烟硫酸及硝酸中反应1 h得到3,4‑DNP,然后以3,4‑DNP为原料,N,N‑二甲基甲酰胺(DMF)为溶剂,碳酸二甲酯(DMC)为甲基化试剂反应得到目标产物,优化后的工艺条件为:反应温度90 ℃;反应时间6.5 h;3,4‑DNP、DMC与无水碳酸钾的摩尔比为1∶10.5∶1.5,目标产物总得率55.6%。合成路线见Scheme 21。该法也使用了绿色甲基化试剂碳酸二甲酯,符合绿色化学要求,但该法中依旧采用了传统的混酸法硝化工艺,对反应设备要求较高,反应后的废酸难以处理。

    Scheme 21 Synthetic route of 3,4‑MDNP[57]

  • 2.2.4 1‑甲基‑3,5‑二硝基吡唑(3,5‑MDNP)

    2.2.4

    3,5‑MDNP熔点为60 ℃,密度1.68 g·cm-3,爆速7.77 km·s-1,爆压25.65 GPa,3,5‑MDNP和3,4‑MDNP相比,前者熔点更高,其他性能则相似。3,5‑MDNP也是高能量密度材料的候选物质之一[34]。目前关于3,5‑MDNP的合成报道并不多见。2007年Zaitsev等[66]以3,5‑DNP为原料,重氮甲烷为甲基化试剂合成出3,5‑MDNP,线路如Scheme 22。该方法中使用的重氮甲烷是高毒性物质,不符合绿色化学的发展要求,因此,研究者应尝试使用绿色甲基化试剂的合成工艺。

  • 2.2.5 4‑氨基‑3,5‑二硝基吡唑(LLM‑116)的合成

    2.2.5

    LLM‑116的显著特点是能量较高,感度非常低,其密度为1.90 g·cm-3,其能量为HMX的90%,H50为167.5 cm[67]。美国Livermore国家实验室于2001年首次合成了LLM‑116[68]。汪营磊等[69]以1,3‑二硝基吡唑为原料,经热重排、氨气中和得到3,5‑二硝基吡唑铵盐,然后酸化得到3,5‑DNP,以三甲基肼碘化物(TMHI)作为异常亲核取代氢(VNS)反应试剂,叔丁醇钾为催化剂,利用VNS反应合成LLM‑116,收率达60%,该法主要缺点之一是使用有毒的三甲基肼碘化物。合成路线见Scheme 23。

    Scheme 23 Synthetic route of LLM‑116[69]

    Stefan E K等[70,71]报道了由4‑NP(Scheme 24),4‑硝基‑3,5‑二甲基吡唑(Scheme 25),3,5‑DNP(Scheme 26)和4‑氯吡唑(Scheme 27)四种不同原料合成了LLM‑116,并对它们的产量、步骤和扩大适用于中试规模生产的适宜性进行了比较(见表1)。由表1数据对比发现,以4‑氯吡唑为原料合成LLM‑116的方案工艺简单,成本低,产率高,易于工业化生产。

    表1 四种合成LLM‑116方法的简要比较[70]

    Table 1 A brief comparison of four kinds of synthetic procedures for LLM‑116

    via 4‑NP

    (cf. Scheme 24)

    via 3,5‑DNP

    (cf. Scheme 25)

    from

    3,5‑dimethyl‑

    pyrazole

    (cf. Scheme 26)

    from

    4‑chloropyrazole

    (cf. Scheme 27)

    four stepsfive stepssix stepstwo steps

    moderate

    amount

    of waste

    moderate

    amount

    of waste

    high amount of

    waste

    small amount

    of waste

    no unfavorable

    solvents

    required

    DMSO used

    in the last step

    no unfavorable

    solvents

    required

    no unfavorable

    solvents required

    overall yield,

    40 %

    overall yield,

    21 %

    overall yield ,

    37%

    overall yield ,61%

    Scheme 27 Synthesis of LLM‑116 from 4‑chloropyrazole[70]

    Scheme 26 Synthesis of LLM‑116 from 4‑nitro‑3,5‑dimethylpyrazole[70]

    Scheme 24 Synthesis of LLM‑116 from 4‑NP[70]

    Scheme 25 Synthesis of LLM‑116 from 3,5‑DNP[70]

    Scheme 22 Synthetic route of 3,5‑MDNP[66]

  • 2.3 三硝基吡唑及其衍生物的合成

    2.3
  • 2.3.1 3,4,5‑三硝基吡唑(TNP)

    2.3.1

    TNP是唯一全碳硝化的吡唑类化合物,白色固体,熔点187.8 ℃,密度1.87 g·cm-3,爆速9.0 km·s-1,爆压37.09 GPa,热分解范围为260~350 ℃,具有良好的热稳定性和化学稳定性[64]

    2009年,Dalinger等[72]将5‑氨基‑3,4‑二硝基吡唑溶在92%的H2SO4中,在0~5 ℃的条件下滴加入84.5%的H2O2,20~30 ℃下加热8 h,反应结束后将反应液倒入碎冰中,乙醚反复萃取,Mg2SO4干燥,真空中浓缩得到TNP,得率为42%。但该法使用浓度较高的过氧化氢,危险系数较高,难以操作。

    Herve等[73,74,75]分别用LLM‑116和5‑氨基‑3,4‑二硝基吡唑为原料,通过H2S2O8氧化得到了TNP,前者产率可达93%,后者产率仅为37%,这是由于LLM‑116中4‑位氨基较5‑氨基‑3,4‑二硝基吡唑中5‑位氨基的空间位阻大,能有效避免分子间副反应的发生,氧化反应选择性强,故收率高。合成路线见Scheme 28。

    Scheme 28 Synthetic routes of 3, 4, 5‑TNP[73]

    Herve等[75]将5‑氨基‑3,4‑二硝基吡唑溶于20%的硫酸中,在0~10 ℃下滴入部分亚硝酸钠,搅拌1 h。然后在20 ℃下将另一部分10%的亚硝酸钠水溶液加入上述体系中,加热30 min直到氮气放出。浓硫酸中和,乙酸乙酯萃取,硫酸镁干燥,真空浓缩得到TNP,产率为80%(Scheme 29)。但重氮化过程需要中间体3,5‑DNP的进一步反应,步骤较多,会使目标物的最终收率降低。

    Scheme 29 Diazotization route of TNP[75]

    Herve等[75]又将3,5‑DNP用硝酸和20%发烟硫酸直接硝化得到TNP,产率可达94%(Scheme 30),该路线步骤较少,操作简单,产率较高,是目前合成TNP较优的方法。

    Scheme 30 Direct nitration of 3,5‑DNP to obtain TNP[75]

    2012年,Ravi等[50]以吡唑为原料,碘/碘化钾为碘化剂,在25%的氨水中搅拌24 h,使用硫酸氢钠脱色,过滤,经乙酸酸化得到3,4,5‑三碘代吡唑,然后用浓硝酸在100 ℃下回流加热40 min,反应结束后,倒入碎冰中,经碳酸钠中和、乙醚萃取、硫酸镁干燥,得到TNP,得率86%。合成路线见Scheme 31。该法提出了吡唑环上的全碳卤代,为TNP的合成开辟了新途径。但该法的碘代率较低,只有42%,且使用的碘化剂价格昂贵,反应过程中有废酸产生等,因此该法并不适用于工业化生产。

    Scheme 31 Nitrodeiodination of polyiodopyrazole to obtain TNP[50]

    2013年,Ravi等[76]又提出了用微波重排法合成TNP的新思路。研究者分别以1,3,4‑三硝基吡唑和1,3,5‑三硝基吡唑为原料,无溶剂加热重排制得TNP,合成路线见Scheme 32。其中微波条件为:反应温度120~190 ℃,功率400 W,反应时间5 min,前者得率为43%,后者得率45%。相比溶剂加热重排反应,该方法明显缩短了反应时间,避免了使用溶剂,但该法难以工业放大,仅限于小试规模研究。

    Scheme 32 Microwave methods for synthesis of TNP[76]

    2013年,Ravi等[36]分别采用硝酸铋/二氧化硅、硝酸铋/硫酸/二氧化硅、蒙脱石K‑10/硝酸铋三种消化体系,将3,5‑DNP与各硝化剂溶在四氢呋喃溶液中,室温下分别搅拌3,3,2.5 h后,过滤并悬蒸除去溶剂制得TNP,收率分别为93%,98%和95%。这种方法得率较高,且有效避免了废酸的处理,合成过程中使用的硝酸铋价廉易得、性质优良,可适用于芳香杂环化合物的硝化。

    2016年,Chuan Li等[77],以LLM‑116为原料,用浓硫酸和30%过氧化氢氧化而制得TNP。赵秀秀等[78,79]借鉴此法并对其进行了改进,以LLM‑116为原料,采用过硫酸氢钾为氧化剂,水为反应溶剂,在40 ℃下反应18 h制得TNP,得率85%,与使用浓硫酸/过氧化氢氧化体系的方法相比,该方法使用过硫酸氢钾作为氧化剂,原料价格廉价,绿色环保,反应条件温和,且得率也得到了保证,具有较大的发展前景。

    Scheme 34 Direct nitration of 1‑methylpyrazole to obtain MTNP by impregnated bismuth nitrate[82]

    2017年,吴军鹏[80]以3‑NP为原料,经过N硝化、重排、再硝化三步法合成目标产物TNP。N硝化阶段,弃用了传统合成方法所用的醋酸,采用硝酸‑醋酸酐制得1,3‑二硝基吡唑。为解决重排后中间产物不纯的问题,提出以pH酸碱萃取法为主对其进行分离提纯。再硝化阶段,采用发烟硫酸和发烟硝酸为硝化剂、通过单因素实验,确定了较佳工艺条件:3,5‑DNP、发烟硝酸、发烟硫酸的摩尔比为1∶15∶45,反应温度为110 ℃,反应时间为6 h,TNP得率最高达到80.3%。

  • 2.3.2 1‑甲基‑3,4,5‑三硝基吡唑(MTNP)

    2.3.2

    MTNP为淡黄色固体,微溶于水,易溶于有机溶剂,熔点91.5 ℃,密度1.81 g·cm-3,爆速8.65 km·s-1,爆压33.7 GPa,分解温度248~280 ℃,是一种新型不敏感高能单质炸药[81]

    Ravi等[50,81,82,83]对MTNP进行了大量合成及性能研究,将98%的H2SO4在温度低于15 ℃条件下,逐滴加入发烟硝酸中,搅拌15 min后,加入1‑甲基吡唑,升温至110 ℃,反应结束后倒入碎冰中,饱和NaHCO3中和,乙酸乙酯反复萃取并合并有机层,水和盐水洗涤,Na2SO4干燥,蒸去液体得到浅黄色固体MTNP,合成线路见Scheme 33。该法中使用了传统的混酸硝化工艺,会产生大量的废酸和废水,腐蚀性强,污染环境,治理费用高,不符合绿色化学的发展要求。

    Scheme 33 Direct nitration of 1‑methylpyrazole to obtain MTNP[81]

    Ravi等[81,82]又将1‑甲基吡唑和蒙脱石K‑10加入到浸渍在THF中的硝酸铋中,搅拌反应,结束后在真空泵下蒸去溶剂,二氯甲烷反复洗涤,浓缩得到MTNP的粗品(Scheme 34)。该法中的蒙脱石是价格廉价易得的绿色催化剂,可减少污染物的排放,降低能耗,提高资源的利用率,而硝酸铋是新型的硝化剂,其反应结束后易处理,避免了传统工艺的酸对仪器的腐蚀、同时还减少了反应的酸化产物,反应条件还温和、易控制,是目前较优的合成路线。

    Ravi等[50]以甲基吡唑、碘及乙酸、碘酸及硫酸为原料,反应得到三碘取代的产物,硝酸中硝化得到MTNP;以吡唑、碘、碘化钾和氨水为原料反应得到3,4,5‑三碘吡唑,甲基化得到1‑甲基‑3,4,5‑三碘吡唑,在硝酸的条件下的到MTNP,具体线路见Scheme 35。但该法中使用的碘、碘酸等碘化试剂价格昂贵,成本较高,且反应过程中能产生污染环境的废液,这与绿色化学的研究方向相悖。

    Scheme 35 Synthetic route of MTNP[50]

    Dalinger等[84,85]将TNP溶于NaHCO3水溶液中,用硫酸二甲酯(Me2SO4)作为甲基化试剂,20 ℃下反应7 h得到粗品MTNP,得率达95%(Scheme 36)。该法中使用的原料TNP合成步骤较多,影响反应总得率,其次使用的甲基化试剂Me2SO4有毒性,与绿色化学的研究方向相悖。

    Scheme 36 Methylating of TNP to obtain MTNP[84]

    李雅津[86]对路线Scheme 35进行了改进,在0~10 ℃恒温水浴下将碘单质溶解于乙酸中,后将溶解有碘酸的硫酸溶液与1‑甲基吡唑滴加到上述体系中,再加入CCl4,升温至80 ℃,搅拌反应2.5 h,反应结束后,将反应液倒入冰水浴中析出白色絮状沉淀,抽滤、用饱和Na2SO4和盐水冲洗、烘干,再用丙酮/水精制得到乳白色粉末状固体1‑甲基‑3,4,5‑三碘吡唑。再将1‑甲基‑3,4,5‑三碘吡唑加到硝酸中加热回流1.5 h,倒入冰水中,碳酸氢钠中和,乙醚反复萃取,Na2SO4干燥,蒸去溶剂得浅黄色固体MTNP,得率70%,合成线路见Scheme 37。该法中使用了价格昂贵的碘化试剂,且形成中间体1‑甲基‑3,4,5‑三碘吡唑的过程中,会有污染环境的废液产生,难以处理,故该法不可取。

    Scheme 37 Iodization and nitrating of 1‑methylpyrazole to obtain MTNP[86]

    郭俊玲[87]、Heng‑jie Guo[88]等以1‑甲基吡唑为原料,用硝酸和发烟硫酸一步法合成MTNP,并得到了优化的反应条件:反应温度90 ℃、反应时间6 h、摩尔比n(硝酸)∶n(发烟硫酸)=1∶8,得率为15.2%。该法原料易得,工艺简单,但对工艺设备要求较高,反应后废酸难以处理且产率偏低。此后,郭俊玲等[89]对该一步法进行了改进,采用超酸体系(发烟硫酸+硝酸钾)对1‑甲基吡唑进行硝化合成了MTNP(Scheme 38),反应条件为:n(1‑甲基吡啶)∶n(KNO3)=1∶5, 130 ℃反应4 h,反应得率30.7%。改进后的方法与混酸法相比,反应过程无NO2气体产生,废液易于处理,反应效率稍有提高,但反应收率依然不高。

    Scheme 38 One‑step synthetic route of MTNP by nitration with super acids[89]

    吴霏等[90]以1‑甲基吡唑为原料,N2O5‑发烟硫酸体系作为硝化剂,一步法硝化合成MTNP。冰水浴下称取N2O5加入到20%发烟硫酸中至N2O5完全溶解,常温下将1‑甲基吡唑缓慢加入上述N2O5‑20%发烟硫酸溶液中,温度控制在35~40 ℃,等加料完毕后油浴升温至165 ℃,反应1.5 h后降温至室温。将反应液倒入纯冰中,搅拌,过滤烘干,用乙醚萃取,苯‑正己烷重结晶,得到淡黄色晶体MTNP,得率60.32%,合成路线如Scheme 39所示。该方法反应过程平稳,反应时间缩短,收率较高,但该法中使用N2O5‑20%发烟硫酸作为硝化剂,反应条件苛刻,危险系数较高,且反应过程中会有氮氧化废气产生。因此,综合以上个路线考虑,积极寻求合成TNP的较优工艺、使用符合绿色化学要求的高效催化法合成工艺及选择低毒甲基化试剂的工艺是合成MTNP的较佳选择。

    Scheme 39 One‑step synthetic route of MTNP with N2O5/Oleum system[90]

    陶文昌[91]以吡唑为起始原料,通过硝酸/醋酐硝化体系进行硝化,硝基转位重排等步骤得到中间体3,5‑DNP,尝试了多种高沸点溶剂以及无溶剂的方法对其工艺进行了优化,探讨了温度对硝基转位重排的影响,确定了最佳反应条件:使用高沸点溶剂时,苯甲腈效果最佳,产率90%以上,反应温度180 ℃;无溶剂反应时,1‑硝基吡唑重排为3‑NP的最佳温度是180 ℃,1,3‑二硝基吡唑重排为3,5‑DNP的最佳温度是160 ℃,产率均大于99%。3,5‑DNP再用硝硫混酸硝化体系进行硝化得到TNP,最后通过硫酸二甲酯进行甲基化得到MTNP,总产率66.9%。

  • 2.3.3 1‑氨基‑3,4,5‑三硝基吡唑(ATNP)

    2.3.3

    ATNP为白色固体,熔点130.5 ℃,分解温度176~272 ℃,密度1.917 g·cm-3,爆速9.17 km·s-1,爆压40.94 GPa[92]。Herve等[75]在N2的保护下,将TNP溶解到无水乙腈中,冰水浴下加入氢化钠,室温下再加入2,4,6‑三硝基苯基羟胺,搅拌3天,反应结束后过滤,蒸干滤液,用二氧化硅纯化,得到粗品ATNP,得率为26%,合成路线见Scheme 40。

    Scheme 40 Synthetic route of ATNP[75]

  • 2.3.4 三硝基吡唑盐的合成

    2.3.4

    Scheme 41 Synthetic route of metal salts of TNP [93]

    基于TNP独特的电子效应和空间结构,以TNP为母体,通过特定的修饰和改性,可形成其含能离子盐、共价型衍生物,该类化合物也进一步拓宽了TNP的应用范围。由于受到吡唑环的立体结构和空间效应作用,TNP1号位N—H键的H会呈现一定酸性,很容易与碱发生中和反应,或与某些金属盐发生复分解反应,生成TNP含能金属盐。Drukenmuller等[93]将TNP溶解在乙醇等溶剂中,然后按化学反应计量分批加入相应的碱或金属碳酸盐,室温下搅拌12 h,分别合成了部分以TNP为母体的金属盐,合成路线见Scheme 41。

    TNP1号位N—H键的H呈现一定酸性,也容易被质子化作用形成TNP吡唑环阴离子,可以和氨、肼、胍、唑、嗪鎓等作用形成TNP非金属含能离子盐[94]。Y Zhang等[95]将相应的反应物按照化学反应计量加入到TNP水溶液中,室温下搅拌,直到变成透明溶液,反应结束后整掉多余水分,得到相应以TNP为母体的含能非金属盐((a)~(m)),合成路线见Scheme 42。TNP非金属盐普遍具有较高的密度(1.6~1.8 g·cm-3),大部分熔点范围在122~188 ℃,分解温度范围167~243 ℃,稳定性良好,爆速范围7.59~8.54 km·s-1,爆压范围24.3~31.9 GPa,爆轰性能明显优于TNT,可作为潜在的TNT替代品[94]

    Scheme 42 Synthetic route of nonmetal salts of TNP [95]

  • 3 硝基吡唑的性能及应用

    3

    部分硝基吡唑炸药与常见炸药性能如表2所示。

    表2 几种硝基吡唑类化合物和常见炸药的性能比较[34,92‑99]

    Table 2 Comparison of the performances of several nitropyrazoles and common explosives

    explosiveTm / ℃ρ / g·cm-3D / km·s-1p / GPaTdec / ℃OB / %NC / %IS / JFS / N
    3‑NP174-1751.577.0220.08-77.8837.17
    4‑NP163-1651.526.8618.81-77.8837.17
    3,4‑DNP86-881.878.1029.4296-30.3835.44
    3,5‑DNP173-1741.808.3430.67316.8-30.3835.44
    TNP188‑1901.879.0037.09260-350-3.9434.481792
    LLM‑116167‑1691.908.2429.42-32.3740.46
    3‑MNP80-831.476.6217.11-107.0933.07
    4‑MNP921.406.4215.52-107.0933.07
    3,4‑MDNP20-231.677.7625.57295-300-55.8132.56
    3,5‑MDNP601.687.7725.65-55.8132.56
    3,5‑ADNP1131.768.4330.7310-32.3740.46>40360
    MTNP91.51.818.6533.70248-280-25.8132.2670360
    ATNP130.51.929.1740.94176-272-7.3438.53
    TNP122-1881.6‑1.87.59-8.5424.3-31.9167-243
    TNT811.656.8819.5295-74.0118.5015353
    RDX205.51.828.9735.2230-21.637.87.4120
    HMX2781.929.1039.5287-21.637.87.5112
    TATB3241.938.1131.7371-55.8132.5650360
    DNAN94.51.546.74216.59366-96.9714.14
    表2
                    几种硝基吡唑类化合物和常见炸药的性能比较[34,92‑99]

    TNP is nonmetalsalts . Tm is the melting point. ρ is the density. D is the detonation velocity. p is the detonation pressure. Tdec is the decomposition temperature. OB is the oxygen balance. NC is the nitrogen content. IS is the impact sensitivity. FS is the friction sensitivity.

    表2可知,硝基吡唑氨基取代衍生物的熔点高于其甲基取代衍生物,这是因为在吡唑环上引入氨基可以形成分子内和分子间氢键,而C—H键一般不能构成氢键,由于含有分子间氢键的化合物在融化的过程中要克服巨大的非键力,导致熔点比没有氢键时的同类型化合物要高[100,101]

    此外,硝基吡唑氨基取代衍生物的热稳定性和能量特性也优于其甲基取代衍生物,这也是因为引入氨基形成分子内和分子间氢键的作用,提高了化合物的热稳定性,降低了感度,同时由于N—N键的存在,也增加了生成热和能量特性[102]。Fig.1是1‑氨基‑3,5‑二硝基吡唑(ADNP)的晶胞堆积图,从分子的晶胞堆积可以看出,ADNP中氨基上N、H原子与相邻分子之间形成较强的分子间氢键,这些氢键相互连接形成三维超分子拓扑结构,有助于增加分子稳定性。

    Fig.1 Packing of ADNP molecule in the crystal lattice[102]

    硝基吡唑及其衍生物因为具有优异的含能材料特性,因此在医药、农药、材料等众多领域都深受人们的青睐。其中,3‑NP、4‑NP、3‑MNP和4‑MNP由于只含有一个硝基,能量相对较低,因此,常用作含能材料及进一步制作其他含能材料的的中间体;3,4‑DNP的感度比TNT低(3,4‑DNP的H50为67.4 cm,大于TNT的59 cm)[16,103],密度和能量都高于TNT,且3,4‑DNP做功能力远强于TNT(3,4‑DNP的氧平衡为-25.48%,远大于TNT的-74%)[55,104],因此3,4‑DNP是作为熔铸炸药载体替代TNT的较具潜力的候选物质。理论计算表明[105],DNP与黑索今(RDX)以质量比为30∶70制备的熔铸炸药,其爆速大于7000 m·s-1,密度大于1.60 g·cm-3,具有优良的爆炸性能;3,4‑MDNP的熔点为20~23 ℃,可作为一种常温单质液体炸药使用,也可用作降低熔铸炸药熔点的液相载体,来改善熔铸炸药的力学性能和输出能量,且作为混合炸药的含能增塑剂,有望提高PBX炸药的可压性。此外,还可以添加到含铝炸药中可提高铝粉的装填量[65]。但是,由于3,4‑MDNP的熔点偏低,导致其环境适应性较差,因此在应用时要严格控制使用条件;3,5‑DNP因为分子对称分布,所以分子比较稳定,可以作为一种单质炸药,也可作为一种关键中间体用于不敏感炸药的合成;LLM‑116是一种性能优异的新型含能材料,其感度较低,能量是TATB的1.38倍,在不敏感弹药中具有潜在的应用前景。LLM‑116分子结构中存在酸性H,可以与胍、三氨基胍、脒基脲等形成有机胺盐,也可合成铅、铜、铋等重金属盐,作为推进剂的含能催化剂,调节燃速[106]。此外,LLM‑116也可以作为重要的含能中间体,与卤代硝基化合物进行缩合反应,设计、合成出新型含能化合物;TNP是至今唯一全碳硝化的可用于高威力弹药和推进剂中的芳香性炸药,其撞击感度和静电火花感度低,与NTO相当,被认为是新一代钝感高能量密度材料,但TNP熔点偏高,作为熔铸炸药,会增加熔铸的难度;TNP的衍生物作为重要的硝基吡唑类化合物,具有高密度、高能量、低感度及良好热稳定性的优点,可广泛应用于农药、医药、燃料、含能材料等领域。其中MTNP是重要的TNP衍生物之一,是一种高能钝感低熔点炸药[90],其爆轰性能与RDX相当,感度接近B炸药,在很多的炸药配方中可以代替TNT,RDX和HMX,是一种良好的可替代TNT作为熔铸炸药载体的潜在含能化合物[86];TNP金属盐燃烧会发生不同的焰色反应,燃烧过程中无烟或者低烟,可以提升颜色的色彩,此外TNP金属盐燃烧物主要是无毒无害的N2,符合环保友好的要求,可作为理想的着色剂候选化合物,在烟火技术方面有重大潜能;TNP非金属盐因具有较高的密度和含氮量,不仅具有优良的爆轰性能,而且熔点和感度较低,将有效改善传统单质炸药熔点高、机械感度高、粘结性差、压装困难等缺陷,而且该类盐燃烧或爆炸后的分解产物主要是N2,具有低特征信号和环境友好的特征,有望广泛应用在高能炸药、推进剂、气体发生剂、烟火剂等领域[93,94]

  • 4 结论与展望

    4

    多硝基吡唑及其衍生物表现出了较好的含能化合物的性能,特别是MTNP与3,4‑DNP的性能优良,其爆速比TNT分别高出1800 m·s-1和1100 m·s-1、爆压分别高出13 GPa和8 GPa,感度较低,是潜在的熔铸炸药载体。因此该类化合物在含能材料领域具有广阔的应用前景。目前多硝基吡唑及其衍生物的研究已经取得了一定成果,但仍有很多地方有待研究者继续努力探索和研究。

    (1) 多硝基吡唑化合物一般采用多步法合成,综合产率偏低,制备成本偏高、生产工艺难以实现连续化工业生产。因此,科研人员应努力探索寻找新的合成线路并优化其工艺条件,缩短反应步骤、提高反应效率,实现硝基吡唑化合物高品质化、规模化、稳定化制备。

    (2) 多硝基吡唑化合物的合成过程中采用的常规重排试剂、萃取剂及重结晶介质毒性较高且价格昂贵,尤其是极具应用前景的3,4‑DNP后处理工艺中,通常采用乙醚作为萃取剂,苯作为重结晶溶剂,增加了过程的危险性且不符合当代绿色化学的发展要求,需进一步探索绿色环保、可循环使用的高效重排试剂。

    (3) 鉴于MTNP与3,4‑DNP的性能优良,在熔铸炸药中具有广阔的应用前景,目前,需加强MTNP与3,4‑DNP的基础性能综合研究,开展其熔融‑凝固后的体积收缩特性及安全性能研究,综合评估其在熔铸炸药中的应用可行性,进而拓展其在高能钝感炸药中的应用。

  • 参考文献

    • 1

      汪营磊,姬月萍,陈斌,等.3,4‑二硝基吡唑合成与性能研究[J].含能材料,2011,19(4):377-379.

      WANG Ying‑lei,JI Yue‑ping,CHEN Bin,et al. Improved synthesis of 3,4‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011,19(4):377-379.

    • 2

      杨克明,曹端林,李永祥,等.1‑甲基‑3,5‑二硝基‑1,2,4‑三唑的合成及表征[J].含能材料,2011(6):501-504.

      YANG Ke‑ming,CAO Duan‑lin,LI Yong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,5‑dininitro‑ 1,2,4‑trazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011(6):501-504.

    • 3

      柴春鹏,甘志勇,李娜,等.3‑硝基‑1,2,4‑三唑‑5‑酮银盐的合成和热分解性能[J].火炸药学报,2011,34(2):36-38.

      CHAI Chun‑peng,GAN Zhi‑yong,LI Na,et al. Synthesis and thermal decomposition behavior of 3‑nitro‑1,2,4‑triazol‑5‑one silver salt[J].Chinese Journal of Explosives & Propellants,2011,34(2):36-38.

    • 4

      高红旭,赵凤起,胡荣祖,等.六硝基六氮杂异戊兹烷的热分解反应动力学参数和热安全性评估[J].火炸药学报,2013,36(5):41-48.

      GAO Hong‑xu,ZHAO Feng‑qi,HU Rong‑zu,et al. Estimation of the kinetic parameters of thermal decomposition reaction and thermal safety on hexanitrohexaazaisowurtzitane[J].Chinese Journal of Explosives & Propellants,2013,36(5):41-48.

    • 5

      阳世清,徐松林,雷永鹏.氮杂环含能化合物的研究进展[J].含能材料,2006,14(6):475-484.

      YANG Shi‑qing,XU Song‑lin,LEI Yong‑peng. The research progress of nitrogen heterocyclic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(6):475-484.

    • 6

      Agrawal J P, Hodgson R.Organic Chemistry of Explosives[M].John Wiley: New York, 2007: 294-296.

    • 7

      Pagoria P F,Lee J S,Mitchell A R,et al.A review of energetic materials synthesis[J].ThermochimActa, 2002,384:187.

    • 8

      Larina L, Lopyrev L.Nitroazoles:Synthesis,Structure and Applications[M].New York: Springer,2009.

    • 9

      杨雨璋.多氮含能复合物的制备及其稳定性的研究[D].北京:北京理工大学,2016.

      YANG Yu‑zhang.Study on the synthesis and stability of poly nitrogen energetic compounds[D].Beijing:Beijing Institute of Technology,2016.

    • 10

      唐伟强,任慧,焦清介,等.3,4‑二硝基吡唑的性能表征及应用[J].含能材料,2017,25(1):44-48.

      TANG Wei‑qiang,REN Hui,JIAO Qing‑jie,et al. Property characterization of 3,4‑dinitropyrazole and its application[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2017,25(1):44-48.

    • 11

      Dheeraj Kumar,Chunlin He,Lauren A. Mitchell,et al. Connecting energetic nitropyrazole and aminotetrazole moieties with N,N′‑ethylene bridges: A promising approach for fine tuning energetic properties[J].J Mater Chem A,2016,4(23):9220-9228.

    • 12

      Nagarjuna Kommu,M Balaraju,Vikas D Ghule,et al.Synthetic manifestation of nitro substituted tetrazole‑N‑(hetero)aryl derivatives and energetic studies[J].J.Mater. Chem. A,2017,5(16):7366-7371.

    • 13

      Yongxing Tang, Dheeraj Kumar, Jean'ne M Shreeve. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J].J Am Chem Soc,2017,139 (39):13684-13687.

    • 14

      Depanjan Sarkar,Anirban Som,Thalappil Pradeep. Catalytic paper spray ionization mass spectrometry with metalnanotubes and the detection of 2, 4, 6‑trinitrotoluene[J].Anal Chem,2017,89 (21) :11378-11382.

    • 15

      赵廷兴,李磊,董战,等.硝基唑类含能化合物的合成研究进展[J].有机化学,2013,34(2):304-315.

      ZHAO Ting‑xing,LI Lei,DONG Zhan,et al. Research progress on the synthesis of energetic nitroazoles[J].Chinese Journal of Organic Chemistry,2013,34(2):304-315.

    • 16

      Gao H,Shreeve J M.Azole‑based energetic salts[J].Chemical Reviews,2011,111(11):7377-7436.

    • 17

      李翠屏,孙天旭,陈新志.3‑硝基吡唑的合成[J]. 染料与染色,2004,41(3):168-169.

      LI Cui‑ping,SUN Tian‑xu,CHEN Xin‑zhi. Synthesis of 3‑nitropyrazole[J].Dyestuffsand Coloration,2004,41(3):168-169.

    • 18

      Adrian Huang,Kellie Wo,So Yeun Christine Lee,et al. Regioselective synthesis,NMR,and crystallographic analysis of N1‑substituted pyrazoles[J].J Org Chem,2017,82(17):8864-8872.

    • 19

      Lahm G P,Cordova D,Barry J D. New and selective ryanodine receptor activators for insect control[J]. Bioorganic & Medicinal Chemistry,2009,17(12):4127-4133.

    • 20

      Mowbray C E,Burt C,Corbau R,et al. Pyrazole NNRTIs 4: selection of UK‑453,061(lersivirine)as adevelopment candidate[J].Bioorganic and Medicinal Chemistry Letters,2009,19 (20):5857-5860.

    • 21

      Emma Cavero,Santiago Uriel,Pilar Romero,et al. Tetrahedral zinc complexes with liquid crystalline and luminescent properties: interplay between nonconventional molecular shapes and supramolecular mesomorphic order[J].JAmChemSoc,2007,129(37),11608-11618.

    • 22

      王凤.5‑氨基吡唑、1,2,4‑吡唑膦衍生物及其CuⅡ、FeⅡ配合物的合成与结构研究[D].太原:山西师范大学,2014.

      WANG Feng.Synthesis and Structural Research of 5‑Amino Pyrazole, 1,2,4,‑Diazaphospholes Derivatives and CuⅡ, FeⅡ Metal Complese[D]:Taiyuan: Shanxi Normal University,2014.

    • 23

      Janssen J W A M,Koeners H J. The preparation of 3(5)‑nitrepyrazoles by thermal rearran‑ gement of N‑nitropyrazoles[J].J Org Chem,1973,38(10):1777-1782.

    • 24

      Price D,Morris J. Synthesis of new energetic melt‑pour candidates[C]//Insensitive Munitions and Energetic Materials Technology Symposium,2009.

    • 25

      Verbruggen R,Viehe H G. Cycloaddition with 2‑chloro‑1‑nitroethelene[J].Chimia,1975,29(8):350-352.

    • 26

      李洪丽,熊彬,姜俊,等.3‑硝基吡唑及其盐类的合成与表征[J].火炸药学报,2007,31 (2):102-108.

      LI Hong‑li,XIONG Bin,JIANG Jun,et al. Synethsi and characterization of 3‑nitropyrazole and its salts[J]. Chinese Journal of Explosives & Propellants,2007,31(2):102-108.

    • 27

      田新,李金山,王军.3,4‑二硝基吡唑的合成[J].合成化学,2012,20(1):117-122.

      TIAN Xin,LI Jin‑shan,WANG Jun. Synthesis of 3,4‑dinitropyrazoles[J].Chinese Journal of Synthetic Chemistry,2012,20(1):117-122.

    • 28

      Hüttel R,Büchele F.Uber N‑nitro‑pyrazole[J].Chemische Berichte,1955,88(10):1586-1590.

    • 29

      Kanishchev M I,Korneeva N V,Shevelev S A,et al.Nitropyrazoles(Review)[M].Plenum Publishing Corporation,1988:435-453.

    • 30

      Rao E N,Ravi P,Tewari S P. Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles[J].Journal of Molecular Structure,2013(1043):121-131.

    • 31

      Ravi P.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles[J].Journal of Molecular Structure,2015,1079:433-447.

    • 32

      Senomyx Inc,Karanewsky Donald S,Fotsing Joseph R,et al.Identification of human T2R receptors that respond to bitter compounds that elicit the bitter taste in compositions, and the use thereof in assays to identify compounds that inhibit (block) bitter taste in compositions and use thereof: US9247759[P],2016.

    • 33

      李永祥,党鑫,曹端林,等.4‑硝基吡唑的一锅两步法合成及其晶体结构[J].含能材料,2018, 26(5):404 409.

      LI Yong‑xiang,DANG Xin,CAO Duan‑lin,et al. One‑pot two steps synthesis of 4‑nitropyrazole and its crystal structure[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2018,26(5):404-409.

    • 34

      郭俊玲,曹端林,王建龙,等.硝基吡唑类化合物的合成研究进展[J].含能材料,2014,22(6): 872-879.

      GUO Jun‑ling,CAO Duan‑lin,WANG Jian‑long,et al.Review on synthesis of nitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2014,22(6):872-879.

    • 35

      Katritzky A R,Scriven E F V,Majumder S,et al. Direct nitration of five membered heterocycles[J]. Arkivoc(ⅲ),2005,36(10):179-191.

    • 36

      Ravi P,Gore G M,Tewari S P,et al. A simple and environmentally benign nitration of pyrazoles by impregn nitration of pyrazoles by impregnated bismuth nitrate[J].Journal of HeterocyclicChemistry,2013,50(6):1322-1327.

    • 37

      J DONG ,B ZHONG,H YUAN,et al.Alk kinase inhibitor, and preparation method and use thereof:WO 201580685 A1[P],2017.

    • 38

      郭恒杰,曹端林,李永祥.1‑甲基‑3,4,5‑三硝基吡唑合成工艺研究进展[J].云南化工,2018, 45(5):88-90.

      GUO Heng‑jie,CAO Duan‑lin,LI Yong‑xiang. Prospect on studying 1‑methyl‑3,4,5‑trinitro‑pyrazole synthesis[J].Yunnan Chemical Technology,2018,45(5):88-90.

    • 39

      R Corte,I LUCCA De Fang,et al. Macrocycles with Hetrocyclic P2' Groups as Factor Xia Inhibitors: WO2015116886 A1 [P],2015.

    • 40

      Ioannidis Stephanos,Talbot Adam Charles,Follows Bruce,et al. Pyrrolo and Pyrazolo‑Pyrimidines as Ubiquitin‑specific Protease 7 Inhibitors: US2016185785A1[P],2016.

    • 41

      Su Jin Han,Hyun Tae Kim,Jung Min Joo. Direct C‑H alkenylation of functionalized pyrazoles[J].J Org Chem,2016,81:689-698.

    • 42

      BiffinM E C, BrownDJ,PorterQ N.A novel route from 4‑methoxy‑5‑nitropyrimi‑nitropyrimi‑dine to 3‑amino‑4‑nitropyrazole and pyrazolo[3,4‑b]pyra‑zine[J].Terahedron Lett,1967,21(8):2029-2031.

    • 43

      Biffin M E C,Brown D J, Porter Q N. Pyrimidine reactions.PartⅩⅧ.The conversion of 4‑methoxy‑5‑nitropyri‑mideine into 3‑amino‑4‑nitropyrazole by hydrazine[J].J Chem Soc(C),1968, 17:2159-2162.

    • 44

      Shevelev S A,Vinogradov V M,Dalinger I L,et al. Nitropyrazoles 8. 3(5)‑amino‑4‑nitropyra‑ zoles:convenient synthesis and study of nitration[J].Russian Chemical Bulletin,1993,42(11):1861-1864.

    • 45

      LatypovNV,SilevichVA,IvanovPA,et al. Diazotization ofaminonitropyrazoles[J].Chemistry of Hetero‑cyclic Compounds,1976,12(12):1355-1359.

    • 46

      Vinogradov V M, Cherkasova T I, Dalinger I L, et al. Nitropyrazoles 5. Synthesis of substituted 3‑nitropyra‑zoles from 3‑amino‑4‑cyanopyrazole[J].Russian Chemical Bulletin,1993, 42(9):1552-1554.

    • 47

      汪营磊,姬月萍,葛忠学,等.一锅法合成3,4‑二硝基吡唑.含能材料与钝感弹药技术学术研讨会论文集[C]//三亚,2012:172-175.

      WANG Ying‑lei,JI Yue‑ping,GE Zhong‑xue,et al. Synthesis and Properties of 3,4‑Dinitropyrazole. Symposium Proceedings of Energetic Materials and Insensitive Munitions Technology[C]//Sanya, 2012:172-175.

    • 48

      刘威,李永祥.3,4‑二硝基吡唑合成工艺研究展望[J].江西化工,2015(5):8-12.

      LIU Wei,LI Yong‑xiang. Prospect on studying 3,4‑nitropyrazole synthesis[J].Jiangxi Chemical Industry, 2015(5):8-12.

    • 49

      Stefan E K.Derivatives of 3(5),4‑dinitropyrazole as potential energetic plasticisers[J].Chem Eng,2011,26(5):929-935.

    • 50

      Ravi P,Koti Reddy C K,Saikia A,et al. Nitrodeiodination of polyiodopyrazoles[J].Propellants, Explosives, Pyrotechnics,2012,37(2):167-171.

    • 51

      田新.3,4‑二硝基吡唑合成及性能研究[D].北京:中国工程物理研究院,2012.

      TIAN Xin.Improved synthesis of 3,4‑dinitropyrazole[D].Bei jing:China Academy of Engineer Physic,2012.

    • 52

      田新,李金山.3,4‑二硝基吡唑热分解及非等温动力学[J].化学研究与应用,2013,25(2): 206-209.

      TIAN Xin,LI Jin‑shan. Thermal decomposition and non‑isothermal kinetics of 3,4‑dinitropyrazole[J].Chemical Research and Application,2013,25(2):206-209.

    • 53

      杜闪.3,4‑二硝基吡唑的合成及其性能研究[D].太原:中北大学, 2012.

      DU Shan.Synthesis and properties of 3,4‑dinitropyrazole[D].Taiyuan:North University of China,2012.

    • 54

      杜闪,李永祥,王建龙,等.3,4‑二硝基吡唑合成方法及性能研究综述[J].化学研究,2011, 22(5):106-110.

      DU Shan,LI Yong‑xiang,WANG Jian‑long,et al. Review for synthetic method and properties of 3,4‑dinitro‑ pyrazole[J].Chemical Research,2011,22(5):106-110.

    • 55

      李永祥,曹端林,王建龙.三种新型低熔点炸药的合成及表征[J].兵工学报,2013,34(1):36-40.

      Li Yong‑xiang,CAO Duan‑lin,WANG Jian‑long. Synthesis and characterization studies on novel three explosives with low melting point[J].Journal of China Ordnance,2013,34(1):36-40.

    • 56

      曹端林,李雅津,杜耀,等.熔铸炸药载体的研究评述[J].含能材料,2013,21(2):157‑165.

      CAO Duan‑lin,LI Ya‑jin,DU Yao,et al. Review on carriers for melt‑cast explosives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2):157-165.

    • 57

      张巧玲,李雅津,焦清介,等.1‑甲基‑3,4‑二硝基吡唑合成与表征[J].含能材料,2015,23(3): 222-225.

      ZHANG Qiao‑ling,LI Ya‑jin,JIAO Qing‑jie,et al. Optim ization on synthesis process and characterization of 1‑methyl‑3,4‑dinitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3)3:222-225.

    • 58

      朱翔.微通道反应器中3,4‑二硝基吡唑合成工艺研究[D].南京:南京理工大学,2017.

      ZHU Xiang.Study on the synthetical of 3,4‑bisnitropyrazole in microreactor[D].Nanjing:Nanjing University of Science & Technology,2017.

    • 59

      汪营磊,张志忠,王伯周,等.3,5‑二硝基吡唑合成研究[J].含能材料,2007,15(6):574-576.

      WANG Ying‑lei,ZHANG Zhi‑zhong,WANG Bo‑zhou,et al.Synthesis of 3,5‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2007,15(6):574‑576.

    • 60

      成健.不同硝化体系中3,5‑二硝基吡唑的合成[D].南京:南京理工大学,2007.

      CHENG Jian. Synthesis of 3,5‑Dinitropyrazole under different nitrification system[D].Nanjing:Nanjing University of Science and Technology,2007.

    • 61

      周智明,陶文昌,章军.一种1‑甲基‑3,4,5‑三硝基吡唑(MTNP)中间体3,5‑二硝基吡唑的高选择性、高产率的无溶剂制备方法:CN105669557A[P],2016.

      ZHOU Zhi‑ming,TAO Wen‑chang,ZHANG Jun. High‑selectivity and high‑yield non‑solvent preparation method of 1‑methyl‑3,4,5‑trinitropyrazole (MTNP) intermediate 3,5‑dinitropyrazole:CN105669557A[P],2016.

    • 62

      刘伟,王建龙,曹端林,等.3,5‑二硝基吡唑的合成工艺研究[J].应用化工,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.

      LIU Wei,WANG Jian‑long,CAO Duan‑lin,et al.Synthesis of 3, 5‑dinitropyrazole[J]. Applied Chemical Industry,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.

    • 63

      Katritzky A R.Physical methods in heterocyelic chemistry[M].New York:Academic Press,1974.

    • 64

      李永祥,曹端林,王建龙,等.一种1‑甲基‑3,4‑二硝基吡唑的制备方法:CN103467381A[P],2013.

      LI Yong‑xiang,CAO Duan‑lin,WANG Jian‑long,et al. A preparation method of 1‑methyl‑3,4‑dinitropyrazole: CN103467381A[P],2013.

    • 65

      李永祥,郭俊玲,宋磊,等.1‑甲基‑3,4‑二硝基吡唑的合成、性能及晶体结构[J].火炸药学报,2015,38(3):64-68.

      LI Yong‑xiang,GUO Jun‑ling,SONG Lei,et al. Synthesis,performance and crystal structure of 1‑methyl‑ 3,4‑dinitropyrazole[J]. Chinese Journal of Explosives & Propellants,2015,38(3):64-68.

    • 66

      Zaitsev AA,DalingerI L,ShevelevS A.Dinitropyrazoles[J].Russian Chemical Reviews,2009, 78(7):589-627.

    • 67

      Schmidt R D,Lee G S,Pagoria P F. Synthesis and properties of a new explosive 4‑amino‑3,5‑ dinitro‑1H‑pyrazole(LLM‑116),UCRL‑ID‑148510[R].Livermore:Lawrence Livermore National Laboratory,2001.

    • 68

      Schmidt R D,Lee G S,Pagoria P F,et al. Sythesis of 4‑amino‑3,5‑dinitro‑1H‑pyrazole using vicarious nucleophilic substitution of hydrogen[J].J Heterocyclic Chem,2001,38:1227-1230.

    • 69

      汪营磊,张志忠,王伯周,等.VNS反应合成LLM‑116[J].火炸药学报,2007,30(6):20-23.

      WANG Ying‑lei,ZHANG Zhi‑zhong,WANG Bo‑zhou,et al.Synthesis of LLM‑116 by VNS reaction[J]. Chinese Journal of Explosives&Propellants,2007,30(6):20-23.

    • 70

      Stefan E K,Nikolaj V Latypova.Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51:1621-1627.

    • 71

      Man Zhang,Huiqi Gao,Chuan Li,et al. Towards improved explosives with a high performance: N‑(3,5‑dinitro‑1H‑pyrazol‑4‑yl)‑1H‑tetrazol‑5‑amine and its salts[J].J Mater Chem A,2017,5:1769-1777.

    • 72

      Dalinger I L,Popova G P,Vatsadze I A,et al. Synthesis of 3,4,5‑trinitropyrazole[J].Russ Chem Bul,2009,58(10):2185.

    • 73

      Herve G. Dinitropyrazole derivatives,their preparation and energetic compositions comorising them: US 8440839[P], 2013.

    • 74

      Stefan Ek,Nikolaj V Latypov. Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51(6):1621-1627.

    • 75

      Herve G,Roussel C,Graindorge H.Selective preparation of 3,4,5‑trinitro‑1H‑pyrazole:A stable all‑carbon‑nitrated arene[J].Angew Chem Int Ed,2010,49(18):3177-3181.

    • 76

      Ravi P,Tewari S P. Solvent free microwave assisted isomerization of N‑nitropyazoles[J].Propellants, Explosives,Pyrotechnics,2013,38(1):147-151.

    • 77

      Chuan Li,Man Zhang,Qishan Chen,et al. 1‑(3,5‑Dinitro‑1H‑pyrazol‑4‑yl)‑3‑nitro‑1H‑1,2,4‑triazol‑5‑amine (HCPT) and its energetic salts:highly thermally stable energetic materials with high‑performance[J].Dalton Trans,2016,45:17956-17965.

    • 78

      Zhao X,Zhang J C,Li S H,et al. A green and facile approach for synthesis of nitro heteroaromatics in water[J]. Organic Process Research & Development,2014,18(7):886-890

    • 79

      赵秀秀.硝基唑类含能化合物的合成与反应性研究[D].北京:北京理工大学,2016.

      ZHAO Xiu‑xiu. Synthesis and reactivity of nitrozoles energetic compounds[D].Beijing:Beijing Institute of Technology,2016.

    • 80

      吴军鹏.3,4,5‑三硝基吡唑的合成研究及其与苦基氯缩合反应探索[D].太原:中北大学,2017.

      WU Jun‑peng. Study on synthesis of 3,4,5‑trinitro‑1H‑pyrazole and exploration its condensation reaction with picryl chloride[D].Taiyuan:North University of China,2017.

    • 81

      Ravi P,Girish G M,Sikder A K,et al. Thermal decomposition kinetics of 1‑methyl‑3,4,5‑trinitropyrzole[J]. Thermochimica Acta,2012,528(2):53-57.

    • 82

      Ravi P,Tewari S P. Facile and environmentally friendly synthesis of nitropyrazoles using montmorillonite K‑10 impregnated with bismuth nitrate[J].Catalysis Communications,2012,19(19):37-41.

    • 83

      Ravi P,Tewari S P.Faujasite catalyzed nitrodeiodination of iodopyrazoles[J].Catalysis Communications,2013, 42(23):35-39.

    • 84

      Dalinger I L,Vatsadze I A,Shkineva T K,et al. The specific reactivity of 3,4,5‑trinitro‑1H‑pyrazole[J].Mendeleev Commun,2010,20(5):253-254.

    • 85

      Dalinger I L,Vatsadze I A,Shkineva T K,et al. Synthesis and comparison of the reactivity of 3,4,5‑1H‑Trinitropyrazole and Its N‑methyl derivative[J].Journal of Heterocyclic Chemistry,2013,50(4): 911-924.

    • 86

      李雅津,曹端林,李永祥,等.1‑甲基‑3,4,5‑三硝基吡唑的合成与表征[J].火炸药学报,2013, 36(3):28-30.

      LI Ya‑jin,CAO Duan‑lin,LI Yong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,4,5‑trinitropyra‑zoles[J].Chinese Journal of Explosives & Propellants,2013,36(3):28-30.

    • 87

      郭俊玲,李永祥,王建龙,等.1‑甲基‑3,4,5‑三硝基吡啶的一步法合成及热性能[J].含能材料,2015,23(3):304-306.

      GUO Jun‑ling,LI Yong‑xiang,WANG Jian‑long,et al. One‑step synthesis and thermal behavior of 1‑methy‑ 3,4,5‑trinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3):304-306.

    • 88

      Heng‑jie Guo,Xin Dang,FengYang,et al. Solubility and thermodynamic properties of a kind of explosives in four binary solvents[J].Journal of Molecular Liquids, 2017,247:313-327.

    • 89

      郭俊玲,李永祥,王建龙,等.超酸消化法合成1‑甲基‑3,4,5‑三硝基吡吡唑[J].合成化学,2015,23(2):161-163.

      GUO Jun‑ling,LI Yong‑xiang,WANG Jian‑long,et al. Synthesis of 1‑Methl‑3,4,5‑trinitropyrazole by Nitration with Super Acids[J].Chinese Journal of Synthetic Chemistry,2015,23(2):161-163.

    • 90

      吴霏,李永祥,郝彩丽,等.N2O5/发烟硫酸体系一步法合成1‑甲基‑3,4,5‑三硝基吡唑[J].含能材料,2016,24(6):618-620.

      WU Fei,LI Yong‑xiang,HAO Cai‑li,et al. One Step Synthesis of MTNP with N2O5/oleum system[J]. Chinese Journal Energetic Materia(Hanneng Cailiao),2016,24(6):618-620.

    • 91

      陶文昌.1‑甲基‑3,4,5‑三硝基吡唑(MTNP)的制备及性能[D].北京:北京理工大学,2016.

      TAO Wen‑chang.Preparation and Properties of 1‑Methyl‑3,4,5‑Trinitropyrazole (MTNP)[D].Beijing:Beijing Institute of Technology,2016.

    • 92

      王军,景梅,张晓玉,等.硝基二唑炸药爆炸参数的经验计算(Ⅱ)[J].含能材料,2013,21(5): 609-611.

      WANG Jun,JING Mei,ZHANG Xiao‑yu,et al. Empirical calculation of the explosive prameters of nitrodiazole explosives(Ⅱ)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2013,21(5):609-611

    • 93

      Drukenmuller I E,Klapotke T M,Morgenstern Y,et al. Metal salts of dinitro‑,trinitropyrazole,and trinitroimi‑ dazole[J].Zeitschrift fur Anorganische und Allgemeine Chemie,2014,640(11):2139-2149.

    • 94

      吴军鹏,曹端林,王建龙,等.3,4,5‑三硝基吡唑及其衍生物的研究进展[J].含能材料,2016,24(11):1121-1130.

      WU Jun‑peng,CAO Duan‑lin,WANG Jian‑long,et al. Progress on 3,4,5‑trinitro‑1H‑pyrazole and its derivatives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2016,24(11):1121-1130.

    • 95

      Y Zhang,Y Guo,Y H Joo,et al. 3,4,5‑trinitropyrazole‑based energetic salts[J].Chemistry‑a European Journal,2010,16(35):10778-10784.

    • 96

      Yanqiang Zhang,Yangen Huang,Damon A.Parrish,et al.4‑Amino‑3,5‑dinitropyrazolatesalts—highly insensitive energetic materials[J].Journal of Materials Chemistry,2011,21,6891-6897.

    • 97

      Ping Yin,Jiaheng Zhang,Chunlin H,et al. Polynitro‑substituted pyrazoles and triazoles as potential energetic materials and oxidizers[J]. J Mater Chem A,2014(2): 3200-3208.

    • 98

      X X Zhao,S H Li,Y Wang,et al. Design and synthesis of energetic materials towards high density and positive oxygen balance by N‑dinitromethyl functionalization of nitroazoles[J]. J Mater Chem A,2016(4): 5495-5504.

    • 99

      Ya Jin Li,Yong Xiang Li,Yan Hong Wang,et al. Theoretical calculation of the detonation parameters of nitropyrazolesexplosives[J]. Advanced Materials Research,2014,853:395-400.

    • 100

      Yalkowsky S H. Carnelley's rule and the prediction of melting point[J].Journal of Pharmaceutical Sciences,2014,103(9):2629-2634.

    • 101

      闫涛,王建华,刘玉存,等.二唑类熔铸炸药载体的分子设计[J].含能材料,2016,24(2):202-208.

      YAN Tao,WANG Jian‑hua,LIU Yu‑cun,et al. Molecular design of diazole carriers for melt‑cast explosives[J]. Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(2):202-208.

    • 102

      蒋涛,张晓玉,景梅,等.1‑氨基‑3,5‑二硝基吡唑的合成、晶体结构及热性能[J].含能材料,2014,22(5):654‑657.

      JIANG Tao,ZHANG Xiao‑yu,JING Mei,et al. Synthesis, crystal structure and thermal property of 1‑amino‑3,5‑dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2014,22(5):654-657.

    • 103

      尹磊,张至斌,张建国,等.3,4‑二硝基吡唑的晶体结构[J].含能材料,2016,24(10):965-968.

      YI Lei,ZHANG Zhi‑bin,ZHANG Jian‑guo,et al. Crystal Structure of 3,4‑Dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(10):965-968.

    • 104

      杜闪,赵家乐,李永祥,等.熔铸炸药载体的研究进展及其性能比较[J].化工中间体,2011(6):32-35.

      DU Shan,ZHAO Jia‑le,LI Yong‑xiang,et al. Study progress on melt‑cast explosives carriers and comparition of their performance[J].Chenmical Intermediate,2011(6):32-35.

    • 105

      Reddy D,Surapaneni C R,Nathaniel Get al. Melt‑cast explosive material: US7304164B1[P],2007.

    • 106

      王伯周,汪营磊,张志忠,等.4‑氨基‑3,5‑二硝基吡唑(LLM‑116)缩合物的合成与表征[J].含能材料,2009,17(3):293-295.

      WANG BO‑zhou,WANG Ying‑lei,ZHANG Zhi‑zhong,et al.Synthesis and characterization of 4‑amino‑ 3,5‑dinitropyrazole(LLM‑116) condensation products[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2009,17(3): 293-295.

潘永飞

机 构:西安近代化学研究所,陕西 西安 710065

邮 箱:lovepyf@163.com

作者简介:潘永飞(1986-),男,助理研究员,从事含能材料合成研究。e‑mail:lovepyf@163.com

汪营磊

机 构:西安近代化学研究所,陕西 西安 710065

角 色:通讯作者

邮 箱:wangyl204@163.com

赵宝东

机 构:西安近代化学研究所,陕西 西安 710065

高福磊

机 构:西安近代化学研究所,陕西 西安 710065

陈斌

机 构:西安近代化学研究所,陕西 西安 710065

刘亚静

机 构:西安近代化学研究所,陕西 西安 710065

via 4‑NP

(cf. Scheme 24)

via 3,5‑DNP

(cf. Scheme 25)

from

3,5‑dimethyl‑

pyrazole

(cf. Scheme 26)

from

4‑chloropyrazole

(cf. Scheme 27)

four stepsfive stepssix stepstwo steps

moderate

amount

of waste

moderate

amount

of waste

high amount of

waste

small amount

of waste

no unfavorable

solvents

required

DMSO used

in the last step

no unfavorable

solvents

required

no unfavorable

solvents required

overall yield,

40 %

overall yield,

21 %

overall yield ,

37%

overall yield ,61%
explosiveTm / ℃ρ / g·cm-3D / km·s-1p / GPaTdec / ℃OB / %NC / %IS / JFS / N
3‑NP174-1751.577.0220.08-77.8837.17
4‑NP163-1651.526.8618.81-77.8837.17
3,4‑DNP86-881.878.1029.4296-30.3835.44
3,5‑DNP173-1741.808.3430.67316.8-30.3835.44
TNP188‑1901.879.0037.09260-350-3.9434.481792
LLM‑116167‑1691.908.2429.42-32.3740.46
3‑MNP80-831.476.6217.11-107.0933.07
4‑MNP921.406.4215.52-107.0933.07
3,4‑MDNP20-231.677.7625.57295-300-55.8132.56
3,5‑MDNP601.687.7725.65-55.8132.56
3,5‑ADNP1131.768.4330.7310-32.3740.46>40360
MTNP91.51.818.6533.70248-280-25.8132.2670360
ATNP130.51.929.1740.94176-272-7.3438.53
TNP122-1881.6‑1.87.59-8.5424.3-31.9167-243
TNT811.656.8819.5295-74.0118.5015353
RDX205.51.828.9735.2230-21.637.87.4120
HMX2781.929.1039.5287-21.637.87.5112
TATB3241.938.1131.7371-55.8132.5650360
DNAN94.51.546.74216.59366-96.9714.14
html/hncl/CJEM2018097/media/e7e726ee-9189-4dff-aae5-d8e2b97de607-image041.png

表1 四种合成LLM‑116方法的简要比较[70]

Table 1 A brief comparison of four kinds of synthetic procedures for LLM‑116

表2 几种硝基吡唑类化合物和常见炸药的性能比较[34,92‑99]

Table 2 Comparison of the performances of several nitropyrazoles and common explosives

image /

无注解

无注解

TNP is nonmetalsalts . Tm is the melting point. ρ is the density. D is the detonation velocity. p is the detonation pressure. Tdec is the decomposition temperature. OB is the oxygen balance. NC is the nitrogen content. IS is the impact sensitivity. FS is the friction sensitivity.

无注解

  • 参考文献

    • 1

      汪营磊,姬月萍,陈斌,等.3,4‑二硝基吡唑合成与性能研究[J].含能材料,2011,19(4):377-379.

      WANG Ying‑lei,JI Yue‑ping,CHEN Bin,et al. Improved synthesis of 3,4‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011,19(4):377-379.

    • 2

      杨克明,曹端林,李永祥,等.1‑甲基‑3,5‑二硝基‑1,2,4‑三唑的合成及表征[J].含能材料,2011(6):501-504.

      YANG Ke‑ming,CAO Duan‑lin,LI Yong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,5‑dininitro‑ 1,2,4‑trazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2011(6):501-504.

    • 3

      柴春鹏,甘志勇,李娜,等.3‑硝基‑1,2,4‑三唑‑5‑酮银盐的合成和热分解性能[J].火炸药学报,2011,34(2):36-38.

      CHAI Chun‑peng,GAN Zhi‑yong,LI Na,et al. Synthesis and thermal decomposition behavior of 3‑nitro‑1,2,4‑triazol‑5‑one silver salt[J].Chinese Journal of Explosives & Propellants,2011,34(2):36-38.

    • 4

      高红旭,赵凤起,胡荣祖,等.六硝基六氮杂异戊兹烷的热分解反应动力学参数和热安全性评估[J].火炸药学报,2013,36(5):41-48.

      GAO Hong‑xu,ZHAO Feng‑qi,HU Rong‑zu,et al. Estimation of the kinetic parameters of thermal decomposition reaction and thermal safety on hexanitrohexaazaisowurtzitane[J].Chinese Journal of Explosives & Propellants,2013,36(5):41-48.

    • 5

      阳世清,徐松林,雷永鹏.氮杂环含能化合物的研究进展[J].含能材料,2006,14(6):475-484.

      YANG Shi‑qing,XU Song‑lin,LEI Yong‑peng. The research progress of nitrogen heterocyclic compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(6):475-484.

    • 6

      Agrawal J P, Hodgson R.Organic Chemistry of Explosives[M].John Wiley: New York, 2007: 294-296.

    • 7

      Pagoria P F,Lee J S,Mitchell A R,et al.A review of energetic materials synthesis[J].ThermochimActa, 2002,384:187.

    • 8

      Larina L, Lopyrev L.Nitroazoles:Synthesis,Structure and Applications[M].New York: Springer,2009.

    • 9

      杨雨璋.多氮含能复合物的制备及其稳定性的研究[D].北京:北京理工大学,2016.

      YANG Yu‑zhang.Study on the synthesis and stability of poly nitrogen energetic compounds[D].Beijing:Beijing Institute of Technology,2016.

    • 10

      唐伟强,任慧,焦清介,等.3,4‑二硝基吡唑的性能表征及应用[J].含能材料,2017,25(1):44-48.

      TANG Wei‑qiang,REN Hui,JIAO Qing‑jie,et al. Property characterization of 3,4‑dinitropyrazole and its application[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2017,25(1):44-48.

    • 11

      Dheeraj Kumar,Chunlin He,Lauren A. Mitchell,et al. Connecting energetic nitropyrazole and aminotetrazole moieties with N,N′‑ethylene bridges: A promising approach for fine tuning energetic properties[J].J Mater Chem A,2016,4(23):9220-9228.

    • 12

      Nagarjuna Kommu,M Balaraju,Vikas D Ghule,et al.Synthetic manifestation of nitro substituted tetrazole‑N‑(hetero)aryl derivatives and energetic studies[J].J.Mater. Chem. A,2017,5(16):7366-7371.

    • 13

      Yongxing Tang, Dheeraj Kumar, Jean'ne M Shreeve. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J].J Am Chem Soc,2017,139 (39):13684-13687.

    • 14

      Depanjan Sarkar,Anirban Som,Thalappil Pradeep. Catalytic paper spray ionization mass spectrometry with metalnanotubes and the detection of 2, 4, 6‑trinitrotoluene[J].Anal Chem,2017,89 (21) :11378-11382.

    • 15

      赵廷兴,李磊,董战,等.硝基唑类含能化合物的合成研究进展[J].有机化学,2013,34(2):304-315.

      ZHAO Ting‑xing,LI Lei,DONG Zhan,et al. Research progress on the synthesis of energetic nitroazoles[J].Chinese Journal of Organic Chemistry,2013,34(2):304-315.

    • 16

      Gao H,Shreeve J M.Azole‑based energetic salts[J].Chemical Reviews,2011,111(11):7377-7436.

    • 17

      李翠屏,孙天旭,陈新志.3‑硝基吡唑的合成[J]. 染料与染色,2004,41(3):168-169.

      LI Cui‑ping,SUN Tian‑xu,CHEN Xin‑zhi. Synthesis of 3‑nitropyrazole[J].Dyestuffsand Coloration,2004,41(3):168-169.

    • 18

      Adrian Huang,Kellie Wo,So Yeun Christine Lee,et al. Regioselective synthesis,NMR,and crystallographic analysis of N1‑substituted pyrazoles[J].J Org Chem,2017,82(17):8864-8872.

    • 19

      Lahm G P,Cordova D,Barry J D. New and selective ryanodine receptor activators for insect control[J]. Bioorganic & Medicinal Chemistry,2009,17(12):4127-4133.

    • 20

      Mowbray C E,Burt C,Corbau R,et al. Pyrazole NNRTIs 4: selection of UK‑453,061(lersivirine)as adevelopment candidate[J].Bioorganic and Medicinal Chemistry Letters,2009,19 (20):5857-5860.

    • 21

      Emma Cavero,Santiago Uriel,Pilar Romero,et al. Tetrahedral zinc complexes with liquid crystalline and luminescent properties: interplay between nonconventional molecular shapes and supramolecular mesomorphic order[J].JAmChemSoc,2007,129(37),11608-11618.

    • 22

      王凤.5‑氨基吡唑、1,2,4‑吡唑膦衍生物及其CuⅡ、FeⅡ配合物的合成与结构研究[D].太原:山西师范大学,2014.

      WANG Feng.Synthesis and Structural Research of 5‑Amino Pyrazole, 1,2,4,‑Diazaphospholes Derivatives and CuⅡ, FeⅡ Metal Complese[D]:Taiyuan: Shanxi Normal University,2014.

    • 23

      Janssen J W A M,Koeners H J. The preparation of 3(5)‑nitrepyrazoles by thermal rearran‑ gement of N‑nitropyrazoles[J].J Org Chem,1973,38(10):1777-1782.

    • 24

      Price D,Morris J. Synthesis of new energetic melt‑pour candidates[C]//Insensitive Munitions and Energetic Materials Technology Symposium,2009.

    • 25

      Verbruggen R,Viehe H G. Cycloaddition with 2‑chloro‑1‑nitroethelene[J].Chimia,1975,29(8):350-352.

    • 26

      李洪丽,熊彬,姜俊,等.3‑硝基吡唑及其盐类的合成与表征[J].火炸药学报,2007,31 (2):102-108.

      LI Hong‑li,XIONG Bin,JIANG Jun,et al. Synethsi and characterization of 3‑nitropyrazole and its salts[J]. Chinese Journal of Explosives & Propellants,2007,31(2):102-108.

    • 27

      田新,李金山,王军.3,4‑二硝基吡唑的合成[J].合成化学,2012,20(1):117-122.

      TIAN Xin,LI Jin‑shan,WANG Jun. Synthesis of 3,4‑dinitropyrazoles[J].Chinese Journal of Synthetic Chemistry,2012,20(1):117-122.

    • 28

      Hüttel R,Büchele F.Uber N‑nitro‑pyrazole[J].Chemische Berichte,1955,88(10):1586-1590.

    • 29

      Kanishchev M I,Korneeva N V,Shevelev S A,et al.Nitropyrazoles(Review)[M].Plenum Publishing Corporation,1988:435-453.

    • 30

      Rao E N,Ravi P,Tewari S P. Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles[J].Journal of Molecular Structure,2013(1043):121-131.

    • 31

      Ravi P.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles[J].Journal of Molecular Structure,2015,1079:433-447.

    • 32

      Senomyx Inc,Karanewsky Donald S,Fotsing Joseph R,et al.Identification of human T2R receptors that respond to bitter compounds that elicit the bitter taste in compositions, and the use thereof in assays to identify compounds that inhibit (block) bitter taste in compositions and use thereof: US9247759[P],2016.

    • 33

      李永祥,党鑫,曹端林,等.4‑硝基吡唑的一锅两步法合成及其晶体结构[J].含能材料,2018, 26(5):404 409.

      LI Yong‑xiang,DANG Xin,CAO Duan‑lin,et al. One‑pot two steps synthesis of 4‑nitropyrazole and its crystal structure[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2018,26(5):404-409.

    • 34

      郭俊玲,曹端林,王建龙,等.硝基吡唑类化合物的合成研究进展[J].含能材料,2014,22(6): 872-879.

      GUO Jun‑ling,CAO Duan‑lin,WANG Jian‑long,et al.Review on synthesis of nitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2014,22(6):872-879.

    • 35

      Katritzky A R,Scriven E F V,Majumder S,et al. Direct nitration of five membered heterocycles[J]. Arkivoc(ⅲ),2005,36(10):179-191.

    • 36

      Ravi P,Gore G M,Tewari S P,et al. A simple and environmentally benign nitration of pyrazoles by impregn nitration of pyrazoles by impregnated bismuth nitrate[J].Journal of HeterocyclicChemistry,2013,50(6):1322-1327.

    • 37

      J DONG ,B ZHONG,H YUAN,et al.Alk kinase inhibitor, and preparation method and use thereof:WO 201580685 A1[P],2017.

    • 38

      郭恒杰,曹端林,李永祥.1‑甲基‑3,4,5‑三硝基吡唑合成工艺研究进展[J].云南化工,2018, 45(5):88-90.

      GUO Heng‑jie,CAO Duan‑lin,LI Yong‑xiang. Prospect on studying 1‑methyl‑3,4,5‑trinitro‑pyrazole synthesis[J].Yunnan Chemical Technology,2018,45(5):88-90.

    • 39

      R Corte,I LUCCA De Fang,et al. Macrocycles with Hetrocyclic P2' Groups as Factor Xia Inhibitors: WO2015116886 A1 [P],2015.

    • 40

      Ioannidis Stephanos,Talbot Adam Charles,Follows Bruce,et al. Pyrrolo and Pyrazolo‑Pyrimidines as Ubiquitin‑specific Protease 7 Inhibitors: US2016185785A1[P],2016.

    • 41

      Su Jin Han,Hyun Tae Kim,Jung Min Joo. Direct C‑H alkenylation of functionalized pyrazoles[J].J Org Chem,2016,81:689-698.

    • 42

      BiffinM E C, BrownDJ,PorterQ N.A novel route from 4‑methoxy‑5‑nitropyrimi‑nitropyrimi‑dine to 3‑amino‑4‑nitropyrazole and pyrazolo[3,4‑b]pyra‑zine[J].Terahedron Lett,1967,21(8):2029-2031.

    • 43

      Biffin M E C,Brown D J, Porter Q N. Pyrimidine reactions.PartⅩⅧ.The conversion of 4‑methoxy‑5‑nitropyri‑mideine into 3‑amino‑4‑nitropyrazole by hydrazine[J].J Chem Soc(C),1968, 17:2159-2162.

    • 44

      Shevelev S A,Vinogradov V M,Dalinger I L,et al. Nitropyrazoles 8. 3(5)‑amino‑4‑nitropyra‑ zoles:convenient synthesis and study of nitration[J].Russian Chemical Bulletin,1993,42(11):1861-1864.

    • 45

      LatypovNV,SilevichVA,IvanovPA,et al. Diazotization ofaminonitropyrazoles[J].Chemistry of Hetero‑cyclic Compounds,1976,12(12):1355-1359.

    • 46

      Vinogradov V M, Cherkasova T I, Dalinger I L, et al. Nitropyrazoles 5. Synthesis of substituted 3‑nitropyra‑zoles from 3‑amino‑4‑cyanopyrazole[J].Russian Chemical Bulletin,1993, 42(9):1552-1554.

    • 47

      汪营磊,姬月萍,葛忠学,等.一锅法合成3,4‑二硝基吡唑.含能材料与钝感弹药技术学术研讨会论文集[C]//三亚,2012:172-175.

      WANG Ying‑lei,JI Yue‑ping,GE Zhong‑xue,et al. Synthesis and Properties of 3,4‑Dinitropyrazole. Symposium Proceedings of Energetic Materials and Insensitive Munitions Technology[C]//Sanya, 2012:172-175.

    • 48

      刘威,李永祥.3,4‑二硝基吡唑合成工艺研究展望[J].江西化工,2015(5):8-12.

      LIU Wei,LI Yong‑xiang. Prospect on studying 3,4‑nitropyrazole synthesis[J].Jiangxi Chemical Industry, 2015(5):8-12.

    • 49

      Stefan E K.Derivatives of 3(5),4‑dinitropyrazole as potential energetic plasticisers[J].Chem Eng,2011,26(5):929-935.

    • 50

      Ravi P,Koti Reddy C K,Saikia A,et al. Nitrodeiodination of polyiodopyrazoles[J].Propellants, Explosives, Pyrotechnics,2012,37(2):167-171.

    • 51

      田新.3,4‑二硝基吡唑合成及性能研究[D].北京:中国工程物理研究院,2012.

      TIAN Xin.Improved synthesis of 3,4‑dinitropyrazole[D].Bei jing:China Academy of Engineer Physic,2012.

    • 52

      田新,李金山.3,4‑二硝基吡唑热分解及非等温动力学[J].化学研究与应用,2013,25(2): 206-209.

      TIAN Xin,LI Jin‑shan. Thermal decomposition and non‑isothermal kinetics of 3,4‑dinitropyrazole[J].Chemical Research and Application,2013,25(2):206-209.

    • 53

      杜闪.3,4‑二硝基吡唑的合成及其性能研究[D].太原:中北大学, 2012.

      DU Shan.Synthesis and properties of 3,4‑dinitropyrazole[D].Taiyuan:North University of China,2012.

    • 54

      杜闪,李永祥,王建龙,等.3,4‑二硝基吡唑合成方法及性能研究综述[J].化学研究,2011, 22(5):106-110.

      DU Shan,LI Yong‑xiang,WANG Jian‑long,et al. Review for synthetic method and properties of 3,4‑dinitro‑ pyrazole[J].Chemical Research,2011,22(5):106-110.

    • 55

      李永祥,曹端林,王建龙.三种新型低熔点炸药的合成及表征[J].兵工学报,2013,34(1):36-40.

      Li Yong‑xiang,CAO Duan‑lin,WANG Jian‑long. Synthesis and characterization studies on novel three explosives with low melting point[J].Journal of China Ordnance,2013,34(1):36-40.

    • 56

      曹端林,李雅津,杜耀,等.熔铸炸药载体的研究评述[J].含能材料,2013,21(2):157‑165.

      CAO Duan‑lin,LI Ya‑jin,DU Yao,et al. Review on carriers for melt‑cast explosives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2):157-165.

    • 57

      张巧玲,李雅津,焦清介,等.1‑甲基‑3,4‑二硝基吡唑合成与表征[J].含能材料,2015,23(3): 222-225.

      ZHANG Qiao‑ling,LI Ya‑jin,JIAO Qing‑jie,et al. Optim ization on synthesis process and characterization of 1‑methyl‑3,4‑dinitropyrazoles[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3)3:222-225.

    • 58

      朱翔.微通道反应器中3,4‑二硝基吡唑合成工艺研究[D].南京:南京理工大学,2017.

      ZHU Xiang.Study on the synthetical of 3,4‑bisnitropyrazole in microreactor[D].Nanjing:Nanjing University of Science & Technology,2017.

    • 59

      汪营磊,张志忠,王伯周,等.3,5‑二硝基吡唑合成研究[J].含能材料,2007,15(6):574-576.

      WANG Ying‑lei,ZHANG Zhi‑zhong,WANG Bo‑zhou,et al.Synthesis of 3,5‑dinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2007,15(6):574‑576.

    • 60

      成健.不同硝化体系中3,5‑二硝基吡唑的合成[D].南京:南京理工大学,2007.

      CHENG Jian. Synthesis of 3,5‑Dinitropyrazole under different nitrification system[D].Nanjing:Nanjing University of Science and Technology,2007.

    • 61

      周智明,陶文昌,章军.一种1‑甲基‑3,4,5‑三硝基吡唑(MTNP)中间体3,5‑二硝基吡唑的高选择性、高产率的无溶剂制备方法:CN105669557A[P],2016.

      ZHOU Zhi‑ming,TAO Wen‑chang,ZHANG Jun. High‑selectivity and high‑yield non‑solvent preparation method of 1‑methyl‑3,4,5‑trinitropyrazole (MTNP) intermediate 3,5‑dinitropyrazole:CN105669557A[P],2016.

    • 62

      刘伟,王建龙,曹端林,等.3,5‑二硝基吡唑的合成工艺研究[J].应用化工,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.

      LIU Wei,WANG Jian‑long,CAO Duan‑lin,et al.Synthesis of 3, 5‑dinitropyrazole[J]. Applied Chemical Industry,https://doi.org/10.16581/j.cnki.issn 1671‑3206.20180330.084.

    • 63

      Katritzky A R.Physical methods in heterocyelic chemistry[M].New York:Academic Press,1974.

    • 64

      李永祥,曹端林,王建龙,等.一种1‑甲基‑3,4‑二硝基吡唑的制备方法:CN103467381A[P],2013.

      LI Yong‑xiang,CAO Duan‑lin,WANG Jian‑long,et al. A preparation method of 1‑methyl‑3,4‑dinitropyrazole: CN103467381A[P],2013.

    • 65

      李永祥,郭俊玲,宋磊,等.1‑甲基‑3,4‑二硝基吡唑的合成、性能及晶体结构[J].火炸药学报,2015,38(3):64-68.

      LI Yong‑xiang,GUO Jun‑ling,SONG Lei,et al. Synthesis,performance and crystal structure of 1‑methyl‑ 3,4‑dinitropyrazole[J]. Chinese Journal of Explosives & Propellants,2015,38(3):64-68.

    • 66

      Zaitsev AA,DalingerI L,ShevelevS A.Dinitropyrazoles[J].Russian Chemical Reviews,2009, 78(7):589-627.

    • 67

      Schmidt R D,Lee G S,Pagoria P F. Synthesis and properties of a new explosive 4‑amino‑3,5‑ dinitro‑1H‑pyrazole(LLM‑116),UCRL‑ID‑148510[R].Livermore:Lawrence Livermore National Laboratory,2001.

    • 68

      Schmidt R D,Lee G S,Pagoria P F,et al. Sythesis of 4‑amino‑3,5‑dinitro‑1H‑pyrazole using vicarious nucleophilic substitution of hydrogen[J].J Heterocyclic Chem,2001,38:1227-1230.

    • 69

      汪营磊,张志忠,王伯周,等.VNS反应合成LLM‑116[J].火炸药学报,2007,30(6):20-23.

      WANG Ying‑lei,ZHANG Zhi‑zhong,WANG Bo‑zhou,et al.Synthesis of LLM‑116 by VNS reaction[J]. Chinese Journal of Explosives&Propellants,2007,30(6):20-23.

    • 70

      Stefan E K,Nikolaj V Latypova.Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51:1621-1627.

    • 71

      Man Zhang,Huiqi Gao,Chuan Li,et al. Towards improved explosives with a high performance: N‑(3,5‑dinitro‑1H‑pyrazol‑4‑yl)‑1H‑tetrazol‑5‑amine and its salts[J].J Mater Chem A,2017,5:1769-1777.

    • 72

      Dalinger I L,Popova G P,Vatsadze I A,et al. Synthesis of 3,4,5‑trinitropyrazole[J].Russ Chem Bul,2009,58(10):2185.

    • 73

      Herve G. Dinitropyrazole derivatives,their preparation and energetic compositions comorising them: US 8440839[P], 2013.

    • 74

      Stefan Ek,Nikolaj V Latypov. Four syntheses of 4‑amino‑3,5‑dinitropyrazole[J].Journal of Heterocyclic Chemistry,2014,51(6):1621-1627.

    • 75

      Herve G,Roussel C,Graindorge H.Selective preparation of 3,4,5‑trinitro‑1H‑pyrazole:A stable all‑carbon‑nitrated arene[J].Angew Chem Int Ed,2010,49(18):3177-3181.

    • 76

      Ravi P,Tewari S P. Solvent free microwave assisted isomerization of N‑nitropyazoles[J].Propellants, Explosives,Pyrotechnics,2013,38(1):147-151.

    • 77

      Chuan Li,Man Zhang,Qishan Chen,et al. 1‑(3,5‑Dinitro‑1H‑pyrazol‑4‑yl)‑3‑nitro‑1H‑1,2,4‑triazol‑5‑amine (HCPT) and its energetic salts:highly thermally stable energetic materials with high‑performance[J].Dalton Trans,2016,45:17956-17965.

    • 78

      Zhao X,Zhang J C,Li S H,et al. A green and facile approach for synthesis of nitro heteroaromatics in water[J]. Organic Process Research & Development,2014,18(7):886-890

    • 79

      赵秀秀.硝基唑类含能化合物的合成与反应性研究[D].北京:北京理工大学,2016.

      ZHAO Xiu‑xiu. Synthesis and reactivity of nitrozoles energetic compounds[D].Beijing:Beijing Institute of Technology,2016.

    • 80

      吴军鹏.3,4,5‑三硝基吡唑的合成研究及其与苦基氯缩合反应探索[D].太原:中北大学,2017.

      WU Jun‑peng. Study on synthesis of 3,4,5‑trinitro‑1H‑pyrazole and exploration its condensation reaction with picryl chloride[D].Taiyuan:North University of China,2017.

    • 81

      Ravi P,Girish G M,Sikder A K,et al. Thermal decomposition kinetics of 1‑methyl‑3,4,5‑trinitropyrzole[J]. Thermochimica Acta,2012,528(2):53-57.

    • 82

      Ravi P,Tewari S P. Facile and environmentally friendly synthesis of nitropyrazoles using montmorillonite K‑10 impregnated with bismuth nitrate[J].Catalysis Communications,2012,19(19):37-41.

    • 83

      Ravi P,Tewari S P.Faujasite catalyzed nitrodeiodination of iodopyrazoles[J].Catalysis Communications,2013, 42(23):35-39.

    • 84

      Dalinger I L,Vatsadze I A,Shkineva T K,et al. The specific reactivity of 3,4,5‑trinitro‑1H‑pyrazole[J].Mendeleev Commun,2010,20(5):253-254.

    • 85

      Dalinger I L,Vatsadze I A,Shkineva T K,et al. Synthesis and comparison of the reactivity of 3,4,5‑1H‑Trinitropyrazole and Its N‑methyl derivative[J].Journal of Heterocyclic Chemistry,2013,50(4): 911-924.

    • 86

      李雅津,曹端林,李永祥,等.1‑甲基‑3,4,5‑三硝基吡唑的合成与表征[J].火炸药学报,2013, 36(3):28-30.

      LI Ya‑jin,CAO Duan‑lin,LI Yong‑xiang,et al. Synthesis and characterization of 1‑methyl‑3,4,5‑trinitropyra‑zoles[J].Chinese Journal of Explosives & Propellants,2013,36(3):28-30.

    • 87

      郭俊玲,李永祥,王建龙,等.1‑甲基‑3,4,5‑三硝基吡啶的一步法合成及热性能[J].含能材料,2015,23(3):304-306.

      GUO Jun‑ling,LI Yong‑xiang,WANG Jian‑long,et al. One‑step synthesis and thermal behavior of 1‑methy‑ 3,4,5‑trinitropyrazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2015,23(3):304-306.

    • 88

      Heng‑jie Guo,Xin Dang,FengYang,et al. Solubility and thermodynamic properties of a kind of explosives in four binary solvents[J].Journal of Molecular Liquids, 2017,247:313-327.

    • 89

      郭俊玲,李永祥,王建龙,等.超酸消化法合成1‑甲基‑3,4,5‑三硝基吡吡唑[J].合成化学,2015,23(2):161-163.

      GUO Jun‑ling,LI Yong‑xiang,WANG Jian‑long,et al. Synthesis of 1‑Methl‑3,4,5‑trinitropyrazole by Nitration with Super Acids[J].Chinese Journal of Synthetic Chemistry,2015,23(2):161-163.

    • 90

      吴霏,李永祥,郝彩丽,等.N2O5/发烟硫酸体系一步法合成1‑甲基‑3,4,5‑三硝基吡唑[J].含能材料,2016,24(6):618-620.

      WU Fei,LI Yong‑xiang,HAO Cai‑li,et al. One Step Synthesis of MTNP with N2O5/oleum system[J]. Chinese Journal Energetic Materia(Hanneng Cailiao),2016,24(6):618-620.

    • 91

      陶文昌.1‑甲基‑3,4,5‑三硝基吡唑(MTNP)的制备及性能[D].北京:北京理工大学,2016.

      TAO Wen‑chang.Preparation and Properties of 1‑Methyl‑3,4,5‑Trinitropyrazole (MTNP)[D].Beijing:Beijing Institute of Technology,2016.

    • 92

      王军,景梅,张晓玉,等.硝基二唑炸药爆炸参数的经验计算(Ⅱ)[J].含能材料,2013,21(5): 609-611.

      WANG Jun,JING Mei,ZHANG Xiao‑yu,et al. Empirical calculation of the explosive prameters of nitrodiazole explosives(Ⅱ)[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2013,21(5):609-611

    • 93

      Drukenmuller I E,Klapotke T M,Morgenstern Y,et al. Metal salts of dinitro‑,trinitropyrazole,and trinitroimi‑ dazole[J].Zeitschrift fur Anorganische und Allgemeine Chemie,2014,640(11):2139-2149.

    • 94

      吴军鹏,曹端林,王建龙,等.3,4,5‑三硝基吡唑及其衍生物的研究进展[J].含能材料,2016,24(11):1121-1130.

      WU Jun‑peng,CAO Duan‑lin,WANG Jian‑long,et al. Progress on 3,4,5‑trinitro‑1H‑pyrazole and its derivatives[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2016,24(11):1121-1130.

    • 95

      Y Zhang,Y Guo,Y H Joo,et al. 3,4,5‑trinitropyrazole‑based energetic salts[J].Chemistry‑a European Journal,2010,16(35):10778-10784.

    • 96

      Yanqiang Zhang,Yangen Huang,Damon A.Parrish,et al.4‑Amino‑3,5‑dinitropyrazolatesalts—highly insensitive energetic materials[J].Journal of Materials Chemistry,2011,21,6891-6897.

    • 97

      Ping Yin,Jiaheng Zhang,Chunlin H,et al. Polynitro‑substituted pyrazoles and triazoles as potential energetic materials and oxidizers[J]. J Mater Chem A,2014(2): 3200-3208.

    • 98

      X X Zhao,S H Li,Y Wang,et al. Design and synthesis of energetic materials towards high density and positive oxygen balance by N‑dinitromethyl functionalization of nitroazoles[J]. J Mater Chem A,2016(4): 5495-5504.

    • 99

      Ya Jin Li,Yong Xiang Li,Yan Hong Wang,et al. Theoretical calculation of the detonation parameters of nitropyrazolesexplosives[J]. Advanced Materials Research,2014,853:395-400.

    • 100

      Yalkowsky S H. Carnelley's rule and the prediction of melting point[J].Journal of Pharmaceutical Sciences,2014,103(9):2629-2634.

    • 101

      闫涛,王建华,刘玉存,等.二唑类熔铸炸药载体的分子设计[J].含能材料,2016,24(2):202-208.

      YAN Tao,WANG Jian‑hua,LIU Yu‑cun,et al. Molecular design of diazole carriers for melt‑cast explosives[J]. Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(2):202-208.

    • 102

      蒋涛,张晓玉,景梅,等.1‑氨基‑3,5‑二硝基吡唑的合成、晶体结构及热性能[J].含能材料,2014,22(5):654‑657.

      JIANG Tao,ZHANG Xiao‑yu,JING Mei,et al. Synthesis, crystal structure and thermal property of 1‑amino‑3,5‑dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2014,22(5):654-657.

    • 103

      尹磊,张至斌,张建国,等.3,4‑二硝基吡唑的晶体结构[J].含能材料,2016,24(10):965-968.

      YI Lei,ZHANG Zhi‑bin,ZHANG Jian‑guo,et al. Crystal Structure of 3,4‑Dinitropyrazole[J].Chinese Joumal of Energetic Materials(Hanneng Cailiao),2016,24(10):965-968.

    • 104

      杜闪,赵家乐,李永祥,等.熔铸炸药载体的研究进展及其性能比较[J].化工中间体,2011(6):32-35.

      DU Shan,ZHAO Jia‑le,LI Yong‑xiang,et al. Study progress on melt‑cast explosives carriers and comparition of their performance[J].Chenmical Intermediate,2011(6):32-35.

    • 105

      Reddy D,Surapaneni C R,Nathaniel Get al. Melt‑cast explosive material: US7304164B1[P],2007.

    • 106

      王伯周,汪营磊,张志忠,等.4‑氨基‑3,5‑二硝基吡唑(LLM‑116)缩合物的合成与表征[J].含能材料,2009,17(3):293-295.

      WANG BO‑zhou,WANG Ying‑lei,ZHANG Zhi‑zhong,et al.Synthesis and characterization of 4‑amino‑ 3,5‑dinitropyrazole(LLM‑116) condensation products[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2009,17(3): 293-295.