CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
毕福强, 王伯周, 李祥志,等. 1,3‑二氧化‑1,2,3,4‑四嗪含能材料研究进展[J],含能材料, 2012, 20(5): 630-637.
BIFu‑qiang, WANGBo‑zhou, LIXiang‑zhi,et al. Progress in the energetic materials based on 1,2,3,4‑tetrazine 1,3‑dioxide[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2012, 20(5): 630-637.
参考文献 2
ChurakovA M, IoffeS L, TartakovskyV A. Synthesis of [1,2,5]oxadiazole [3,4‑e][1,2,3,4]tetrazine 4,6‑di‑N‑oxide[J]. Mendeleev Commun, 1995, 5(6): 227-228.
参考文献 3
李祥志, 王伯周, 李辉, 等. 呋咱并[3,4‑e]‑4,6‑二氧化‑1,2,3,4‑四嗪新法合成与表征[J]. 有机化学, 2012, 10(32): 1975-1980.
LIXiang‑zhi, WANGBo‑zhou, LIHui,et al. Novel synthetic route and characterization of oxadiazolo‑[1,2,3,4]tetrazine 4,6‑di‑N‑oxide(FTDO)[J].Chinese Journal of Organic Chemistry, 2012, 10(32): 1975-1980.
参考文献 4
ChurakovA M, IoffeSL, TartakovskiiV A. The first synthesis of 1,2,3,4‑tetrazine‑1,3‑di‑N‑oxides[J]. Mendeleev Commun, 1991, 1(3): 101-103.
参考文献 5
VoroninA, ZelenovVP, ChurakovA M, et al. Synthesis of 1,2,3,4‑tetrazine 1,3‑dioxides annulated with 1,2,3‑triazoles and 1,2,3‑trizole 1‑oxides[J]. Tetrahedron, 2014, 70(18): 3018-3022.
参考文献 6
KlenovM S, GuskovA A, AnikinO V, et al. Synthesis of tetrazino‑tetrazine 1,3,6,8‑Tetraoxide (TTTO)[J].Angewandte Chemie International Edition, 2016, 55(38): 11472-11475.
参考文献 7
KlenovM S, AnikinO V,ChurakovA M, et al. Toward the synthesis of tetrazino‑tetrazine 1,3,6,8‑tetraoxide (TTTO):an approach to non‑annulated 1,2,3,4‑tetrazine 1,3‑dioxides [J]. European Journal of Organic Chemistry, 2015, 2015(28): 6170-6179.
参考文献 8
VoroninA, ZelenovV P, ChurakovA M, et al. Alkylation of 1‑hydroxy‑1H‑[1,2,3]triazolo[4,5‑e][1,2,3,4]tetrazine‑5,7‑dioxide[J]. Russian Chemical Bulletin(International Edition),2014, 63(2): 475-479.
参考文献 9
ZelenovV P, VoroninA, ChurakovA M, et al. Amino(tert‑butyl‑NNO‑azoxy)furoxans: synthesis, isomerization,and rearrangement of N‑acetyl derivatives[J]. Russian Chemical Bulletin, International Edition, 2013, 62(1): 117-122.
参考文献 10
ZelenovV P, VoroninA, ChurakovA M, et al. 2‑Alkyl‑4‑amino‑5‑(tert‑butyl‑NNO‑azoxy)‑2H‑1,2,3‑triazole 1‑oxides:synthesis and reduction[J]. Russian Chemical Bulletin(International Edition), 2014, 63(1): 123-129.
参考文献 11
SheldrickG M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany, 1997.
参考文献 12
SheldrickG M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.
参考文献 13
FrischM J, TrucksG W, SchlegelH B, et al. GAUSSIAN 09 [CP].Gaussian, Inc, Wallingford C, 2009.
参考文献 14
BeckeA D. Density‑functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
参考文献 15
CurtissL A, RaghavachariK, RedfernP C, et al. Assessment of gaussian‑2 and density functional theories for the computation of enthalpies of formation[J]. The Journal of Chemical Physics,1997, 106(3): 1063-1079.
参考文献 16
OchterskiJ W, PeterssonG A, MontgomeryJ A. A complete basis set model chemistry V. extension to six or more heavy atoms[J].The Journal of Chemical Physics, 1996, 104(7): 2598-2619.
参考文献 17
PolitzerP, MurrayJ S, GriceM E, et al. Calculation of heats of sublimation and solid phase heats of formation[J]. Molecular Physics, 1997, 91(5): 923-928.
参考文献 18
KamletM J, JacobsS J. Chemistry of detonation I. a simplemethod for calculating detonation properties of CHNO explosives[J].The Journal of Chemical Physics, 1968, 48(1): 23-35.

    摘要

    以3‑氨基‑4‑(叔丁基‑NNO‑氧化偶氮基)呋咱(ABAoF)为原料,经重氮化开环、肟化、氧化、氨化和硝化环化五步反应得到目标化合物1‑羟基‑1,2,3‑三唑并[4,5‑e]‑5,7‑二氧化‑1,2,3,4‑四嗪(HTTDO),总收率24.1%,采用红外光谱、核磁共振、质谱及元素分析对中间体及产物的结构进行了表征;探讨了氨化及硝化环化的反应机理;培养了HTTDO·4.5H2O的单晶,X射线衍射分析表明,其为正斜方晶系,空间群为Pna2(1),晶体密度为1.659 g·cm-3;利用Gaussian 09 程序和Kamlet‑Jacobs方程计算HTTDO理论密度为1.88 g·cm-3,爆速为9393 m·s-1,爆压为41.9 GPa,爆热为8010 J·g-1;采用差示扫描量热(DSC)研究了HTTDO的热性能:其在热分解过程中,放热剧烈,峰温最高达194.5 ℃。

    Abstract

    Using 3‑amino‑4‑(tert‑butyl‑NNO‑azoxy)furazan (ABAoF) as starting material, 1‑hydroxy‑1H‑[1,2,3]triazolo[4,5‑e][1,2,3,4]tetrazine 5,7‑dioxide(HTTDO) was synthesized by 5‑steps reactions including diazotization, oximation, oxidation,amination and nitration cyclization,with a total yield of 24.1%. HTTDO and the associate dintermediates were characterized by FT‑IR, NMR, mass spectrometry and elementary analysis. Further, the reaction mechanisms of amination and nitration cyclization were clarified. In this work, the single crystal of HTTDO·4.5H2O was cultivated for the first time, and the crystal structure of which was determined by X‑ray diffraction analysis, demonstrating that HTTDO·4.5H2O crystallized in the orthorhombic space group Pna2(1). The physico‑chemistry and detonation properties of HTTDO were calculated by Gaussian 09 program and Kamlet‑Jacobs formula. The detonation velocity of HTTDO was 9393 m·s-1, and the detonation pressure was 41.9 GPa and the detonation heat was 8010 J·g-1. In addition, the thermal behaviors of HTTDO were studied by differential scanning calorimetry(DSC). During the exothermic thermal decomposition process of HTTDO, a sharp peak occurred at 194.5 ℃.

  • 1 引言

    1

    氮杂环类化合物因具有高生成焓、高密度、高氧平衡等优点,在含能材料领域倍受关注。1,3‑二氧化‑1,2,3,4‑四嗪环是一种结构新颖的氮芳杂环,以此为结构单元设计、合成的含能化合物具有氮含量较高、氧平衡较好、燃烧放气量大和燃烧产物清洁等优[1,2],将此类化合物应用于混合炸药中,能显著提高做功能力;应用于推进剂配方中, 能显著降低燃温及特征信[3]

    1‑羟基‑1,2,3‑三唑并[4,5‑e]‑5,7‑二氧化‑1,2,3,4‑四嗪(HTTDO)是一种典型的1,3‑二氧化‑1,2,3,4‑四嗪环[2,4,5,6,7,8,9,10]含能化合物,在混合炸药、低特征信号推进剂等领域具有潜在的应用前景。2014年,Alexey A Voronin[5]报道了HTTDO的合成,但是没有相关的晶体结构及热性能数据。基于此,本研究以3‑氨基‑4‑(叔丁基‑NNO‑氧化偶氮基)呋咱(ABAoF)为原料,经亚硝酸钠重氮化开环、肟化、氧化、氨化和硝化环化五步反应得到目标化合物HTTDO,探讨了氨化以及一步硝化成环的反应机理,培养了HTTDO·4.5H2O的单晶,采用差示扫描量热法(DSC)研究了HTTDO的热性能,运用Gaussian 09程序和Kamlet‑Jacobs方程预估了它的理论密度及爆轰性能,为进一步开展应用研究奠定基础。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    亚硝酸钠、冰乙酸、乙醚、盐酸羟胺、碳酸氢钠、叔丁胺、甲醇、乙酸酐、氢氧化钾、石油醚、乙酸乙酯,分析纯,成都市科龙化工有限公司;浓盐酸(36%)、乙醇,分析纯,西安化学试剂厂;浓硝酸(98%),分析纯,树德化工有限公司;液溴,分析纯,上海凌峰化学试剂有限公司;3‑氨基‑4‑(叔丁基‑NNO‑氧化偶氮基)呋[3]、浓硫酸(93%)为自制。

    NEXUS 870型傅里叶变换红外光谱仪,美国Nicolet公司;AV 500型(500 MHz)超导核磁共振仪,瑞士BRUKER公司;Vario EL Ⅲ型自动微量有机元素分析仪,德国Elementar公司;飞行质谱micrOTOF‑QⅡ,德国BRUKER公司;ZF‑2型三用紫外仪,上海市安亭电子仪器厂;Q‑200型差示扫描量热仪,美国TA公司。

  • 2.2 合成路线

    2.2

    以3‑氨基‑4‑(叔丁基‑NNO‑氧化偶氮基)呋咱(ABAoF)为原料,经亚硝酸钠重氮化破环、肟化、氧化、氨化、硝化环化五步反应得到目标化合物HTTDO,合成路线见Scheme1。

    Scheme 1 Synthesis of HTTDO

  • 2.3 合成过程

    2.3
  • 2.3.1 化合物1的合成

    2.3.1

    室温下,将ABAoF(3.7 g, 20 mmol)加入到20 mL乙醚与40 mL乙酸的混合溶液中,搅拌降温至10~15 ℃,分批加入亚硝酸钠(3.2 g, 46 mmol),待加料完毕,升温至20 ℃反应约15 min,往反应液中缓慢倒入120 mL乙醚稀释,搅拌,产生大量的絮状固体,过滤,乙醚洗涤,滤液减压蒸馏得到淡黄色固体,用自来水对其重结晶得到白色针状固体(化合物1)2.33 g,收率68.5%。

    13C NMR(125 MHz, CDCl3d6)δ:136.354, 104.498, 61.595, 25.3351H NMR (500 MHz, CDCl3d6)δ: 12.3158(s, H, OH), 1.4617(s, 9H, 3CH3);IR(KBr,ν/cm-1):3388, 3288, 2986, 2937, 2766, 2238, 1636, 1490, 1455, 1369, 1296, 1238, 1211, 1167, 1094, 1071, 1038, 898, 866. Anal calcd for C6N4O2H10:C 42.35, H 5.92, N 32.92;found: C 42.07, H 6.133, N 32.59。

  • 2.3.2 化合物3的合成

    2.3.2

    室温下,将化合物1(0.6 g,3.52 mmol)溶解于30 mL甲醇中,升温至40 ℃,分批加入盐酸羟胺(0.37 g, 5.28 mmol)、碳酸氢钠(0.44 g, 5.28 mmol),然后升温至回流,反应1.5 h,停止反应,待冷却过滤,滤液减压蒸馏得到淡黄色的油状固体化合物2;室温下,将上述得到的油状固体溶解于水28.75 mL和10%盐酸3.91 g的混合液中,降温至0~2 ℃,滴加液溴(0.7 g, 5.75 mmol)与浓盐酸(5.75 mL,质量分数36%)的混合液,并在此温度下反应1 h,过滤,冰水洗涤干燥得到黄色固体(化合物3)0.49 g,收率69.3%。

    13C NMR(125 MHz,CDCl3d6)δ:150.945, 119.264, 61.002, 25.4661H NMR (500 MHz, CDCl3d6)δ: 4.8104(s, 2H, NH2), 1.4994(s, 9H, 3CH3);IR(KBr,ν/cm-1):3457, 3335, 2982, 2938, 1676, 1624, 1558, 1512, 1446, 1361, 1295, 1218, 1155, 1071, 909, 658.Anal calcd for C6N5O3H11:C 35.82, H 5.48, N 34.81; found:C 35.93, H 5.414, N 34.46。

  • 2.3.3 化合物4的合成

    2.3.3

    室温下,将化合物3(1.0 g, 7.69 mmol)溶解于20 mL甲醇中,搅拌并加热,待温度升到55 ℃时,滴加叔丁胺(0.56 g, 7.69 mmol),然后迅速升温至回流,并在此温度下反应2 h,停止反应冷却浓缩,得到淡黄色针状晶体(化合物4)1.45 g,收率73.7%。

    13C NMR(125 MHz, CDCl3d6)δ:141.362, 122.990, 65.904, 59.881, 26.946, 26.0051H NMR (500 MHz, CDCl3d6)δ: 4.8567(s, 2H, NH2), 1.7018(s, 9H, 3CH3), 1.4738(s, 9H, 3CH3);IR(KBr,ν/cm-1):3472, 3330, 3285, 2992, 2970, 2933, 1616, 1552, 1501, 1485, 1448, 1398, 1365, 1346, 1278, 1231, 1189, 1142, 1028, 933, 844. Anal calcd for C10N6O2H20:C 46.86, H 7.87, N 32.79;found:C46.57, H 7.755, N 32.70。HRMS (ESI): [M-H]+:实测值257.1719,C10N6O2H20理论值257.1726。

  • 2.3.4 HTTDO的合成

    2.3.4

    在0~5 ℃下,依次将98%HNO3(47 mg, 0.75 mmol) 的乙酸酐(0.5 mL)溶液、93%H2SO4(158 mg,1.5 mmol)的乙酸酐(0.5 mL)溶液滴加到化合物4(150 mg, 0.75 mmol)的乙酸酐(3 mL)溶液中,滴加完毕,缓慢升温至室温,并在是室温下搅拌1 h,然后往反应溶液中加入乙酸钠(123 mg, 1.5 mmol),搅拌4 h,反应液真空浓缩蒸干,然后固体柱色谱分离(v(甲醇)∶v(乙酸乙酯)=1∶7),得到深红色固体(化合物HTTDO)0.13 g,收率68.8%。

    13C NMR(125 MHz, CD3OD‑d6)δ:151.239, 121.110;IR(KBr,ν/cm-1):3562, 3441, 1644, 1576, 1528, 1459, 1386, 1293, 1212, 1154, 1055, 1029, 956, 854, 758, 729.HRMS (ESI): [M-H]-:实测值 170.0066,C2N7O3H理论值170.0063。

  • 2.4 单晶培养及结构测定

    2.4

    室温下,将合成出的HTTDO配成饱和的甲醇溶液,过滤,滤液于20 ℃静置数天,溶剂缓慢蒸发便可得到透明的红色晶体。

    选取尺寸0.31mm×0.26 mm×0.14 mm单晶进行X射线衍射实验;用Mo Kα射线(λ=0.071073 nm),石墨单色器,在296(2)K时,以ω方式扫描,扫描范围:1.98°≤θ≤25.10°,-20≤h≤20,-6≤k≤3,-24≤l≤24,共收集衍射点9263个,其中独立衍射点3433个(Rint=0.0771),选取I>2σ(I)的2217个点用于结构的测定和修正。晶体结构由程序SHELXS‑97[11]和SHELXL‑97[12]直接法解出,经多轮Fourier合成获得全部非氢原子。全部非氢原子的坐标及各向异性热参数采用w=1/[σ2(Fo)2+(0.0983P)2+1.3621P],P=(Fo2+ 2Fc2)/3),经全矩阵最小二乘法修正及收敛。

  • 3 结果与讨论

    3
  • 3.1 反应机理探讨

    3.1

    (1)氨化环化反应机理对氧化呋咱化合物3在甲醇介质中与叔丁胺反应得到化合物4的反应机理进行了探讨,可能的反应机理如下(Scheme 2):化合物3的氧化呋咱环存在一种邻二亚硝基共振结构,经电子转移后,叔丁胺上孤对电子进攻亚硝基上正电性的N原子,生成叔丁基偶氮化合物,随后,叔丁基取代的N原子进攻邻位的亚硝基N原子,环化形成氧代三唑环化合物4。

    (2)硝化环化反应机理对于化合物4在硝硫混酸的乙酸酐溶液中硝化成环的反应机理进行了探讨,可能的反应机理如下(Scheme 3):首先,硝酸对化合物4的氨基进行硝化,得到硝氨基化合物A,然后乙酸酐对A进行乙酰化得到中间体B;中间体B在强酸性介质中不稳定,脱去一分子的乙酸,得到中间体C;中间体C发生分子内的偶联反应,─N─N+─O进攻母体环上另一端与叔丁基连接的N原子,得到中间体D;D在强质子条件下,脱去叔丁基得到中间体E;E处于强质子氛围中,受到H+的进攻,通过电荷转移,再脱去一个叔丁基,最终得到目标产物HTTDO。

  • 3.2 HTTDO·4.5H2O晶体结构分析

    3.2

    HTTDO·4.5H2O晶体的分子结构和分子在晶胞中的堆积分别示于图1和图2,部分键长、二面角及氢键列于表1,2,3。晶体分析结果表明,该晶体为正斜方晶系,空间群为Pna2(1)。晶体学参数为:a = 17.483(4) Å,b=5.4132(11) Å,c=20.563(5) Å,α=β=γ=90°,V=1946.0(7) Å3Z=4,Dc=1.659 g·cm-3,μ=0.166 mm-1F(000)=976。该晶体结构由Patterrson直接法解出,原子位置均由差值Fourier合成法得到。对于I>2σ(I)数据的最终偏差因子R1=0.0735,wR2=0.2134。

    图1
                            HTTDO·4.5H2O分子结构图

    图1 HTTDO·4.5H2O分子结构图

    Fig.1 Molecule structure of HTTDO·4.5H2O

    图2
                            HTTDO·4.5H2O晶胞堆积图

    图2 HTTDO·4.5H2O晶胞堆积图

    Fig.2 Molecular packing of the unit cell of HTTDO·4.5H2O

    表1 HTTDO·4.5H2O的部分键长和键角

    Table 1 Selected bond lengths and bond angles of HTTDO·4.5H2O

    bondlength/Åbondangle/(°)
    N(1)─O(1)1.270(7)N(2)─N(1)─C(1)108.0(6)
    N(1)─N(2)1.327(8)N(1)─N(2)─N(3)109.5(6)
    N(1)─C(1)1.365(9)C(2)─N(3)─N(2)106.8(6)
    N(2)─N(3)1.364(9)N(7)─C(1)─C(2)120.6(7)
    N(3)─C(2)1.330(9)N(1)─C(1)─C(2)106.4(6)
    N(4)─C(2)1.370(9)N(3)─C(2)─N(4)126.4(7)
    C(1)─C(2)1.370(10)N(3)─C(2)─C(1)109.3(6)
    N(4)─N(5)1.306(8)N(4)─C(2)─C(1)124.2(7)
    N(5)─O(2)1.249(8)
    N(5)─N(6)1.378(9)
    N(6)─N(7)1.342(9)
    N(7)─O(3)1.237(7)
    N(7)─C(1)1.353(9)
    表1
                    HTTDO·4.5H2O的部分键长和键角

    表2 HTTDO·4.5H2O的部分二面角

    Table 2 Selected dihedral angles of HTTDO·4.5H2O

    bondangle/(°)
    C(2)─N(4)─N(5)─O(2)-179.3(7)
    N(5)─N(6)─N(7)─O(3)-179.0(6)
    O(3)─N(7)─C(1)─C(2)179.4(7)
    O(1)─N(1)─C(1)─C(2)179.4(7)
    N(2)─N(3)─C(2)─N(4)179.9(7)
    N(7)─C(1)─C(2)─N(3)-179.3(7)
    N(1)─C(1)─C(2)─N(4)-179.6(7)

    表3 HTTDO、RDX、CL‑20的物化及爆轰性能

    Table 3 The performances of physico‑chemistry and detonation for HTTDO, RDX and CL‑20

    No.ρ / g·cm‑3D / m·s‑1p / GPaQ / J·g‑1
    HTTDO1.88939341.98010
    RDX1.82883935.56200
    CL‑202.04963645.06645

    ρ is density. D is detonation velocity. p is detonation pressure. Q is heat of formation

    Scheme 2 Reaction mechanism of compound 4 by amination

    Scheme 3 Reaction mechanism of HTTDO by the nitration and intramolecular cyclization

    从表1可以看出,N(1)─C(1)、N(3)─C(2)、N(4)─C(2)、N(7)─C(1)键长分别为1.365(9),1.330(9),1.370(9),1.353(9) Å,介于N─C单双建(1.28~1.47 Å)之间,N(6)─N(7)、N(5)─N(6)、N(4)─N(5)、N(1)─N(2)、N(2)─N(3)键长分别为1.342(9),1.378(9),1.306(8),1.327(8),1.364(9) Å,介于N─N单双建(1.30~1.47 Å)之间,C(1)─C(2)键长为1.370(10) Å,介于C─C单双建(1.34~1.54 Å)之间,说明四嗪环和三唑环均形成了共轭的大π键;另外,N(7)─O(3)、N(5)─O(2)、N(1)─O(1)键长分别为1.237(7) Å、1.249(8) Å、1.270(7) Å,小于正常的N─O单键1.44 Å,说明三唑环上的O与四嗪环上的配位氧原子均与母体环共轭,因此,使得整个分子结构更加稳定。

    从表2可以看出,在HTTDO分子结构中,O(2)─N(5)─N(4)─C(2)、O(3)─N(7)─C(1)─C(2)、O(1)─N(1)─C(1)─C(2)、N(7)─C(1)─C(2)─N(3)、N(4)─C(2)─C(1)─N(1)、N(2)─N(3)─C(2)─N(4)、N(5)─N(6)─N(7)─O(3)二面角分别为-179.3(7)°、179.4(7)°、179.4(7)°、0.0(9)°、 -179.6(7)°、179.9(7)°、 -179.0(6)°,故HTTDO分子中四嗪并三唑环上的所有原子几乎在一个平面上。同时,HTTDO分子结构中含有活泼的O—H,由于HTTDO与水存在分子间氢键,在以甲醇为溶剂培养单晶时,一分子HTTDO结合4.5分子水,导致HTTDO·4.5H2O空间空隙较大,因而使其晶胞堆积不紧密,晶体密度较小,仅为1.659 g·cm-3

  • 3.3 HTTDO的物化及爆轰性能计算

    3.3

    为了研究HTTDO的爆轰性能,利用Gaussian09 程[13],以密度泛函理论的B3LYP方[14]在6‑31G**基组水平上对分别对HTTDO、RDX、CL‑20的结构进行了全优化,经振动分析发现无虚频,表明优化结构为势能面上的极小点。采用Monte‑Carlo 法计算了它们的理论体积,进而求得理论密度。采用原子化方[15],利用完全基组方[16](CBS‑4M)计算了分子的气相生成焓,对它们的静电势参数进行统计计算,采用Politzer[17]提出的公式计算了分子的升华焓,并获得固相生成焓。运用Kamlet‑Jacobs 公[18]分别计算得它们的密度、爆速,爆压及爆热,结果见表3

    由表3可见,HTTDO的各项爆轰性能数据明显优于RDX,虽然密度、爆速、爆压略低于CL‑20,但是HTTDO的爆热更高。

  • 3.4 HTTDO的热性能研究

    3.4

    采用DSC方法,开展了HTTDO的热行为研究(升温速率10 ℃·min-1),实验结果如图3所示。由于HTTDO结构中存在较强的氢键作用,故而会结合溶剂分子,因此热分解过程中200 ℃以下会出现吸热脱溶剂峰。从曲线上可以看出,HTTDO有一个吸热脱溶剂峰141.5 ℃,两个放热分解峰179.3 ℃和194.5 ℃,热分解没有经历吸热熔化的相变过程,而是固相直接分解。其中194.5 ℃处峰型尖锐,温度跨度小,出现突变现象,表明样品分解速度快,放热量大,从而导致坩埚炸裂,无法具体称量重量,基线不能回到水平。

    图3
                            HTTDO的DSC曲线

    图3 HTTDO的DSC曲线

    Fig. 3 DSC curve of HTTDO

  • 4 结 论

    4

    (1)以ABAoF为原料,经亚硝酸钠重氮化开环、肟化、氧化、氨化和硝化环化五步反应得到目标化合物HTTDO,总收率为24.1%;培养HTTDO·4.5H2O的单晶,其晶体属于正斜方晶系,空间群为Pna2(1),晶体密度1.659 g·cm-3

    (2)利用Gaussian 09程序和Kamlet‑Jacobs方程计算了HTTDO的爆轰性能,其爆速为9393 m·s-1,爆压为41.9 GPa,爆热为8010 J·g-1,爆轰性能优于RDX;虽然HTTDO的密度、爆速、爆压略低于CL‑20,但是其爆热比CL‑20高。

    (3)采用DSC研究了HTTDO的热性能,结果表明,其在热分解过程中,有两个放热分解峰,峰温最高达194.5 ℃。

  • 参考文献

    • 1

      毕福强, 王伯周, 李祥志,等. 1,3‑二氧化‑1,2,3,4‑四嗪含能材料研究进展[J],含能材料, 2012, 20(5): 630-637.

      BI Fu‑qiang, WANG Bo‑zhou, LI Xiang‑zhi,et al. Progress in the energetic materials based on 1,2,3,4‑tetrazine 1,3‑dioxide[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2012, 20(5): 630-637.

    • 2

      Churakov A M, Ioffe S L, Tartakovsky V A. Synthesis of [1,2,5]oxadiazole [3,4‑e][1,2,3,4]tetrazine 4,6‑di‑N‑oxide[J]. Mendeleev Commun, 1995, 5(6): 227-228.

    • 3

      李祥志, 王伯周, 李辉, 等. 呋咱并[3,4‑e]‑4,6‑二氧化‑1,2,3,4‑四嗪新法合成与表征[J]. 有机化学, 2012, 10(32): 1975-1980.

      LI Xiang‑zhi, WANG Bo‑zhou, LI Hui,et al. Novel synthetic route and characterization of oxadiazolo‑[1,2,3,4]tetrazine 4,6‑di‑N‑oxide(FTDO)[J].Chinese Journal of Organic Chemistry, 2012, 10(32): 1975-1980.

    • 4

      Churakov A M, IoffeS L, Tartakovskii V A. The first synthesis of 1,2,3,4‑tetrazine‑1,3‑di‑N‑oxides[J]. Mendeleev Commun, 1991, 1(3): 101-103.

    • 5

      Voronin A, ZelenovV P, Churakov A M, et al. Synthesis of 1,2,3,4‑tetrazine 1,3‑dioxides annulated with 1,2,3‑triazoles and 1,2,3‑trizole 1‑oxides[J]. Tetrahedron, 2014, 70(18): 3018-3022.

    • 6

      Klenov M S, Guskov A A, Anikin O V, et al. Synthesis of tetrazino‑tetrazine 1,3,6,8‑Tetraoxide (TTTO)[J].Angewandte Chemie International Edition, 2016, 55(38): 11472-11475.

    • 7

      Klenov M S, Anikin O V,Churakov A M, et al. Toward the synthesis of tetrazino‑tetrazine 1,3,6,8‑tetraoxide (TTTO):an approach to non‑annulated 1,2,3,4‑tetrazine 1,3‑dioxides [J]. European Journal of Organic Chemistry, 2015, 2015(28): 6170-6179.

    • 8

      Voronin A, Zelenov V P, Churakov A M, et al. Alkylation of 1‑hydroxy‑1H‑[1,2,3]triazolo[4,5‑e][1,2,3,4]tetrazine‑5,7‑dioxide[J]. Russian Chemical Bulletin(International Edition),2014, 63(2): 475-479.

    • 9

      Zelenov V P, Voronin A, Churakov A M, et al. Amino(tert‑butyl‑NNO‑azoxy)furoxans: synthesis, isomerization,and rearrangement of N‑acetyl derivatives[J]. Russian Chemical Bulletin, International Edition, 2013, 62(1): 117-122.

    • 10

      Zelenov V P, Voronin A, Churakov A M, et al. 2‑Alkyl‑4‑amino‑5‑(tert‑butyl‑NNO‑azoxy)‑2H‑1,2,3‑triazole 1‑oxides:synthesis and reduction[J]. Russian Chemical Bulletin(International Edition), 2014, 63(1): 123-129.

    • 11

      Sheldrick G M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany, 1997.

    • 12

      Sheldrick G M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.

    • 13

      Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09 [CP].Gaussian, Inc, Wallingford C, 2009.

    • 14

      Becke A D. Density‑functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.

    • 15

      Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of gaussian‑2 and density functional theories for the computation of enthalpies of formation[J]. The Journal of Chemical Physics,1997, 106(3): 1063-1079.

    • 16

      Ochterski J W, Petersson G A, Montgomery J A. A complete basis set model chemistry V. extension to six or more heavy atoms[J].The Journal of Chemical Physics, 1996, 104(7): 2598-2619.

    • 17

      Politzer P, Murray J S, Grice M E, et al. Calculation of heats of sublimation and solid phase heats of formation[J]. Molecular Physics, 1997, 91(5): 923-928.

    • 18

      Kamlet M J, Jacobs S J. Chemistry of detonation I. a simplemethod for calculating detonation properties of CHNO explosives[J].The Journal of Chemical Physics, 1968, 48(1): 23-35.

罗义芬

机 构:西安近代化学研究所,陕西 西安710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:luoyiluoyiluoyi204@163.com

作者简介:罗义芬(1981-),女,副研究员,主要从事含能材料合成研究。e‑mail:luoyiluoyiluoyi204@163.com

毕福强

机 构:西安近代化学研究所,陕西 西安710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

翟连杰

机 构:西安近代化学研究所,陕西 西安710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

李祥志

机 构:西安近代化学研究所,陕西 西安710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

张俊林

机 构:西安近代化学研究所,陕西 西安710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王伯周

机 构:

1. 西安近代化学研究所,陕西 西安710065

2. 氟氮化工资源高效开发与利用国家重点实验室,陕西 西安710065

Affiliation:

1. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi′an 710065, China

html/hncl/CJEM2018070/alternativeImage/15420679-2430-49da-b721-7612bbc47e27-F002.jpg
html/hncl/CJEM2018070/alternativeImage/15420679-2430-49da-b721-7612bbc47e27-F003.jpg
bondlength/Åbondangle/(°)
N(1)─O(1)1.270(7)N(2)─N(1)─C(1)108.0(6)
N(1)─N(2)1.327(8)N(1)─N(2)─N(3)109.5(6)
N(1)─C(1)1.365(9)C(2)─N(3)─N(2)106.8(6)
N(2)─N(3)1.364(9)N(7)─C(1)─C(2)120.6(7)
N(3)─C(2)1.330(9)N(1)─C(1)─C(2)106.4(6)
N(4)─C(2)1.370(9)N(3)─C(2)─N(4)126.4(7)
C(1)─C(2)1.370(10)N(3)─C(2)─C(1)109.3(6)
N(4)─N(5)1.306(8)N(4)─C(2)─C(1)124.2(7)
N(5)─O(2)1.249(8)
N(5)─N(6)1.378(9)
N(6)─N(7)1.342(9)
N(7)─O(3)1.237(7)
N(7)─C(1)1.353(9)
bondangle/(°)
C(2)─N(4)─N(5)─O(2)-179.3(7)
N(5)─N(6)─N(7)─O(3)-179.0(6)
O(3)─N(7)─C(1)─C(2)179.4(7)
O(1)─N(1)─C(1)─C(2)179.4(7)
N(2)─N(3)─C(2)─N(4)179.9(7)
N(7)─C(1)─C(2)─N(3)-179.3(7)
N(1)─C(1)─C(2)─N(4)-179.6(7)
No.ρ / g·cm‑3D / m·s‑1p / GPaQ / J·g‑1
HTTDO1.88939341.98010
RDX1.82883935.56200
CL‑202.04963645.06645
html/hncl/CJEM2018070/alternativeImage/15420679-2430-49da-b721-7612bbc47e27-F004.jpg

图1 HTTDO·4.5H2O分子结构图

Fig.1 Molecule structure of HTTDO·4.5H2O

图2 HTTDO·4.5H2O晶胞堆积图

Fig.2 Molecular packing of the unit cell of HTTDO·4.5H2O

表1 HTTDO·4.5H2O的部分键长和键角

Table 1 Selected bond lengths and bond angles of HTTDO·4.5H2O

表2 HTTDO·4.5H2O的部分二面角

Table 2 Selected dihedral angles of HTTDO·4.5H2O

表3 HTTDO、RDX、CL‑20的物化及爆轰性能

Table 3 The performances of physico‑chemistry and detonation for HTTDO, RDX and CL‑20

图3 HTTDO的DSC曲线

Fig. 3 DSC curve of HTTDO

image /

无注解

无注解

无注解

无注解

ρ is density. D is detonation velocity. p is detonation pressure. Q is heat of formation

无注解

  • 参考文献

    • 1

      毕福强, 王伯周, 李祥志,等. 1,3‑二氧化‑1,2,3,4‑四嗪含能材料研究进展[J],含能材料, 2012, 20(5): 630-637.

      BI Fu‑qiang, WANG Bo‑zhou, LI Xiang‑zhi,et al. Progress in the energetic materials based on 1,2,3,4‑tetrazine 1,3‑dioxide[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2012, 20(5): 630-637.

    • 2

      Churakov A M, Ioffe S L, Tartakovsky V A. Synthesis of [1,2,5]oxadiazole [3,4‑e][1,2,3,4]tetrazine 4,6‑di‑N‑oxide[J]. Mendeleev Commun, 1995, 5(6): 227-228.

    • 3

      李祥志, 王伯周, 李辉, 等. 呋咱并[3,4‑e]‑4,6‑二氧化‑1,2,3,4‑四嗪新法合成与表征[J]. 有机化学, 2012, 10(32): 1975-1980.

      LI Xiang‑zhi, WANG Bo‑zhou, LI Hui,et al. Novel synthetic route and characterization of oxadiazolo‑[1,2,3,4]tetrazine 4,6‑di‑N‑oxide(FTDO)[J].Chinese Journal of Organic Chemistry, 2012, 10(32): 1975-1980.

    • 4

      Churakov A M, IoffeS L, Tartakovskii V A. The first synthesis of 1,2,3,4‑tetrazine‑1,3‑di‑N‑oxides[J]. Mendeleev Commun, 1991, 1(3): 101-103.

    • 5

      Voronin A, ZelenovV P, Churakov A M, et al. Synthesis of 1,2,3,4‑tetrazine 1,3‑dioxides annulated with 1,2,3‑triazoles and 1,2,3‑trizole 1‑oxides[J]. Tetrahedron, 2014, 70(18): 3018-3022.

    • 6

      Klenov M S, Guskov A A, Anikin O V, et al. Synthesis of tetrazino‑tetrazine 1,3,6,8‑Tetraoxide (TTTO)[J].Angewandte Chemie International Edition, 2016, 55(38): 11472-11475.

    • 7

      Klenov M S, Anikin O V,Churakov A M, et al. Toward the synthesis of tetrazino‑tetrazine 1,3,6,8‑tetraoxide (TTTO):an approach to non‑annulated 1,2,3,4‑tetrazine 1,3‑dioxides [J]. European Journal of Organic Chemistry, 2015, 2015(28): 6170-6179.

    • 8

      Voronin A, Zelenov V P, Churakov A M, et al. Alkylation of 1‑hydroxy‑1H‑[1,2,3]triazolo[4,5‑e][1,2,3,4]tetrazine‑5,7‑dioxide[J]. Russian Chemical Bulletin(International Edition),2014, 63(2): 475-479.

    • 9

      Zelenov V P, Voronin A, Churakov A M, et al. Amino(tert‑butyl‑NNO‑azoxy)furoxans: synthesis, isomerization,and rearrangement of N‑acetyl derivatives[J]. Russian Chemical Bulletin, International Edition, 2013, 62(1): 117-122.

    • 10

      Zelenov V P, Voronin A, Churakov A M, et al. 2‑Alkyl‑4‑amino‑5‑(tert‑butyl‑NNO‑azoxy)‑2H‑1,2,3‑triazole 1‑oxides:synthesis and reduction[J]. Russian Chemical Bulletin(International Edition), 2014, 63(1): 123-129.

    • 11

      Sheldrick G M. SHELXS‑97[CP]. Program for Crystal Structure Solution. University of Göttingen, Germany, 1997.

    • 12

      Sheldrick G M. SHELXL‑97[CP]. Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.

    • 13

      Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09 [CP].Gaussian, Inc, Wallingford C, 2009.

    • 14

      Becke A D. Density‑functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.

    • 15

      Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of gaussian‑2 and density functional theories for the computation of enthalpies of formation[J]. The Journal of Chemical Physics,1997, 106(3): 1063-1079.

    • 16

      Ochterski J W, Petersson G A, Montgomery J A. A complete basis set model chemistry V. extension to six or more heavy atoms[J].The Journal of Chemical Physics, 1996, 104(7): 2598-2619.

    • 17

      Politzer P, Murray J S, Grice M E, et al. Calculation of heats of sublimation and solid phase heats of formation[J]. Molecular Physics, 1997, 91(5): 923-928.

    • 18

      Kamlet M J, Jacobs S J. Chemistry of detonation I. a simplemethod for calculating detonation properties of CHNO explosives[J].The Journal of Chemical Physics, 1968, 48(1): 23-35.