CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
引用本文 ↓

于钟深,方向,高振儒等.TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响[J].含能材料,XXXX,XX(XX):720-726.

YU Zhong‑shen,FANG Xiang,GAO Zhen‑ru,et al.Effect of TiH2 Content on Mechanical Properties and Reaction Characteristics of Al /PTFE Under Quasi‑Static Compression[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),XXXX,XX(XX):720-726.

    摘要

    为了研究铝/氢化钛/聚四氟乙烯(Al/TiH2/PTFE)反应材料的力学性能和反应特性,采用冷等静压和真空烧结工艺制备了四种不同TiH2含量(0%,5%,10%,20%)的试件,同时制备了不含活性Al颗粒的TiH2/PTFE试件作为对比组,对所有试件开展了准静态压缩实验。得到了不同TiH2含量下试件的应力应变曲线及反应率数据,并记录下了试件的反应现象。对反应残渣进行了X射线衍射(XRD)物相分析,讨论了材料的反应机理。结果表明,TiH2含量对材料性能和反应率影响显著,当TiH2含量为5%时,反应率达到90%,材料强度达到最大值108MPa,比Al/PTFE类材料强度高15.1%;在TiH2和Al含量相同时,TiH2颗粒对PTFE基体增强作用大于Al颗粒;与Al/PTFE相比,含TiH2的试件反应时出现了特殊的燃烧火苗现象,且该现象随TiH2含量增加逐渐明显;材料断裂尖端高温引发Al与PTFE反应,使TiH2活化,释放出氢,生成TiC,能量释放充分,达到其作为高能添加剂的目的。

    Abstract

    To study the mechanical properties and reaction characteristics of aluminum / titanium hydride / polytetrafluoroethylene (Al/TiH2/PTFE) reaction materials, four kinds of specimens with different content of TiH2 (0%, 5%, 10%, 20%) were prepared by cold isostatic pressing and vacuum sintering process. At the same time, TiH2 / PTFE specimens without active Al particles were also prepared as the control group, then all the specimens were subjected to quasi-static compression experiments. The stress-strain curves and the reaction rate data of the specimens with different TiH2 content were obtained, and the reaction phenomena of the specimens were recorded. Moreover, the phase analyses of reaction residues were performed by XRD and the reaction mechanism of the materials was discussed. Results show that the content of TiH2 has a significant effect on the material properties and the reaction rate. When the content of TiH2 is 5%, the reaction rate is 90% and the material strength reaches the maximum value of 108 MPa, which is 15.1% higher than that of Al/PTFE type material. When the content of TiH2 and Al is the same, the reinforcing effect of TiH2 particles on PTFE matrix is greater than that of Al particles. Compared with Al/PTFE material, a special combustion flaming phenomenon appears in the reaction of TiH2-containing samples, and the phenomenon gradually is obvious with the increasing of TiH2 content. The high temperature of the crack tip of materials causes the reaction between Al and PTFE, which makes TiH2 activate, hydrogen release and TiC generate, the energy of TiH2 fully release and the purpose of using as a high-energy additive reach.

    YU Zhong-shen, FANG Xiang, GAO Zhen-ru, et al. Effect of TiH2 Content on Mechanical Properties and Reaction Characteristics of Al /PTFE Under Quasi-Static Compression[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2018,26(8):720-724.

    10.11943/CJEM.F001html/hncl/CJEM2017387/media/0caaf739-ea03-41da-8900-c7066e18c804_image1.jpg
  • 1 引 言

    1

    近年来,反应材料(RMs)以其高能量密度以及在受到冲击时高能量释放速率的优越性能,被越来越多的学者关注。铝/聚四氟乙烯(Al/PTFE)便是其中较为典型的一类含能材料,这种材料经过粉末压实,真空烧结等工艺处理后,可以形成具有一定强度、硬度和质量密度特性的块状结构,在冲击作用下会发生剧烈的化学反应并释放出大量热量。在完全配比的条件下,Al/PTFE(质量比为26.5/73.5)复合材料完全反应时单位质量热值能达到8.53 MJ·kg-1,是TNT反应热值(4.18 MJ·kg-1)的2倍,绝热反应温度甚至超过4000 K。采用这种材料制作的各种常规战斗部毁伤元,如活性破片、药型罩及战斗部壳体等,具有独特的撞击-反应两段式毁伤效果,应用价值极高。对Al/PTFE类反应材料的材料性能,国内外学者开展了大量研究,并取得了显著的成果[1,2,3,4,5,6,7,8,9,10,11,12]

    氢化钛(TiH2)是一种拥有广阔应用前景的新型含能材料,氢以极高的浓度存在于金属中,具有很高的能量密度。含氢量为3.9%的TiH2,其能量完全释放时单位质量热值可达21.5 MJ·kg-1[13],远远高于TNT和Al/PTFE(质量比为26.5/73.5)。因此,该材料是含能材料领域极具潜力的高能添加剂。目前,许多学者将TiH2引入到炸药、推进剂及烟火剂中,并进行了一系列研究。薛斌[14]等研究了RDX/ TiH2混合炸药的空中爆炸特性,发现当TiH2含量为20%时,爆炸产生的冲击波峰值压力、正压作用时间以及比冲量分别增加了6%、9%、23%;程扬帆[15]等将TiH2加入到乳化炸药中,进行了水下爆炸实验研究,结果表明混合炸药爆炸产生的总能量以及比冲量都显著增加,且炸药猛度实验表明混合炸药铅柱压缩距离比不含TiH2乳化炸药增加了37%;Sorensen[16]等研究了TiH2和KClO4混合物的相容性,结果表明混合物在贮存20年后仅有0.011%的TiH2发生分解,TiH2与强氧化剂有很好的相容性。然而,尚未发现将TiH2引入到Al/PTFE反应材料中的报道。

    为此,本课题组首次将TiH2加入到Al/PTFE反应材料体系中,采用准静态压缩实验对不同TiH2含量的反应材料力学性能及反应特性进行研究,并分析了材料反应机理。

  • 2 实验部分

    2
  • 2.1 试件制备

    2.1

    制备了五种不同TiH2含量的Al/ TiH2/PTFE试件,各组分质量分数如表1所示。试件所用粉末材料为:Al粉,平均粒径为6~7 μm,湖南金天铝厂;TiH2粉,4~6 μm,株洲润峰新材料有限公司;PTFE粉末,25 μm,上海三爱富有限公司。

    表1 Al/ TiH2/PTFE反应材料各组分配比和理论密度

    Table 1 Component ratios and theoretical density of the Al/TiH2/PTFE reactive material

    typemass ratio /%

    ρTMD

    /g·cm-3

    AlTiH2PTFE
    A026.573.52.49
    B26.5073.52.31
    C24.7570.32.36
    D23.41066.62.41
    E20.82059.22.52

    ρ T M D :theoretical mass density of Al/TiH2/PTFE composites.

    所有试件制备步骤均相同:按表1中配方将各组分称重并混合,向其中加入无水乙醇制成悬浮液,采用机械搅拌方式充分混合30 min后,将混合溶液放入60 ℃真空烘箱中干燥24 h。利用成型模具及液压机将干燥粉末压制成尺寸为 Φ 10 mm×10 mm的圆柱状试件用于准静态压缩实验。将压制好的试件放置在真空烧结炉中,在360 ℃条件下烧结4 h,升温及降温速率均为50 ℃·h-1

  • 2.2 实验过程

    2.2

    用CSS-44100万能材料试验机对各组试件进行准静态压缩实验,压头下压速度为6 mm·min-1,对应的应变率为0.01 s-1。测试条件:准静态压缩最大加载力为80 kN,实验环境温度为28 ℃。对每种材料配方的试件进行10次重复实验,为减少端部摩擦的影响,实验时在试件两端涂抹适量凡士林。

    采用德国Bruker D8 ADVANCE 型X射线衍射仪(X-ray diffraction, XRD)对准静态压缩后反应产物物相进行检测,分析生成产物成分。仪器参数设置为:管电压40 kV,电流40 mA,Cu K α 辐射( λ =0.15406 nm),扫描范围2θ为10°~90°,扫描速度5 °·min-1

  • 3 结果与讨论

    3
  • 3.1 准静态压缩下材料的力学特性

    3.1

    1为不同配方Al/ TiH2/PTFE材料真实应力-应变曲线,表2为相应材料的力学性能参数。图1表2表明,五种材料均为弹塑性材料,具有明显的屈服点,且在塑性阶段表现出应变硬化现象;当在Al/PTFE材料中添加TiH2时,材料强度随着TiH2含量增加先增大后减小,添加量为5%(C类试件)时达到最大值108 MPa;TiH2含量达到20%时(E),材料强度低于Al/PTFE材料(B)的强度。另外,与B类材料相比,A类材料强度明显较高,表明在TiH2和Al含量相同时,TiH2颗粒对PTFE基体的增强作用大于Al颗粒,这可能是由于TiH2颗粒不规则形状有利于PTFE基体和颗粒的粘合。分析认为:在TiH2含量较少时(小于10%),TiH2颗粒与Al填料共同作用增加了材料强度;当TiH2含量高于20%时,过量的TiH2与Al颗粒会对PTFE基体的整体性造成破坏,导致材料强度下降。

    图1
                            准静态压缩下不同配方Al/TiH2/PTFE真实应力应变曲线

    图1 准静态压缩下不同配方Al/TiH2/PTFE真实应力应变曲线

    Fig.1 True stress-strain curves of Al/TiH2/PTFE with different formulation under quasi-static compression

    表2 Al/ TiH2/PTFE反应材料力学性能参数

    Table 2 Mechanical properties of Al/TiH2/PTFE reactive materials

    type

    yield strength

    /MPa

    compressive strength

    / MPa

    failure strain
    A14.8101.21.93
    B19.193.81.87
    C16.9108.01.97
    D17.6104.21.93
    E19.688.21.89
  • 3.2 准静态压缩下材料的反应率及反应现象

    3.2

    在准静态压缩实验条件下,部分试件发生了剧烈的化学反应,并伴随释放大量热量和黑烟。冯彬等[4]在Al/PTFE试件的准静态压缩实验中也观察到类似的反应现象,并发现了产物中有AlF3和C(炭黑)生成。表3所示为不同类型试件的准静态压缩反应率。从表3

    表3 准静压缩下不同类型试件的反应率

    Table 3 The reaction ratio of different types of specimens under quasi-static compression

    typetotal reaction/%unreacted/%
    A0100
    B8020
    C9010
    D8020
    E3070

    可以看出,反应结果有不反应和完全反应两种,其中,不含Al的试件(A)均未发生反应,而含Al试件(B、C、D、E)均有反应现象发生,表明活性Al颗粒在反应中起到重要作用;对于含Al试件,TiH2含量小于20%时(B、C、D)试件的韧性较高,准静态压缩时吸收更多的能量,在突然断裂时更容易发生反应现象,因此试件反应率较高,均大于80%;而TiH2含量为20%时(E)材料整体性被破坏,试件韧性降低,相应的试件准静态压缩下反应率也下降,TiH2含量为20%时反应率仅为30%。

    2所示为准静态压缩时不同类型试件的反应过程。由图2可知,当压应力达到试件断裂强度时,试件突然发生剧烈的化学反应。在反应后期,含有TiH2试件出现了类似气体燃烧产生的火苗这一特殊现象,而B类试件则无此现象,而且随着TiH2含量增加,这一现象愈发显著。分析认为这是由于TiH2受热释放出的氢气高温下燃烧的结果。B、C、D、E四种类型试件反应持续时间分别为1.37,1.67,1.94,3.12 s,即随TiH2含量增加能量释放持续时间相应增加。

    图2
                            准静态压缩下不同类型试件反应过程

    图2 准静态压缩下不同类型试件反应过程

    Fig.2 Reaction processes of different types of specimens under quasi-static compression

  • 3.3 反应机理讨论

    3.3

    为了探明材料的反应机理,对准静态压缩后反应产物进行了XRD物相检测,结果如图3所示。图3表明,四种试件反应产物中均有AlF3生成,同时C、D、E类试件中有TiC产生,且TiH2反应完全,图3中无与之对应的衍射峰。由于在相同准静态压缩实验条件下,A类试件均未发生反应,表明该条件下TiH2不能和PTFE发生初始反应,B、C、D、E类试件的反应是由Al和PTFE之间的初始反应引发的。冯彬等[17]提出了准静态压缩条件下Al/PTFE材料断裂引发反应机理,该理论同样可以用来解释Al/TiH2/PTFE材料的反应现象。即:在准静态压缩实验条件下,当应力达到材料断裂强度时,材料瞬间发生断裂,断裂尖端温度急剧升高引发Al和PTFE组分之间反应,并释放大量热量,进而使TiH2活化并释放出氢气,在高温作用下发生燃烧作用。由于不同类型材料氢化钛含量不同,氢气释放量也不同,所以随氢化钛含量增加反应持续时间也逐渐增加。通过分析可知反应过程中可能发生的反应有:

    图3
                            反应残渣XRD检测结果

    图3 反应残渣XRD检测结果

    Fig.3 Results of reaction residues detected by XRD

    (—C2F4—) → C2F4 (g) (1)

    Al + C2F4 → AlF3+ C (2)

    TiH2 → Ti +H2 (3)

    Ti +C → TiC (4)

    H2 + O2 → H2O (g) (5)

  • 4 结 论

    4

    (1)五种配方Al/TiH2/PTFE反应材料均为弹塑性材料,随着TiH2含量的增加,材料强度先增加后减小,当TiH2含量为5%时,材料强度达到最大值108 MPa,比B类材料强度高15.1%;TiH2含量大于20%时,推测分析认为过量TiH2和Al颗粒会破坏PTFE基体整体性,导致材料强度下降;在TiH2和Al含量相同时,TiH2颗粒对基体的增强作用大于Al颗粒。

    (2)准静态压缩实验条件下,A类试件均未发生反应,B、C、D、E四类试件均有不反应和完全反应两种结果。随着TiH2含量增加,试件反应率先增加后减小;TiH2含量较低时(小于20%),试件反应率在80%以上,而TiH2含量为20%时,反应率仅为30%。

    (3)对于C、D、E类试件,反应时出现了类似气体燃烧产生的火苗这一特殊现象,而B类试件则无此现象,且随着TiH2含量增加,产生火苗现象也逐渐明显,反应持续时间随之增加,材料能量释放持续时间增加。

    (4)反应机理分析结果表明,材料断裂时断裂尖端处产生高温,引发Al和PTFE组分之间的反应,释放出大量热量,导致TiH2被活化释放出氢气,其在高温作用下发生燃烧作用;反应产物XRD检测结果表明材料中TiH2反应完全,能量释放充分,达到了其作为高能添加剂的目的。

    CHINESE JOURNAL OF

    ENERGETIC MATERIALS

    刊 物 简 介    EI收录 中文核心期刊    含 能 材 料

    HANNENG CAILIAO

    《含能材料》(Chinese Journal of Energetic Materials)1993年创刊,1996年国内外公开发行。中国工程物理研究院主办,中国工程物理研究院化工材料研究所承办,主要报道的内容为:

    (1) 含能材料(炸药、推进剂、烟火剂、火工药剂)的合成、制备与性能表征;

    (2) 含能材料(单质与配方)的理论设计与数值模拟;

    (3) 含能材料用相关材料的合成、制备、性能与应用技术;

    (4) 含能材料的安定性、相容性、老化特性研究;

    (5) 燃烧、爆炸、冲击的理论与实验研究;

    (6) 弹药毁伤特性、安全性、环境适应性、可靠性及防护技术;

    (7) 含能材料的装药、成型与加工制造技术;

    (8) 含能危险物质的理化分析、毒理特性、环境化学与绿色无害化处理技术;

    (9) 火工品研发及相关技术;

    (10) 本学科领域的研究动态、评述、会讯、书评与杰出专家等报道;

    (11) 本学科领域的科研机构、科学仪器、软件与出版机构等介绍。

    目前,《含能材料》是中文核心期刊(北大)、中国科技核心期刊(中国科技信息研究所)、中国科学引文数据库源刊(中国科学院)、中国学术期刊综合评价数据库源刊、中国学术期刊(光盘版)源刊、中国知网源刊、万方数据库源刊、中文科技期刊数据库源刊、中国化学文献数据库源刊,同时还被《EI》、《CA》、《剑桥科学文摘》(CSA)、《俄罗斯文摘》(AJ)、《日本科学技术振兴集团数据库》(JST)、《中国学术期刊文摘》、《中国导弹与航天文摘》及《兵工文摘》等收录。

    本刊网站http://www.energetic-materials.org.cn已开通,实现了网上投稿、审稿、查询稿件状态、清样校核、版面费通知等信息化管理模式。

    重 要 声 明

    目前,《含能材料》已加入中国知网、中国期刊网、万方数据资源系统(ChinaInfo)数字化期刊群、中文科技期刊数据库、CEPS中文电子期刊、超星期刊“域出版”平台,可通过数据库及互联网提供全文或题录检索。

    本刊付稿酬已包含刊物内容进入数据库及上网服务的报酬。凡投稿的作者,默认同意加入以上数据库。

  • 参考文献

    • 1

      Osborne D T, Pantoya M L. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures [J]. Combustion Science and Technology, 2007, 179(8): 1467-1480.

    • 2

      Willis M Jr, Drotar J T. Effect of aluminum particle size on the impact initiation of pressed PTFE/Al composite rods[C]// Shock Compression of Condensed Matter, 2007.

    • 3

      冯彬,方向,李裕春,等.烧结温度、配比及粒径对Al/Teflon准静压反应的影响[J]. 含能材料, 2016,24(12): 1209-1213.

      FENG Bin, FANG Xiang, LI Yu-chun, et al. Effect of sintering temperature, ratio and particle size on the reaction of Al/Teflon under quasi-static compression[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(12): 1209-1213.

    • 4

      冯彬,方向,李裕春,等.10-2 s-1压缩应变率下的反应现象[J]. 含能材料,2016,24(6): 599-603.

      FENG Bin, FANG Xiang, LI Yu-chun, et al. Reaction of Al/Teflon under compression strain rate[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(6): 599-603.

    • 5

      徐松林, 阳世清, 徐文涛,等.PTFE/Al反应材料的力学性能研究[J]. 高压物理学报,2009, 23(5):384-388.

      XU Song-lin, YANG Shi-qin, XU Wen-tao, et al. Research on the mechanical performance of PTFE/Al reactive materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384-388.

    • 6

      Ge C, Dong Y, Maimaitituersun W.Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials, 2016, 9(7): 590-605.

    • 7

      任会兰,李蔚,刘晓俊,等.钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性[J]. 兵工学报,2016, 37(5): 872-879.

      REN Hui-lan, LI Wei, LIU Xiao-jun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles[J]. Acta Armamentarii, 2016, 37(5):872-879.

    • 8

      Zhang X, Zhang J, Qiao L, et al. Experimental study on compression properties of Al/W/PTFE granular composites at elevated strain rates[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6366-6376.

    • 9

      周杰,何勇,何源,等.Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性[J]. 含能材料,2017,25(11): 903-912.

      ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-stastic compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(11): 903-912.

    • 10

      Xu F Y, Liu S B, Zheng Y F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials[J]. Advanced Engineering Materials, 2016, 19(1): 1600350.

    • 11

      Ge C, Maimaitituersun W, Dong Y, et al. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials[J]. Materials, 2017, 10(5): 452-467.

    • 12

      Cai J, Walley S M, Hunt R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites[J]. Materials Science & Engineering A, 2008, 472(1):308-315.

    • 13

      李辰芳.用氢化钛提高固体推进剂燃速的研究[J].飞航导弹,1997, 9(6): 34-37.

      LI Chen-fang, Research of raise solid propellant burning rate by using titanium hydride[J]. Winged Missiles, 1997, 9(6): 34-37.

    • 14

      Xue B, Ma H H, Shen Z W. Air explosion characteristics of a novel TiH2/RDX composite explosive[J]. Combustion Explosion & Shock Waves,2015, 51(4): 488-494.

    • 15

      Cheng Y F, Meng X R, Feng C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.

    • 16

      Sorensen D N, Quebral A P, Baroody E E, et al. Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate[J]. Journal of Thermal Analysis & Calorimetry, 2006, 85(1): 151-156.

    • 17

      Feng B, Li Y C, Wu S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors[J]. Materials & Design, 2016, 108: 411-417.

  • 参考文献 1
    OsborneD T, PantoyaM L. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures [J]. Combustion Science and Technology, 2007, 179(8): 1467-1480.
    参考文献 2
    WillisM Jr, DrotarJ T. Effect of aluminum particle size on the impact initiation of pressed PTFE/Al composite rods[C]// Shock Compression of Condensed Matter, 2007.
    参考文献 3
    冯彬,方向,李裕春,等.烧结温度、配比及粒径对Al/Teflon准静压反应的影响[J]. 含能材料, 2016,24(12): 1209-1213.
    FENGBin, FANGXiang, LIYu-chun, et al. Effect of sintering temperature, ratio and particle size on the reaction of Al/Teflon under quasi-static compression[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(12): 1209-1213.
    参考文献 4
    冯彬,方向,李裕春,等.10-2 s-1压缩应变率下的反应现象[J]. 含能材料,2016,24(6): 599-603.
    FENGBin, FANGXiang, LIYu-chun, et al. Reaction of Al/Teflon under compression strain rate[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(6): 599-603.
    参考文献 5
    徐松林, 阳世清, 徐文涛,等.PTFE/Al反应材料的力学性能研究[J]. 高压物理学报,2009, 23(5):384-388.
    XUSong-lin, YANGShi-qin, XUWen-tao, et al. Research on the mechanical performance of PTFE/Al reactive materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384-388.
    参考文献 6
    GeC, DongY, MaimaitituersunW.Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials, 2016, 9(7): 590-605.
    参考文献 7
    任会兰,李蔚,刘晓俊,等.钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性[J]. 兵工学报,2016, 37(5): 872-879.
    RENHui-lan, LIWei, LIUXiao-jun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles[J]. Acta Armamentarii, 2016, 37(5):872-879.
    参考文献 8
    ZhangX, ZhangJ, QiaoL, et al. Experimental study on compression properties of Al/W/PTFE granular composites at elevated strain rates[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6366-6376.
    参考文献 9
    周杰,何勇,何源,等.Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性[J]. 含能材料,2017,25(11): 903-912.
    ZHOUJie, HEYong, HEYuan, et al. Quasi-stastic compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(11): 903-912.
    参考文献 10
    XuF Y, LiuS B, ZhengY F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials[J]. Advanced Engineering Materials, 2016, 19(1): 1600350.
    参考文献 11
    GeC, MaimaitituersunW, DongY, et al. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials[J]. Materials, 2017, 10(5): 452-467.
    参考文献 12
    CaiJ, WalleyS M, HuntR J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites[J]. Materials Science & Engineering A, 2008, 472(1):308-315.
    参考文献 13
    李辰芳.用氢化钛提高固体推进剂燃速的研究[J].飞航导弹,1997, 9(6): 34-37.
    LIChen-fang, Research of raise solid propellant burning rate by using titanium hydride[J]. Winged Missiles, 1997, 9(6): 34-37.
    参考文献 14
    XueB, MaH H, ShenZ W. Air explosion characteristics of a novel TiH2/RDX composite explosive[J]. Combustion Explosion & Shock Waves,2015, 51(4): 488-494.
    参考文献 15
    ChengY F, MengX R, FengC T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.
    参考文献 16
    SorensenD N, QuebralA P, BaroodyE E, et al. Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate[J]. Journal of Thermal Analysis & Calorimetry, 2006, 85(1): 151-156.
    参考文献 17
    FengB, LiY C, WuS Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors[J]. Materials & Design, 2016, 108: 411-417.
于钟深

机 构:陆军工程大学野战工程学院,江苏 南京 210007

作者简介:于钟深(1991-),男,博士生,主要从事反应材料制备及性能研究。e-mail:chunweiyu@qq.com

方向

机 构:陆军工程大学野战工程学院,江苏 南京 210007

高振儒

机 构:陆军工程大学野战工程学院,江苏 南京 210007

罗先南

机 构:陆军工程大学野战工程学院,江苏 南京 210007

吴家祥

机 构:陆军工程大学野战工程学院,江苏 南京 210007

张军

机 构:陆军工程大学野战工程学院,江苏 南京 210007

李裕春

机 构:陆军工程大学野战工程学院,江苏 南京 210007

角 色:

邮 箱:65107840@qq.com

typemass ratio /%

ρTMD

/g·cm-3

AlTiH2PTFE
A026.573.52.49
B26.5073.52.31
C24.7570.32.36
D23.41066.62.41
E20.82059.22.52
html/hncl/CJEM2017387/media/0caaf739-ea03-41da-8900-c7066e18c804-image001.png
type

yield strength

/MPa

compressive strength

/ MPa

failure strain
A14.8101.21.93
B19.193.81.87
C16.9108.01.97
D17.6104.21.93
E19.688.21.89
typetotal reaction/%unreacted/%
A0100
B8020
C9010
D8020
E3070
html/hncl/CJEM2017387/media/0caaf739-ea03-41da-8900-c7066e18c804-image002.png
html/hncl/CJEM2017387/media/0caaf739-ea03-41da-8900-c7066e18c804-image003.png

表1 Al/ TiH2/PTFE反应材料各组分配比和理论密度

Table 1 Component ratios and theoretical density of the Al/TiH2/PTFE reactive material

图1 准静态压缩下不同配方Al/TiH2/PTFE真实应力应变曲线

Fig.1 True stress-strain curves of Al/TiH2/PTFE with different formulation under quasi-static compression

表2 Al/ TiH2/PTFE反应材料力学性能参数

Table 2 Mechanical properties of Al/TiH2/PTFE reactive materials

表3 准静压缩下不同类型试件的反应率

Table 3 The reaction ratio of different types of specimens under quasi-static compression

图2 准静态压缩下不同类型试件反应过程

Fig.2 Reaction processes of different types of specimens under quasi-static compression

图3 反应残渣XRD检测结果

Fig.3 Results of reaction residues detected by XRD

image /

ρ T M D :theoretical mass density of Al/TiH2/PTFE composites.

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Osborne D T, Pantoya M L. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures [J]. Combustion Science and Technology, 2007, 179(8): 1467-1480.

    • 2

      Willis M Jr, Drotar J T. Effect of aluminum particle size on the impact initiation of pressed PTFE/Al composite rods[C]// Shock Compression of Condensed Matter, 2007.

    • 3

      冯彬,方向,李裕春,等.烧结温度、配比及粒径对Al/Teflon准静压反应的影响[J]. 含能材料, 2016,24(12): 1209-1213.

      FENG Bin, FANG Xiang, LI Yu-chun, et al. Effect of sintering temperature, ratio and particle size on the reaction of Al/Teflon under quasi-static compression[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(12): 1209-1213.

    • 4

      冯彬,方向,李裕春,等.10-2 s-1压缩应变率下的反应现象[J]. 含能材料,2016,24(6): 599-603.

      FENG Bin, FANG Xiang, LI Yu-chun, et al. Reaction of Al/Teflon under compression strain rate[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2016,24(6): 599-603.

    • 5

      徐松林, 阳世清, 徐文涛,等.PTFE/Al反应材料的力学性能研究[J]. 高压物理学报,2009, 23(5):384-388.

      XU Song-lin, YANG Shi-qin, XU Wen-tao, et al. Research on the mechanical performance of PTFE/Al reactive materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384-388.

    • 6

      Ge C, Dong Y, Maimaitituersun W.Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials, 2016, 9(7): 590-605.

    • 7

      任会兰,李蔚,刘晓俊,等.钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性[J]. 兵工学报,2016, 37(5): 872-879.

      REN Hui-lan, LI Wei, LIU Xiao-jun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles[J]. Acta Armamentarii, 2016, 37(5):872-879.

    • 8

      Zhang X, Zhang J, Qiao L, et al. Experimental study on compression properties of Al/W/PTFE granular composites at elevated strain rates[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6366-6376.

    • 9

      周杰,何勇,何源,等.Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性[J]. 含能材料,2017,25(11): 903-912.

      ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-stastic compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(11): 903-912.

    • 10

      Xu F Y, Liu S B, Zheng Y F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials[J]. Advanced Engineering Materials, 2016, 19(1): 1600350.

    • 11

      Ge C, Maimaitituersun W, Dong Y, et al. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials[J]. Materials, 2017, 10(5): 452-467.

    • 12

      Cai J, Walley S M, Hunt R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites[J]. Materials Science & Engineering A, 2008, 472(1):308-315.

    • 13

      李辰芳.用氢化钛提高固体推进剂燃速的研究[J].飞航导弹,1997, 9(6): 34-37.

      LI Chen-fang, Research of raise solid propellant burning rate by using titanium hydride[J]. Winged Missiles, 1997, 9(6): 34-37.

    • 14

      Xue B, Ma H H, Shen Z W. Air explosion characteristics of a novel TiH2/RDX composite explosive[J]. Combustion Explosion & Shock Waves,2015, 51(4): 488-494.

    • 15

      Cheng Y F, Meng X R, Feng C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.

    • 16

      Sorensen D N, Quebral A P, Baroody E E, et al. Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate[J]. Journal of Thermal Analysis & Calorimetry, 2006, 85(1): 151-156.

    • 17

      Feng B, Li Y C, Wu S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors[J]. Materials & Design, 2016, 108: 411-417.