CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
数据驱动策略在含能材料设计及性能预测中的应用
作者:
作者单位:

中国工程物理研究院化工材料研究所

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Application of Data-driven Strategies in Energetic Material Design and Performance Prediction
Author:
Affiliation:

Institute of Chemical Materials,China Academy of Engineering Physics CAEP

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 支撑附件
    摘要:

    以数据驱动和人工智能为代表的科技与产业变革正在深刻影响材料科学领域,也为含能材料的创新带来了前所未有的机遇与挑战。机器学习作为一种新兴技术,为含能材料的分子设计与合成提供了全新的研发范式,有望解决效率低下、成本高昂、周期冗长等含能材料研发中长期存在的瓶颈问题。尽管已有部分成功案例被报道,但机器学习在含能分子“设计→筛选→合成→性能验证”全周期研究中的应用,相较于其他新材料领域仍处于相对不成熟的阶段。研究综述了机器学习辅助含能材料开发的研究现状,重点总结了机器学习在含能分子设计、单一性能预测及多性能同步预测中的应用案例。然而,依托机器学习辅助设计合成具有特定性能的含能材料依然充满了挑战。未来应着力推进含能材料数据质量控制与标准化体系的构建、可解释机器学习模型的开发以跨学科交叉融合体系的建立,从而进一步推动高性能含能材料的高效创制。

    Abstract:

    Technological and industrial transformations driven by data science and artificial intelligence are profoundly impacting the field of materials science, presenting both unprecedented opportunities and significant challenges for the innovation of energetic materials. As an emerging technology, machine learning offers a novel research and development paradigm for the molecular design and synthesis of energetic materials and holds promise for overcoming long-standing bottlenecks such as low efficiency, high costs, and prolonged development cycles. Although some successful applications have been reported, the integration of machine learning across the full research cycle of energetic molecules—design, screening, synthesis, and performance validation—remains relatively underdeveloped compared to its application in other advanced materials domains. This review outlines the current landscape of machine learning-assisted development of energetic materials, with a focus on its applications in molecular design, single-property prediction, and multi-property simultaneous prediction. Nonetheless, the use of machine learning to guide the design and synthesis of energetic materials with targeted properties remains fraught with challenges. Future efforts should prioritize the establishment of data quality control and standardization frameworks, the development of interpretable machine learning models, and the creation of interdisciplinary integration platforms, all aimed at accelerating the efficient discovery of high-performance energetic materials.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

王海风,王康才,刘渝. 数据驱动策略在含能材料设计及性能预测中的应用[J]. 含能材料,DOI:10.11943/CJEM2025076.

复制
历史
  • 收稿日期: 2025-04-23
  • 最后修改日期: 2025-05-22
  • 录用日期: 2025-05-27
  • 在线发布日期:
  • 出版日期: