CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
基于机器学习的超细HNS固相熟化预测模型
作者:
作者单位:

1.西南科技大学材料与化学学院;2.中国工程物理研究院化工材料研究所;3.重庆大学化学化工学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Machine Learning Based Prediction Model for Ultrafine HNS Solid Phase Ripening
Author:
Affiliation:

1.School of Materials and Chemistry, Southwest University of Science and Technology;2.Institute of Chemical Materials, China Academy of Engineering Physics;3.School of Chemistry and Chemical Engineering, Chongqing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 支撑附件
    摘要:

    超细六硝基茋(HNS)因其优异的热稳定性和良好的高压短脉冲性能,在冲击片雷管等领域得以广泛应用。然而,在超细HNS的使役过程中因其高表面能,易发生固相熟化。尽管已有研究从不同角度探讨了温度、残余溶剂和时间等因素对超细HNS固相熟化过程的影响,但这些研究大多集中于单一或少数几个因素的分析,尚未建立能够整合多种影响因素的预测模型。为此,研究基于先前通过小角X射线散射(SAXS)在不同温度条件和残余二甲基甲酰胺(DMF)含量下获得的比表面积(SSA)和相对比表面积(RSSA)数据,采用机器学习方法以及优化的经验模型,构建了一个综合考虑时间、温度和残余DMF含量的预测模型结果显示,在训练集上,随机森林预测的R2达到了0.9989,多项式回归模型拟合的R2为。0.9091,优化后的经验模型的R2为0.9129。通过对比这三个模型的预测效果,找出了最适合预测超细HNS固相熟化进程的模型。此外,通过纯度测试、扫描电子显微镜(SEM)等手段揭示了颗粒特性的差异对超细HNS固相熟化程度具有显著影响。本研究提供了一种预测超细HNS固相熟化进程的方法,为探索其熟化机理及优化贮存稳定性奠定了基础。

    Abstract:

    Ultrafine hexanitrostilbene (HNS) is widely used in explosion foil initiators and related applications due to its outstanding thermal stability and excellent high-voltage short-pulse performance. However, its high surface energy during service process leads to solid phase ripening. Previous studies have explored the effects of temperature, residual solvents, and time on the solid phase ripening of ultrafine HNS, but these investigations primarily focused on isolated or narrowly factors. Currently, no multivariate predictive model has been established. A predictive model was developed based on previously obtained small angle X-ray scattering (SAXS) data, including specific surface area (SSA) and relative specific surface area (RSSA), obtained under varying temperatures and residual dimethylformamide (DMF) contents. The model was constructed using machine learning algorithms and optimized empirical modeling approaches. It comprehensively accounts for time, temperature, and residual DMF content in its predictions. The results show that on the training dataset, the random forest (RF) model achieved an R2 of 0.9989 in predictions, while the polynomial regression (PR) model and optimized empirical model attained R2 values of 0.9091 and 0.9129, respectively. Through comparative analysis of these three models’ predictive performance, the most suitable model for predicting the solid phase ripening process of ultrafine HNS was identified. Furthermore, purity tests and scanning electron microscopy (SEM) characterization revealed that particle characteristic variations exert significantly influence on the extent of solid phase ripening in ultrafine HNS. A predictive method was established for the solid phase ripening process of ultrafine HNS, laying a foundation for investigating its aging mechanisms and optimizing storage stability.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

朱金灿,王超,曹洪滔,等. 基于机器学习的超细HNS固相熟化预测模型[J]. 含能材料,DOI:10.11943/CJEM2025060.

复制
历史
  • 收稿日期: 2025-04-07
  • 最后修改日期: 2025-06-01
  • 录用日期: 2025-06-06
  • 在线发布日期:
  • 出版日期: