CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
基于音频信号的含能材料撞击感度机器学习识别
作者:
作者单位:

1.中国工程物理研究院化工材料研究所;2.聊城大学物理科学与信息工程学院;3.北京理工大学机电学院

作者简介:

通讯作者:

基金项目:

国家自然基金面上项目(12372342);院长基金自强项目(YZJJZQ2023008)


Machine Learning Recognition of Impact Sensitivity of Energetic Materials Based on Acoustic Signals
Author:
Affiliation:

1.Institute of Chemical Materials, CAEP;2.School of Physical Science and Information Technology, Liaocheng University;3.School of Mechatronical Engineering, Beijing Institute of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提高炸药撞击感度测试的准确性和客观性,采用机器学习方法对炸药撞击响应声信号的智能识别进行了研究。基于落锤式撞击感度测试装置针对混合炸药开展了试验,利用音频采集系统同步采集了撞击过程中的声信号,提取了最大值、带宽等一维的时域和频域特征,用短时傅里叶变换(STFT)将音频数据转换为二维的频谱图,采用条件生成对抗网络(cGAN)对一维数据进行数据增强,采用深度卷积生成对抗网络(DCGAN)对二维频谱图进行数据增强,采用了多种机器学习模型包括随机森林(RF)、极端梯度提升(XGBoost)、反向传播神经网络(BPNN)、支持向量机(SVM)、k-means聚类算法、卷积神经网络(CNN)、视觉Transformer(ViT)进行判爆分类。结果表明,RF、XGBoost、BPNN和SVM在原始数据集上的准确率均超过99.5%,在cGAN增强数据上最终达到100%,而k-means聚类算法初始达到了98.5%的准确率,在增强数据上呈现准确率先上升后下降的趋势。CNN和ViT在原始数据上的准确率分别为98.1%和98.4%,在增强数据上达到98.4%和98.9%,在增强数据上的表现有所提升,但受限于小样本环境和轻微的过拟合问题,准确率还有一定的提升空间。总体而言,本研究提出的基于机器学习的炸药撞击感度智能识别方法取得了较高的准确率,验证了其在爆炸声信号判爆任务中的可靠性与实用性,同时能够在一定程度上改善传统人工判爆的主观性和效率低的问题,为炸药使用安全性提供了可靠的技术方案。

    Abstract:

    To improve the accuracy and objectivity of explosives’ impact sensitivity testing, machine learning methods were applied in the intelligent recognition of explosives’ impact response acoustic signals. Experiments on mixed explosives were conducted using a drop-weight impact sensitivity test device, with an audio acquisition system synchronously capturing acoustic signals during the impact process. One-dimensional time domain and frequency domain features, such as maximum value and bandwidth, were extracted. Short-Time Fourier Transform (STFT) was employed to convert audio data into frequency spectrograms. Data augmentation for one-dimensional data was performed using a Conditional Generative Adversarial Network(cGAN), while a Deep Convolutional Generative Adversarial Network(DCGAN) was applied to enhance spectrogram data. Multiple machine learning models were employed for explosion classification, including Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Back-propagation Neural Network (BPNN), Support Vector Machine (SVM), k-means clustering, Convolutional Neural Network (CNN), and Vision Transformer (ViT). Results demonstrate that RF, XGBoost, BPNN, and SVM achieve accuracy rates exceeding 99.5% on the real dataset and achieve 100% on the cGAN-augmented dataset. In contrast, k-means clustering initially reaches an accuracy of 98.5% on the real dataset, but accuracy shows a trend of increase followed by decline on augmented data. CNN and ViT achieve accuracies of 98.1% and 98.4% on the real dataset, respectively, and improved to 98.4% and 98.9% on augmented data. However, their performance remaine slightly lower than traditional models due to the constraints of small sample sizes and minor overfitting issues. The proposed deep learning-based intelligent recognition method for explosives’ impact sensitivity in this study achieved a high level of accuracy, demonstrating its reliability and practicality in the task of detecting explosive sound signals. At the same time, it effectively mitigates the subjectivity and inefficiency associated with traditional manual recognition methods, providing a reliable technical solution for the safety use of explosives.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

张炳儒,李明,文玉史,等. 基于音频信号的含能材料撞击感度机器学习识别[J]. 含能材料,DOI:10.11943/CJEM2024300.

复制
历史
  • 收稿日期: 2024-12-17
  • 最后修改日期: 2025-01-27
  • 录用日期: 2025-01-24
  • 在线发布日期: 2025-01-26
  • 出版日期: