CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
机器学习辅助的烃类分子性质预测与高通量筛选燃料
作者:
作者单位:

1.天津大学化工学院, 天津 300072;2.中国科学院计算技术研究所, 北京 100190;3.中国科学院大学, 北京 100190;4.承德钒钛新材料有限公司, 河北 承德 067102;5.先进燃料与化学推进剂教育部重点实验室, 天津 300072;6.物质绿色创造与制造海河实验室, 天津 300192

作者简介:

通讯作者:

基金项目:

国家自然科学基金(U2341278, 22178248);国家重点研发计划项目(2023YFlB4103000)


Machine Learning Assisted Property Prediction of Hydrocarbon Molecules and High Throughput Screening for Fuel
Author:
Affiliation:

1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;2.Institute of Computing Technology, Chinese Academy of Sciences(CAS), Beijing 100910, China;3.University of Chinese Academy of Sciences, Beijing 100910, China;4.Chengde Vanadium Titanium New Material Co., Ltd., Chengde 067102, China;5.Key Laboratory for Advanced Fuel and Chemical Propellant of Ministry of Education, Tianjin 300072, China;6.Haihe Laboratory of Green Creation and Manufacture of Matter, Tianjin 300192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过数据收集、结构优化和量化计算,建立了碳数从1到50的2899个烃类分子“结构-多种性质”数据集,性质包含熔点(Tm)、沸点(Tb)、密度(ρ)、0 K下的内能(U0)、298.15 K下的内能(U)、298.15 K下的焓(H)、298.15 K下的吉布斯自由能(G)。以表示分子结构的库伦矩阵作为模型输入,建立了决策树回归模型、交叉验证的最小绝对收缩和选择算子回归模型、交叉验证的岭回归模型、极限梯度提升回归模型4种不同的机器学习模型。通过比较不同模型预测性质的精度得出,极限梯度提升回归模型更适用于预测烃类分子的熔点、沸点、密度等通过实验测得的性质,交叉验证的岭回归模型更适用于预测烃类分子的内能、焓、吉布斯自由能等能量的通过理论计算得到的性质。同时,最优的机器学习组合模型可以准确预测相同碳数、不同种类和同分异构体烃类分子的性质。使用最优的机器学习模型计算了34种已通过实验合成的高密度碳氢燃料的密度,计算值与实验值的平均绝对误差为0.0290 g‧cm-3。进而,预测了开源数据库GDB-13C中的319,893个烃类分子的燃料性质,并高通量筛选出了37种低凝固点、高密度的新型碳氢燃料候选分子。采用基团贡献法和DFT方法进一步计算了筛选出的碳氢分子的关键燃料性质,这些新型分子与典型燃料JP-10和QC的质量热值和比冲相当。

    Abstract:

    A big database containing molecular structures and multiple properties of 2899 hydrocarbon molecules (the number of carbon atom is from 1 to 50), was constructed via data collection, structure optimization and quantum chemistry calculation. Seven properties were focused, including melting point (Tm), boiling point (Tb), density (ρ), internal energy at 0 K (U0), internal energy at 298.15 K (U), enthalpy at 298.15 K (H) and Gibbs free energy at 298.15 K (G). Four different machine learning models were established, including Decision Tree Regressor, Lasso CV, Ridge CV and XGBoost Regressor, using coulomb matrix representing molecular structures as the input. In comparison, the XGBoost Regressor model is more suitable for regressing experimental melting point, boiling point and density of hydrocarbon molecules; Ridge CV model is more suitable for the prediction of four thermodynamic energy properties. In addition, the optimized machine learning combined model can accurately predict the properties of the hydrocarbon molecules with same carbon numbers, hydrocarbons with different types and hydrocarbon isomers. Furthermore, the densities of 34 high-density hydrocarbon fuels reported experimentally were calculated by the optimized machine learning model. The mean absolute error between the calculated values and the experimental values is only 0.0290 g cm-3. Next, the fuel properties of 319,893 hydrocarbon molecules in GDB-13C were predicted by the machine learning model to establish a big database containing hydrocarbon structure and fuel properties. Based on high-throughput screening, 37 hydrocarbon fuel molecules with low freezing point and high density have been discovered. Through the proof-of-concept via group contribution method and DFT method, the net heat of combustion and specific impulse of the as-screened new molecules are similar to those of JP-10 and quadricyclane (QC).

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

侯放,齐晓宁,刘睿宸,等. 机器学习辅助的烃类分子性质预测与高通量筛选燃料[J]. 含能材料,DOI:10.11943/CJEM2024276.

复制
历史
  • 收稿日期: 2024-10-28
  • 最后修改日期: 2024-11-25
  • 录用日期: 2024-12-17
  • 在线发布日期: 2024-12-24
  • 出版日期: