The solidification process of melt-cast explosive is a significant step during its research and manufacture. solidification, and related charge quality play a key role in the detonation performance and safety of explosives. Based on domestic and foreign research works, the development of solidification techniques of the melt-cast explosive is systematically summarized from three aspects: finite element simulation, solidification process and on-line detection methods. The application of the finite element simulation in flow -temperature-stress field simulation during casting and solidification process of the melt-cast explosive is reviewed. The formation of defects during the solidification process and the effects of different techniques on solidification are elucidated. Furthermore, the application of on-line detection of temperature, stress-strain, viscosity, and internal structure in the high-quality precision forming techniques of melt-cast explosive is discussed. The development of numerical simulation, solidification process optimization and on-line detection technique in melt-cast explosive can provide vital theoretical and technical guidance for the design and development of the solidification equipments and the quality improvement of solidified charges. In the future, the improvement of the charge and solidification technique requires further development and application in aspects such as model construction of equipment-material, safety of process equipment, precise control of process conditions, real-time information monitoring, on-line detection and adaptive regulation.