To study the characteristics of after-effect parameters of shaped charge jet penetrating finite thickness steel target, the experiments on small shaped charge jet formation and penetration on finite thickness plate with after-effect target were carried out. The numerical simulation on the process of shaped charge jet penetrating finite thickness target plate was carried out by ANSYS/LS-DYNA finite software. The influence of target plate thickness, standoff and after-effect material density on the after-effect parameters of shaped charge jet penetration was analyzed, including the residual jet tip diameter d, tip velocity v and after-effect initiation ability v2d. The results show that with the increase of target thickness, the after-effect initiation ability v2d shows a linear attenuation trend, and around 16% of the initial initiation parameter is lost for every 20 mm increase in thickness. In the range of standoff that the jet keeps continuous, with the increase of standoff, the after-effect initiation ability v2d first increases and then decreases, and its stagnation point appears at the standoff of 8times the shaped charge diameter. In the range of common explosive density, with the increase of after-effect material density ρ, the attenuation rate of after-effect initiation ability v2d first decreases and then increases. At the same time, there is a stagnation point in the v2d-ρ curve. The peak value of v2d is distributed between ρ=1.6-1.8 g·cm-3, and the stagnation point position moves to the right with the increase of penetration time.