CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
梯度硝基发射药制备过程安全风险分析
作者:
作者单位:

1.安徽理工大学化工与爆破学院, 安徽 淮南 232001;2.中国爆破器材行业协会, 北京 100089;3.南京理工大学化学与化工学院, 江苏 南京 210094

作者简介:

通讯作者:

基金项目:

安徽高校自然科学研究项目(2022yjrc17);国家自然科学基金(22205111)


Safety Risk Analysis of Nitro Gradiently Distributed Propellant Preparation Process
Author:
Affiliation:

1.School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China;2.China Explosive Materials Trade Association, Beijing 100000, China;3.School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Fund Project:

Grant support: Natural Science Research Project of Anhui Educational Committee(No. 2022yjrc17); National Natural Science Foundation of China(No. 22205111)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    梯度硝基发射药(NGDP)作为一种新型发射药,具有高氧平衡、低发射有害现象以及抗迁移的特性。为了分析NGDP制备过程热危险性,利用反应量热仪(RC1mx)、差式扫描量热仪(DSC)和加速绝热量热仪(ARC)测定了双基球扁药脱硝反应过程中的放热以及反应前后物料的热分解行为。结果表明:反应体系的绝热温升(ΔTad)为58.28 ℃;脱硝反应使双基球扁药的初始分解温度从191.33 ℃提高至194.16 ℃;通过脱硝反应产物体系的ARC测试数据,获得了最大反应速度到达时间(TMRad)和温度之间的关系,计算出绝热诱导期为24h时所对应的温度TD24;反应的TD24、技术最高温度MTT与理论最高可达温度MTSR分别为137.2 ℃、108 ℃和128.52 ℃。基于精细化工反应安全风险评估规范,该反应在冷却失效的情况下,体系有冲料的风险,但触发二次放热分解反应的风险较低。

    Abstract:

    Nitro gradiently distributed propellant (NGDP), as a new type of propellant, has the characteristics of high oxygen balance, less harmful for use, and anti-migration. To analyze the thermal hazard of denitration reaction in the preparation process of NGDP, the exothermic process during the denitration reaction and the thermal decomposition behavior of the material, the reaction was measured by reaction calorimeter (RC1mx), differential scanning calorimeter (DSC) and accelerated adiabatic calorimeter (ARC). The results showed that the exothermic amount of the denitration reaction was 61.46 kJ, and the adiabatic temperature rise (ΔTad) of the reaction system calculated from this was 58.28 ℃. In the DSC test, the denitration treatment increased the decomposition temperature of the double base propellant from 191.33 ℃ to 194.16 ℃. Based on the ARC test data of the post-reaction system, the relationship between the Time to Maximum Rate (TMRad) and the temperature was calculated. When the adiabatic induction period is 24 hours, the corresponding TD24 is 137.2 ℃. The TD24, maximum technical temperature (MTT), and maximum temperature of the synthesis reaction (MTSR) of the reaction are 137.2 ℃, 108 ℃, and 128.52 ℃, which means that the system had the risk of spraying in case of cooling failure. However, the risk of triggering the secondary decomposition reaction was low.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

梁昊,王多良,孙倩,等.梯度硝基发射药制备过程安全风险分析[J].含能材料, 2024, 32(8):804-810. DOI:10.11943/CJEM2024075.
LIANG Hao, WANG Duo-liang, SUN Qian, et al. Safety Risk Analysis of Nitro Gradiently Distributed Propellant Preparation Process[J]. Chinese Journal of Energetic Materials, 2024, 32(8):804-810. DOI:10.11943/CJEM2024075.

复制
历史
  • 收稿日期: 2024-03-06
  • 最后修改日期: 2024-06-17
  • 录用日期: 2024-05-28
  • 在线发布日期: 2024-05-30
  • 出版日期: 2024-08-25