CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
点火具装药状态对其工作过程能量释放特性的影响规律
作者:
作者单位:

1.西北工业大学 燃烧、热结构与内流场重点实验室, 陕西 西安 710072;2.西安现代控制技术研究所, 陕西 西安 710065

作者简介:

通讯作者:

基金项目:

国家自然科学基金(51776176),陕西省重点研发计划(2021ZDLGY11)


Influence of the Charge State of the Igniter on the its Energy Release Characteristics during Its Working Process
Author:
Affiliation:

1.Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi′an 710072, China;2.Xi′an Modern Control Technology Research Institute, Xi′an 710065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了研究火箭发动机传统颗粒型点火具工作过程中点火药与包装纤维素材料的相互作用,及其药型结构对能量释放特性的影响规律,制备了系列点火药/纤维素复合样品,并采用同步热分析(DSC-TG)和傅里叶变换红外光谱(FTIR)联用仪,研究了纤维素外壳对点火药热反应性能的影响。在此基础上,利用模拟点火腔研究了装药结构、装药量及配方组成对能量释放过程及燃温分布的影响规律。主要通过高速相机和高速红外热像仪获得了不同点火具的火焰结构及火焰温度分布,并与采集的压力数据进行了关联。结果表明:纤维素壳体会降低黑火药和Mg/PTFE点火药的总凝聚相反应放热量,当纤维素含量为33.33%时,2种点火药的总放热量分别降低了66.36%和29.98%,然而B/KNO3点火药的放热量却提高了2.39倍。气相分解产物和燃烧凝相产物分析表明纤维素并未改变黑火药和Mg/PTFE热反应路径。模拟点火过程研究表明,药型为大圆柱体形装药量10 g的黑火药点火具在点火燃烧过程中会发生预点火现象,点火药生成大量气体携带部分未着火颗粒先破壳再实现点火。纤维素壳体起到了一定的增压效应,为初始火焰的建立奠定了压强基础。装药结构和装药量对点火具燃温的影响不显著,燃温的差值不超过50 ℃。但方形和环形点火药盒的点火具工作时间较短,比小圆柱体形和异形点火药盒的点火具工作时间缩短42.4%左右,有利于提高点火效率。在配方影响方面,Mg/PTFE点火药的燃温最高,工作时间最短;而大粒径黑火药燃温比小粒径高,因此前者工作时间更长。

    Abstract:

    In order to study the interaction between igniting pyrotechnics and packaging cellulose materials during the working process of traditional igniters for rocket engines and the influence of the structure of igniting pyrotechnics on flame propagation characteristics, igniting pyrotechnics/cellulose composite samples were prepared. The effects of cellulose shell on the thermal reaction performance of igniting pyrotechnics were studied by simultaneous thermal analysis (DSC-TG) and Fourier transform infrared spectroscopy (FTIR). On this basis, the influence of charge structure, charge amount and formula composition on flame propagation process and combustion temperature distribution was studied by using simulated combustion chamber. The flame structure and flame temperature distribution of different igniters were obtained by high-speed camera and high-speed infrared thermal imager, and correlated with the collected pressure data. The results show that the cellulose shell reduces the total heat release of the condensed phase reaction of the black powder and the Mg/PTFE ignition powder. When the cellulose content is 33.33%, the total heat release of the two igniting pyrotechnics is reduced by 66.36% and 29.98%, respectively. However, the heat release of B/KNO3 increased by 2.39 times. The analysis of gas phase decomposition products and combustion condensed phase products showed that cellulose did not change the thermal reaction path of black powder and Mg/PTFE. The simulation of ignition process shows that the pre-ignition phenomenon will occur in the ignition and combustion process of the black powder igniter with a cylindrical charge of 10 g. The igniting pyrotechnics generates a large amount of gas to carry some unburned particles to break the shell before ignition. The cellulose shell has a certain pressurization effect, which lays a pressure foundation for the establishment of the initial flame. The charge structure and charge quantity have no significant effect on the combustion temperature of the igniter, and the difference of the combustion temperature does not exceed 50 ℃. However, the working time of the igniter of the square and annular igniter cartridges is shorter, which is about 42.4% shorter than that of the small cylindrical and shaped igniter cartridges, which is beneficial to improve the ignition efficiency. In terms of formula influence, Mg/PTFE has the highest combustion temperature and the shortest working time, while the combustion temperature of large particle size black powder is higher than that of small particle size, so the former works longer.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

田小涛,李玉雪,肖冰,等.点火具装药状态对其工作过程能量释放特性的影响规律[J].含能材料, 2023, 31(10):1013-1025. DOI:10.11943/CJEM2023029.
TIAN Xiao-tao, LI Yu-xue, XIAO Bing, et al. Influence of the Charge State of the Igniter on the its Energy Release Characteristics during Its Working Process[J]. Chinese Journal of Energetic Materials, 2023, 31(10):1013-1025. DOI:10.11943/CJEM2023029.

复制
历史
  • 收稿日期: 2023-02-24
  • 最后修改日期: 2023-06-30
  • 录用日期: 2023-06-15
  • 在线发布日期: 2023-06-19
  • 出版日期: 2023-10-25