CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
高通量计算与深度学习相结合的稠环含能化合物设计
作者:
作者单位:

1.西南科技大学计算机科学与技术学院, 四川 绵阳 621000;2.中国工程物理研究院化工材料研究所, 四川 绵阳 621999

作者简介:

通讯作者:

基金项目:

国家自然科学基金(22175160,22105187)


Exploring Novel Fused-Ring Energetic Compounds via High-throughput Computing and Deep Learning
Author:
Affiliation:

1.School of Computer Science and Technology, Southwest University of Science & Technology, Mianyang 621010, China;2.Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    含能化合物的设计效率决取于多方面因素,如筛选空间中潜在高性能样本的占比和关键性能的准确预测方法。本研究提出预筛选分子骨架提升虚拟筛选空间整体性能的方案,并将高通量计算与深度学习相结合用于含能化合物设计。研究发现,含能分子的晶体密度与其骨架密度之间存在中度的正相关性,通过预筛选高密度分子骨架可以有效提升虚拟筛选空间的整体密度。研究基于晶体学数据库CCDC提供的含能晶体密度数据集,采用深度学习方法获得含能晶体的密度预测模型,具有可靠的精度和泛化性。在此基础上,以稠环类含能化合物为研究对象,通过骨架预筛选获得高密度的稠环分子骨架,从而通过分子片段组装获得由潜在的高密度分子组成的虚拟筛选空间。研究采用量子化学计算和爆轰产物状态方程等方法实现了生成焓、爆轰性能和化学稳定性的预测,从而由性能排序筛选出能量水平优于RDX,稳定性优于TNT的新型含能分子6个。研究表明,分子骨架预筛选可以有效提升虚拟筛选空间的总体性能,在此基础上借助高通量计算与深度学习可实现含能分子的高效设计。

    Abstract:

    The design efficiency of energetic compounds depends on many factors, such as the proportion of potential high performance samples in the screening space and the accurate prediction method of key properties. In this study, we proposed a scheme to improve the overall performance of virtual screening space by pre-screening molecular skeletons, and a method combining high-throughput computing and deep learning is applied to the design of energetic compounds. It was found that there is a moderate positive correlation between crystal density molecular skeleton density of energetic molecules, and the overall density of virtual screening space can be effectively improved by pre-screening high-density molecular skeletons. Based on the density data-set of energetic crystals collected from the crystallography database CCDC, a new density prediction model of energetic crystals was obtained via deep learning, with reliable accuracy and generalization. We took fused-ring energetic molecules as the research object, obtained high-density fused-ring skeletons through skeleton pre-screening, and then the virtual screening space composed of potential high-density molecules was constructed through fragment docking. The formation enthalpy, detonation performance and chemical stability were predicted by quantum chemical calculation and the equation of state of detonation products. Finally, 6 novel energetic molecules with energy level better than RDX and stability better than TNT were selected by performance ranking. This study shows that the overall performance of virtual screening space can be effectively improved by pre-screening molecular skeletons, and on this basis, high-throughput computing and deep learning can be used to achieve efficient design of energetic molecules.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

王润文,杨春明,刘建.高通量计算与深度学习相结合的稠环含能化合物设计[J].含能材料, 2022, 30(12):1226-1236. DOI:10.11943/CJEM2022088.
WANG Run-wen, YANG Chun-ming, LIU Jian. Exploring Novel Fused-Ring Energetic Compounds via High-throughput Computing and Deep Learning[J]. Chinese Journal of Energetic Materials, 2022, 30(12):1226-1236. DOI:10.11943/CJEM2022088.

复制
历史
  • 收稿日期: 2022-04-14
  • 最后修改日期: 2022-11-11
  • 录用日期: 2022-10-21
  • 在线发布日期: 2022-10-24
  • 出版日期: 2022-12-25