CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
超声辅助微流控技术制备纳米LLM-105
作者:
作者单位:

南京理工大学化学与化工学院, 江苏 南京 210094

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助(21875109)


Preparation of Nano-LLM-105 by Ultrasonic-assisted Microfluidic Technology
Author:
Affiliation:

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为改善2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的形貌以及减小粒径。基于溶剂-非溶剂法,通过超声辅助微流控技术制备纳米LLM-105。采用场发射扫描电镜(FE-SEM)观察样品的微观形貌,X射线衍射(XRD)分析样品的晶型。此外,通过流体可视化证明了超声波对于流体混合的促进作用。结果表明,通过超声所制备的样品颗粒更小,粒径更均匀,平均粒径为137.65 nm,并且形貌为类球型,且晶型较原料未发生改变。差示扫描量热分析(DSC)表明纳米LLM-105的热分解温度较原料降低。说明超声辅助的引入,不仅可以提高制备纳米LLM-105的效率,还会使其粒径显著减小。

    Abstract:

    Nano 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) was prepared by ultrasound-assisted microfluidic technology based on the solvent and non-solvent method to improve the morphology and reduce the particle size. The microscopic morphology and crystal structures of the samples were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). In addition, The promotion of fluid mixing by ultrasonic method was demonstrated by fluid visualization. The results showed that the spherical particles prepared by ultrasound were smaller and homogeneous, with an average particle size of 137.65 nm. Meanwhile, the crystal structures remained unchanged from the raw material. Differential scanning calorimetry (DSC) showed that the thermal decomposition temperature of nano-LLM-105 was reduced compared to the raw material, demonstrating that ultrasonic assistance can not only improve the efficiency of preparing nano-LLM-105, but also significantly reduce the particle size.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

詹乐武,张一帆,李营,等.超声辅助微流控技术制备纳米LLM-105[J].含能材料, 2022, 30(5):446-450. DOI:10.11943/CJEM2022018.
ZHAN Le-wu, ZHANG Yi-fan, LI Ying, et al. Preparation of Nano-LLM-105 by Ultrasonic-assisted Microfluidic Technology[J]. Chinese Journal of Energetic Materials, 2022, 30(5):446-450. DOI:10.11943/CJEM2022018.

复制
历史
  • 收稿日期: 2022-01-21
  • 最后修改日期: 2022-04-20
  • 录用日期: 2022-04-07
  • 在线发布日期: 2022-04-12
  • 出版日期: 2022-05-25