CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
不同结构尺寸丁羟发动机慢速烤燃特性
作者:
作者单位:

1.北京理工大学爆炸科学与技术国家重点实验室, 北京 100081;2.航天化学动力技术重点实验室, 襄阳 441003

作者简介:

邓玉成(1997-),男,硕士研究生,主要从事微纳米含能材料研究。e-mail:18234105319@163.com

通讯作者:

任慧(1973-),女,教授,博士生导师,主要从事微纳米含能材料研究。e-mail:renhui@bit.edu.cn

基金项目:

国家自然科学基金资助(21975024)


Slow Cook-off Characteristics of HTPB SRM with Different Structural Sizes
Author:
Affiliation:

1.State Key Laboratory of Explosive Science and Technology,Beijing Institute of Technology, Beijing 100081, China;2.Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    慢速烤燃试验是固体火箭发动机低易损性评估试验考核的重点之一。为研究丁羟复合固体推进剂发动机尺寸对慢速烤燃特性的影响规律,采用慢速烤燃试验结合数值模拟,对比分析了Ф100 mm×200 mm、Ф160 mm×400 mm中小型试验件和Ф522 mm×887 mm大尺寸固体火箭发动机慢速烤燃点火增长规律,确定了点火温度、点火区域及响应等级。结果表明:Ф100 mm×200 mm,Ф160 mm×400 mm及Ф522 mm×887 mm 3种试验件的试验点火温度分别为244,172,155 ℃;以试验数据作为输入,计算点火温度分别为250,269,154 ℃,计算误差分别为2.88%,1.17%,0.64%,响应等级分别为爆炸、爆炸、爆燃;计算云图表明,中小型试验件的点火位置位于圆柱体中心,大尺寸固体火箭发动机的点火位置位于固体推进剂前端肉厚的中心位置,为一环状区域。

    Abstract:

    Slow cook-off test is one of the key tests of low vulnerability assessment for solid rocket motor. In order to study the influence of the charge size of HTPB composite propellant on the slow cook-off characteristics, slow cook-off tests and numerical simulation were carried out to compare and analyze the ignition growth laws of solid rocket motor under slow cook-off tests, with charge dimensions of Φ100 mm × 200 mm, Φ160 mm × 400 mm and Φ522 mm × 887 mm. Their corresponding ignition temperatures, ignition positions and response levels were determined. Results show that the ignition temperature of specimens of Ф100 mm×200 mm, Ф160 mm×400 mm and Ф522 mm×887 mm of solid rocket motors are 244 ℃, 172 ℃ and 155 ℃, respectively. Taking test data as inputs, the calculated ignition temperature is 250, 269, 154℃, and their corresponding calculation errors and response levelsare 2.88%, 1.17%, 0.64%, and explosion, explosion and deflagration. The calculated cloud diagram shows that the ignition position of medium and small test pieces is located in the center of charge cylinders, and the ignition position of full-scale solid motor is in the center of meat thickness of solid propellant front-end, which is a ring shape area.

    表 2 固体火箭发动机慢速烤燃试验后状态及响应等级Table 2 State and response level of SRM after slow cook-off test
    表 5 固体火箭发动机慢速烤燃点火温度及点火部位Table 5 Ignition temperature and ignition position of solid rocket motor under slow cook-off tests
    图2 大尺寸固体火箭发动机试验装置示意图Fig.2 Schematic diagram of full-scale SRM test device
    图4 大尺寸固体火箭发动机试验过程及残骸Fig.4 Experimental process and wreckage of full-size SRM
    图7 慢速烤燃试验温度-时间曲线Fig.7 Temperature-time curves of slow cook-off test
    图11 固体火箭发动机慢速烤燃试验与数值模拟温度-时间曲线Fig.11 Temperature-time curves of solid rocket motor under slow cook-off tests and numerical simulation
    表 3 热分解动力学参数[24]Table 3 Kinetic parameters of thermal decomposition
    表 4 材料参数Table 4 Material parameters
    表 1 慢速烤燃实验装置及其参数Table 1 Parameters of slow cook-off test device
    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

邓玉成,李军,任慧,等.不同结构尺寸丁羟发动机慢速烤燃特性[J].含能材料, 2022, 30(2):155-162. DOI:10.11943/CJEM2021097.
DENG Yu-cheng, LI Jun, REN Hui, et al. Slow Cook-off Characteristics of HTPB SRM with Different Structural Sizes[J]. Chinese Journal of Energetic Materials, 2022, 30(2):155-162. DOI:10.11943/CJEM2021097.

复制
历史
  • 收稿日期: 2021-04-17
  • 最后修改日期: 2021-05-26
  • 录用日期: 2021-08-02
  • 在线发布日期: 2022-03-17
  • 出版日期: 2022-02-25