Abstract:By using 3-bromo-2,2-bis(bromomethyl)propan-1-ol (TAOH) as starting material, a novel multi-azido energetic plasticizer bis(3-azido-2,2-bis(azidomethyl)propyl) malonate (BAAMPM) was synthesized via consecutive azidonation reaction and esterification reaction. All structures were characterized by NMR and IR spectrum. The influencing factors of azidonation reaction and esterification reaction were studied, and the optimal reaction conditions were determined as follows: for azidonation reaction, n(TBrOH)∶n(NaN3)=1∶3.3, the reaction temperature is 90-95℃, and the reaction time is 12 h; for esterification reaction, n(TAOH)∶n(MalAc)∶n(TsOH)=2∶1∶0.13, refluxing in toluene for 15 h, and the yield and purity of BAAMPM are 89.5% and 98.5%, respectively. For BAAMPM, the glass transition temperature (Tg) and thermal decomposition peak temperature were determined by differential scanning calorimetry (DSC) as -58.3 ℃ and 231.0 ℃, respectively. According to the GJB772A-1997 method, the impact sensitivity of BAAMPM was measured as H50=40.9 cm, the friction sensitivity was 28%, which indicate that BAAMPM has good low temperature performance, good thermal stability as well as relatively low mechanical sensitivities.In addition, as the viscosity and glass transition temperature tests shown, BAAMPM could notably reduce the viscosity and glass transition temperature of glycidyl azide polymer (GAP). With the increase of the proportion of BAAMPM, the more obvious improvement for the viscosity of GAP, and the larger extent of lowering glass transition temperature of GAP are achieved. For example, the viscosity of BAAMPM/GAP (4/10) at 30 ℃ is reduced by 52.65% compared with that of GAP, while its Tg is -53.2 ℃, 4.1 ℃ lower than that of GAP. Therefore, BAAMPM demonstrates good plasticizing effect on GAP.