Abstract:The interface structure has an important influence on the mechanical properties, safety properties, and thermal stability of energetic materials. Polydopamine (PDA) is a surface chemistry that can functionalize surfaces of most materials. PDA has the advantages of simple preparation, easy control, mild reaction, safe operation and further functionalization. In recent years, bioinspired PDA has been wildly applied in energetic materials. In this paper, the influences of the bioinspired controllable interface constructed by PDA on the structure and properties of energetic materials are reviewed. Firstly, the bonding mechanism of PDA is introduced. Secondly, the surface functionalization method of PDA for energetic materials and functional fillers are summarized. Thirdly, the influences of surface modification with PDA on the safety, thermal stability, mechanical properties, and thermal conductivity of explosives are mainly described. Then, the unique advantages of PDA in the structural design and performance control of energetic materials and the existing problems are pointed out.At last, four key research directions are stated: further exploration of the mechanism of interfacial interaction between PDA and energetic materials or binders, design of regular and controllable interface structure, introduction of functional polymers, as well as expansion of surface functional materials for energetic materials.