CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
发射药混同过程静电性能测试及风险评估
作者:
作者单位:

1.北京理工大学爆炸科学与技术国家重点实验室, 北京 100081;2.兵器工业安全技术研究所, 北京 100053

作者简介:

通讯作者:

基金项目:

国防科工局基础产品创新计划火炸药科研专项项目 科工三司〔2017〕1315国防科工局基础产品创新计划火炸药科研专项项目(科工三司〔2017〕1315)


Electrostatic Performance Test and Risk Assessment of Propellant Mixing Process
Author:
Affiliation:

1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Safety Technology Research Institute of Ordance Industry, Beijing 100053, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为评估发射药混同过程中的静电灾害风险,预防事故发生,自主设计了电阻率、介电常数、电荷积累量等静电参数测试装置,并以11/7单基发射药为典型产品进行测试实验,得到其体积电阻率为1.87×1010 Ω·m,表面电阻率为1.06×1012 Ω,介电常数为1.88,滑槽摩擦状态饱和荷质比为-1.85 μC·kg-1;采用ANSOFT MAXWELL软件对11/7发射药混同料筒内的静电场进行仿真计算,得到了直径1000 mm混同料筒内11/7发射药最大静电场强随药面高度的变化曲线,结果表明随着药面高度的增加,料筒内电场强度不断增大,当药面高度达到40 mm时,料筒内电场强度已达到空气击穿场强,存在静电放电风险;对不同直径混同料筒的临界放电药面高度进行模拟计算,得到了临界放电药面高度随料筒直径的变化曲线,结果表明直径100,200,300,400,500 mm的料筒,临界放电药面高度分别为81,46,42,41,40 mm,直径超过500 mm时,临界放电药面高度基本维持在40 mm。

    Abstract:

    To prevent accidents and assess the risk of static disasters in propellant mixing process, we designed devices to test electrostatic parameters such as resistivity, dielectric constant and charge accumulation. 11/7 single-base propellant was chosen to be tested as a typical product. It shows that the volume resistivity, surface resistivity and dielectric constant of 11/7 single-base propellant are 1.87×1010 Ω·m,1.06×1012 Ω, and 1.88, respectively, and the saturated charge-to-mass ratio at friction state of chute is -1.85 μC·kg-1. ANSOFT MAXWELL software was used to simulate the electrostatic field in mixing silo of 11/7 propellant, obtaining the change curve of the maximum field strength with powder′s height in 1000 mm diameter mixing silo. Results show that the electric field strength increases with the increase of powder′s height. When the powder′s height is 40 mm, the air breakdown field strength is reached and there is a risk of electrostatic discharge. In addition, the critical discharge powder′s heights at different diameters of mixing silos were simulated, and the corresponding change curve was also obtained. It shows that the critical discharge powder′s heights are 81, 46, 42, 41 mm and 40 mm when the diameters of material silo are 100, 200, 300, 400 mm and 500 mm, respectively. However, when the diameter is greater than 500 mm, the critical discharge powder′s height reasonably maintains at 40 mm.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

卫水爱,孙磊,李文海,等.发射药混同过程静电性能测试及风险评估[J].含能材料, 2019, 27(6):493-500. DOI:10.11943/CJEM2018263.
WEI Shui-ai, SUN Lei, LI Wen-hai, et al. Electrostatic Performance Test and Risk Assessment of Propellant Mixing Process[J]. Chinese Journal of Energetic Materials, 2019, 27(6):493-500. DOI:10.11943/CJEM2018263.

复制
历史
  • 收稿日期: 2018-09-13
  • 最后修改日期: 2019-01-26
  • 录用日期: 2018-11-19
  • 在线发布日期: 2019-01-22
  • 出版日期: 2019-06-25