Abstract:Due to numerous excellent properties of graphene, including large surface area, high conductivity, thermal conductivity, etc., graphene-based materials have been used as additive, catalyst carrier and component of energetic materials. Effects of graphene-based materials on thermal decomposition, combustion, mechanical and safety performances of energetic materials are systematically reviewed. Besides, researches of the application of doped graphene for explosive detection are also summarized. Graphene-based materials can significantly promote the thermal decomposition of energetic materials, reduce the thermal decomposition temperature of energetic components, and thus improve the combustion performance of propellants. Additionally, graphene-based materials are also used for enhancing thermal stability as well as reducing mechanical sensitivity of explosives. To sum up, graphene-based materials have wide application prospects in the field of energetic material. However, the interaction force between graphene-based-materials and nanometer metal catalyst, optimal component ratio and fabrication conditions of energetic composites are still needed to be further explored. Preparation of energetic graphene material by grafting energetic groups on functionalized graphene is also the focus of further research.