摘要
含能晶体堆积结构是影响其感度的重要因素之一,通过晶体中分子层间滑移来缓冲外界刺激是降低含能材料感度的重要机制。为了更好地设计低感高能分子,理解分子的几何形状与其晶体特性的内在关系十分重要。研究以剑桥晶体数据库中的CHNO类中性硝基分子为样本,采用假设检验方法(包括Z检验、t检验和
图文摘要
低感高能化合物是含能材料的重要发展方向。然而由于能量‑安全性矛盾——能量水平提升伴随着安全性下降,因此研发低感高能化合物是一项极具挑战性的工
目前,在含能晶体堆积研究方面,国内外已开展了广泛研究。Zhang
尽管通过堆积模式可以直观定性地判断含能晶体的感度,但无法给出确定的滑移方向或者滑移面。崔涛
在化学信息学中存在许多分子几何形状的描述符,如Arteca定义的离心度
本研究通过枚举晶体的低指数晶向,并计算沿此晶向晶体发生分子层间剪切滑移时的空间位阻(用原子对的最大重叠度MAOF表示),搜索晶体的剪切滑移方向。具体算法如下:首先选定待计算的滑移方向[uvw],将晶体中的分子投影到法向量为[uvw]的平面上(如

图1 滑移方向搜索算法示意图
Fig.1 Diagram of the searching algorithm of slipping orientations
假设检验是一种统计学方法,用于验证抽样样本之间,抽样样本与总体之间的差异是否由抽样误差引
本研究采用WHIM描述符计算方法计算了3978个样本的分子形状因子大小,并在

图2 判定阈值c=0.1时含硝基的中性有机分子在θg2‑θg3平面上的分布
Fig.2 Distribution of the neutral organic molecules containing nitro groups on the θg2‑θg3 plane with the threshold c=0.1
compound name | TATB | FOX‑7 | α‑RDX | β‑HMX | ε‑CL‑20 | ONC |
---|---|---|---|---|---|---|
CCSD refcode | TATNBZ | SEDTUQ03 | CTMTNA12 | OCHTET17 | PUBMUU02 | CUGDIR |
θg1-θg3 | 0.505 | 0.554 | 0.290 | 0.427 | 0.158 | 0.017 |
θg3 | 0.001 | 0.012 | 0.173 | 0.136 | 0.252 | 0.323 |
θg2+θg3 | 0.495 | 0.434 | 0.537 | 0.438 | 0.590 | 0.660 |
此外,采用直方图的方法对样本所有分子的三种不同形状因子(球形、平面形和线形)进行了进一步的统计,其统计分布结果如

a. distribution of θg1-θg3

b. distribution of θg3

c. distribution of θg2+θg3
图3 不同形状因子的统计分布情况
Fig.3 Statistical distribution of different shape factors
采用区间分布方法对总体样本的晶体密度与堆积系数进行了统计,结果如

图4 晶体密度dc和堆积系数PC的联合统计分布
Fig.4 Joint statistical distribution of crystal density (dc) and packing coefficient (PC)
为了进一步分析分子形状对晶体密度dc和堆积系数PC的影响,研究将不同相对误差阈值c下各形状分子的dc和PC与总体样本用Z检验进行对比,结果如
shape factor range | counts | dc / g·c | PC | ||||
---|---|---|---|---|---|---|---|
average | Std. Dev. | Z | average | Std. Dev. | Z | ||
θg1-θg3≤0.1 | 9 | 1.550 | 0.266 | 3.01 | 0.696 | 0.024 | 0.86 |
θg1-θg3≤0.05 | 4 | 1.804 | 0.153 | 5.59 | 0.717 | 0.019 | 2.17 |
θg1-θg3≤0.02 | 3 | 1.799 | 0.187 | 4.78 | 0.724 | 0.016 | 2.33 |
θg3≤0.1 | 2828 | 1.415 | 0.133 | 2.67 | 0.692 | 0.025 | 5.80 |
θg3≤0.05 | 1679 | 1.440 | 0.133 | 9.50 | 0.698 | 0.024 | 14.89 |
θg3≤0.02 | 889 | 1.469 | 0.136 | 12.82 | 0.706 | 0.022 | 19.09 |
0.02<θg3≤0.1 | 1939 | 1.390 | 0.124 | -5.53 | 0.685 | 0.024 | -5.91 |
θg2+θg3≤0.1 | 139 | 1.410 | 0.152 | 0.20 | 0.696 | 0.021 | 3.28 |
θg2+θg3≤0.05 | 8 | 1.303 | 0.134 | -2.09 | 0.680 | 0.022 | -1.02 |
θg2+θg3≤0.02 | 0 | ─ | ─ | ─ | ─ | ─ | ─ |
total samples | 3798 | 1.408 | 0.142 | ─ | 0.689 | 0.026 | ─ |
Note: P(|Z|≤1.96)=0.95, P(Z≤2.33)=0.99. Std. Dev. is short for standard deviation. The null hypothesis of Z‑test is that the dc or PC of samples with or without slipping ability is higher than the total samples.
接下来采用t检验方法,比较了不同球形度θg1-θg3和平面度θg3下晶体密度和堆积系数均值的相对大小,结果如

a. confidence of t‑test of different dc and shape factors

b. confidence of t‑test of different PC and shape factors
图5 不同阈值下球形和平面形分子晶体密度dc和堆积系数PC t检验的置信度,原假设为所在行样本数值(晶体密度dc或堆积系数PC)小于所在列样本
Fig.5 Confidence of t‑test of dc and PC of spheral and plannar molecules under different threshold, where the null hypothesis is that the samples’ values(crystal densities dc or packing coefficients PC) in the row are less than those in the column
从
通过采用课题组自行设计的最大原子重叠度方法计算了所有晶体的可滑移性,并采用
shape factor range | sliping ability | |||
---|---|---|---|---|
yes | no | yes/(yes+no) | ||
θg1-θg3 ≤ 0.1 | 4 | 5 | 0.444 | 0.076 |
θg1-θg3 > 0.1 | 1946 | 2023 | 0.490 | |
θg1-θg3 ≤ 0.05 | 3 | 1 | 0.750 | 1.081 |
θg1-θg3 > 0.05 | 1947 | 2027 | 0.490 | |
θg1-θg3 ≤ 0.02 | 2 | 1 | 0.667 | 0.37 |
θg1-θg3 > 0.02 | 1948 | 2027 | 0.490 | |
θg3 ≤ 0.1 | 1515 | 1313 | 0.536 | 81.10 |
θg3 > 0.1 | 435 | 715 | 0.378 | |
θg3 ≤ 0.05 | 1026 | 653 | 0.611 | 169.9 |
θg3 > 0.05 | 924 | 1375 | 0.402 | |
θg3 ≤ 0.02 | 627 | 262 | 0.705 | 211.9 |
θg3 > 0.02 | 1323 | 1766 | 0.428 | |
0.05 < θg3 ≤ 0.1 | 489 | 660 | 0.425 | 5.33 |
θg3 > 0.1 | 435 | 715 | 0.378 | |
θg2+θg3 ≤ 0.1 | 86 | 53 | 0.619 | 9.51 |
θg2+θg3 > 0.1 | 1864 | 1975 | 0.486 | |
θg2+θg3 ≤ 0.05 | 5 | 3 | 0.625 | 0.58 |
θg2+θg3 > 0.05 | 1945 | 2025 | 0.490 | |
θg2+θg2 ≤ 0.02 | 0 | 0 | ─ | ─ |
θg2+θg3 > 0.02 | 1950 | 2028 | 0.473 |
Note: Pν=1(
对于平面形分子,随着其平面度的增加,可滑移晶体占比也在增加,且
对于θg2+θg3≤0.1的线形分子,可能因形状因子取值范围较大,不少平面形分子混入其中(
由此可见,球形分子与晶体中是否存在分子层间滑移相关性很弱,而平面形分子与晶体可滑移性强相关,线形分子则无明显规律。对于平面形分子,平面度越高越可能形成可滑移的晶体,典型的分子有TATB、FOX‑7、LLM‑105
采用直方图的方法统计了可滑移和不可滑移样本的晶体密度dc和堆积系数PC分布情况,结果如

a. distribution of slipping ability and dc

b. distribution of slipping ability and PC
图6 可滑移与不可滑移样本的晶体密度dc和堆积系数PC的分布情况
Fig.6 Distributions of dc and PC of crystals with and without slipping ability
slipping ability | count | dc / g·c | PC | ||||||
---|---|---|---|---|---|---|---|---|---|
average | Std. Dev. | Z | t | average | Std. Dev. | Z | t | ||
yes | 1950 | 1.413 | 0.132 | 1.80 | 2.53 | 0.692 | 0.026 | 5.42 | 7.65 |
no | 2028 | 1.402 | 0.151 | -1.83 | 0.686 | 0.026 | -5.32 |
Note: Std. Dev. is short for standard deviation. The null hypothesis of Z‑test is that the dc or PC of samples with or without slipping ability is higher than the total samples. The null hypothesis of t‑test is that the dc or PC of samples with slipping ability are higher than which of samples without slipping ability.
本工作通过统计学方法研究了3978个CHNO类中性硝基分子的几何形状与其晶体密度、堆积系数和可滑移性的相关性,得到以下主要结论:
(1) 球形分子与平面形分子及线性分子相比,球形分子有着更高的晶体密度,堆积系数无显著差异,而球形分子与晶体可滑移性相关性很弱。
(2) 分子的平面形状因子越小,其晶体密度和堆积系数越大。平面形分子和晶体的可滑移性强相关,且分子平面度越高,越容易获得可滑移的晶体,其
(3) 线形分子在晶体密度和堆积系数较前两者均无优势。此外,线性分子与晶体可滑移性也具有一定的相关性。
(4) 可滑移晶体较难滑移晶体具有相对更大的晶体密度和堆积系数,其Z检验与t检验的置信度均大于0.95。这表明晶体的可滑移性和高晶体密度两者并不矛盾,因此设计易于发生分子层间滑移的晶体结构可同时降低其感度并提升晶体密度,从而缓解含能材料能量与安全性的矛盾。
参考文献
JIAO F, XIONG Y, LI H, et al. Alleviating the energy & safety contradiction to construct new low sensitivity and highly energetic materials through crystal engineering[J]. CrystEngComm, 2018, 20(13): 1757-1768. [百度学术]
ZHANG C, JIAO F, LI H. Crystal engineering for creating low sensitivity and highly energetic materials[J]. Crystal Growth & Design, 2018, 18(10): 5713-5726. [百度学术]
张朝阳.含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10. [百度学术]
ZHANG Chao‑yang. On the energy & eafety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1):2-10. [百度学术]
BU R, XIE W, ZHANG C. Heat‑induced polymorphic transformation facilitating the low impact‑sensitivity of 2,2‑dinitroethylene‑1,1‑diamine (FOX‑7)[J]. The Journal of Physical Chemistry C, 2019, 123(26): 16014‑16022. [百度学术]
ZHANG C,WANG X,HUANG H. Pi‑stacked interactions in explosive crystals:Buffers against external mechanical stimuli[J]. Journal of the American Chemical Society, 2008, 130(26): 8359-8365. [百度学术]
KUKLJA M M, RASHKEEV S N. Shear‑strain‑induced chemical reactivity of layered molecular crystals[J]. Applied Physics Letters, 2007, 90(15): 151913. [百度学术]
MA Y, MENG L, LI H, et al. Enhancing intermolecular interactions and their anisotropy to build low‑impact‑sensitivity energetic crystals[J]. CrystEngComm, 2017, 19(23): 3145-3155. [百度学术]
MA Y, ZHANG A, ZHANG C, et al. Crystal packing of low‑sensitivity and high‑energy explosives[J]. Crystal Growth & Design, 2014, 14(9): 4703-4713. [百度学术]
MA Y, ZHANG A, XUE X, et al. Crystal packing of impact‑sensitive high‑energy explosives[J]. Crystal Growth & Design, 2014, 14(11): 6101-6114. [百度学术]
WANG Y, LIU Y, SONG S, et al. Accelerating the discovery of insensitive high‑energy‑density materials by a materials genome approach[J]. Nature Communications, 2018, 9(1): 2444. [百度学术]
SUN Q, LI X, LIN Q, et al. Tetracyclic pyrazine‑fused furazans as insensitive energetic materials: Syntheses, structures, and properties[J]. Organic & Biomolecular Chemistry, 2018, 16: 8034-8037. [百度学术]
TANG Y, HUANG W, IMLER G H, et al. Enforced planar FOX‑7‑like molecules: A strategy for thermally stable and insensitive π‑conjugated energetic materials[J]. Journal of the American Chemical Society, 2020, 142(15): 7153-7160. [百度学术]
LIU Y, CAO Y, LAI W, et al. Molecular‑shape‑dominated crystal packing features of energetic materials[J]. Crystal Growth & Design, 2021, 21(3): 1540-1547. [百度学术]
崔涛, 刘知涵, 谢玮, 等. 含能材料感度评估的空间位阻指数算法和程序设计[J]. 含能材料, 2021, 29(3): 182-191. [百度学术]
CUI Tao, LIU Zhi‑han, XIE Wei, et al. Methodology design for calculating steric hindrance index as a descriptor for the shock sensitivity of energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2021, 29(3): 182-191. [百度学术]
ARTECA G A. Molecular shape descriptors[M]. Reviews in Computational Chemistry. John Wiley & Sons, Inc., 1996: 191-253. [百度学术]
MAURI A, CONSONNI V, TODESCHINI R. Molecular descriptors[M]. LESZCZYNSKI J, KACZMAREK‑KEDZIERA A, PUZYN T, et al. Handbook of Computational Chemistry. Cham: Springer International Publishing, 2017: 2065-2093. [百度学术]
GRAMATICA P. Whim descriptors of shape[J]. QSAR & Combinatorial Science, 2006, 25(4): 327-332. [百度学术]
TODESCHINI R, GRAMATICA P, PROVENZANI R, et al. Weighted holistic invariant molecular descriptors. part 2. theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 27(2): 221-229. [百度学术]
TODESCHINI R, GRAMATICA P. New 3D molecular descriptors: The WHIM theory and QSAR applications[M]. Dordrecht: Springer Netherlands, 1998: 355-380. [百度学术]
BAUMGÄRTNER A. Shapes of flexible vesicles at constant volume[J]. The Journal of Chemical Physics, 1993, 98(9): 7496-7501. [百度学术]
SAUER W H B, SCHWARZ M K. Molecular shape diversity of combinatorial libraries: A prerequisite for broad bioactivity[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 987-1003. [百度学术]
ALVAREZ S. A cartography of the van der Waals territories[J]. Dalton Transactions, 2013, 42(24): 8617-8636. [百度学术]
BONDI A. Van der Waals volumes and radii[J]. The Journal of Physical Chemistry, 1964, 68(3): 441-451. [百度学术]
MANTINA M, CHAMBERLIN A C, VALERO R, et al. Consistent van der Waals radii for the whole main group[J]. The Journal of Physical Chemistry A, 2009, 113(19): 5806-5812. [百度学术]
POLITZER P, MURRAY J S. The use and misuse of van der Waals radii[J]. Structural Chemistry, 2021, 32(2): 623-629. [百度学术]
陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2009. [百度学术]
CHEN Xi‑ru. Probability theory and mathematical statistics[M]. Hefei: University of Science and Technology of China Press, 2009. [百度学术]
GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The cambridge structural database[J]. Acta Crystallographica Section B, 2016, 72(2): 171-179. [百度学术]
DUNITZ J, FILIPPINI G, GAVEZZOTTI A. Molecular shape and crystal packing: A study of C12H12 isomers, real and imaginary[J]. Helvetica Chimica Acta, 2000, 83(9): 2317-2335. [百度学术]
BAO F, XIONG Y, PENG R, et al. Molecular packing density coefficient contradiction of high‑density energetic compounds and a strategy to achieve high packing density[J]. Crystal Growth & Design, 2022, 22(5): 3252-3263. [百度学术]
田贝贝, 陈丽珍, 张朝阳. HMX分子与晶体结构性能研究进展[J]. 含能材料, 2019, 27(10): 883-892. [百度学术]
TIAN Bei‑bei, CHEN Li‑zhen, ZHANG Chao‑yang. Review on structural properties of HMX molecules and crystals[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(10):883-892. [百度学术]
POSPÍŠIL M, VÁVRA P, CONCHA M C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J]. Journal of Molecular Modeling, 2010, 16(5): 895-901. [百度学术]
POLITZER P, MURRAY J S. Impact sensitivity and crystal lattice compressibility/free space[J]. Journal of Molecular Modeling, 2014, 20(5): 2223. [百度学术]
POSPÍŠIL M, VÁVRA P, CONCHA M C, et al. Sensitivity and the available free space per molecule in the unit cell[J]. Journal of Molecular Modeling, 2011, 17(10): 2569-2574. [百度学术]