CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
郭菲, 施志贵, 蒋小华, 等. 硅集成爆炸箔组件起爆HNS‑Ⅳ试验研究[J]. 火工品, 2009(6): 5-7.
GUOFei, SHIZhi‑gui, JIANGXiao‑hua, et al. The test research on the initiation of HNS‑Ⅳ by an integrated silicon exploding foil assembly[J]. Initiators & Pyrotechnics, 2009(6): 5-7.
参考文献 2
ZhuP, ChenK, XuC, et al. Development of a monolithic micro chip exploding foil initiator based on low temperature co‑fired ceramic[J]. Sensors and Actuators A: Physical, 2018, 276: 278-283.
参考文献 3
WangT, ZengQ, LiM. Characterization and application of Al/Ni reactive multilayers in exploding foils[J]. Central European Journal of Energetic Materials, 2017, 14(3): 547-558.
参考文献 4
韩克华, 周俊, 任西, 等. 高压脉冲功率源等效参数对桥箔电爆性能影响规律[J]. 含能材料, 2014(6): 828-833.
HANKe‑hua, ZHOUJun, RENXi, et al. Effect of high voltage pulse power source equivalent parameter on exploding performance of foil bridge[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 828-833.
参考文献 5
ChuK W, ScottG L. A Comparison of high‑voltage switches[R]. SAND99‑0154: 1999.
参考文献 6
周密, 同红海, 任西, 等. 集成高压平面开关的冲击片雷管设计研究[J]. 兵工学报, 2015, 36(4): 626-630.
ZHOUMi, TONGHong‑hai, RENXi, et al. Design of integrated high voltage planar switch of exploding foil initiators[J]. Acta Armamentarii, 2015, 36(4): 626-630.
参考文献 7
XuC, ZhuP, ChenK, et al. A highly integrated conjoined single shot switch and exploding foil initiator chip based on MEMS technology[J]. IEEE Electron Device Letters, 2017, 38(11): 1610-1613.
参考文献 8
彭朝飞, 陈万军, 孙瑞泽, 等. MCT与Clustered IGBT在大功率应用中的比较研究[J]. 电子与封装, 2014(6): 32-36.
PENGChao‑fei, CHENWan‑jun, SUNRuize, et al. Comparison of MCT and clustered IGBT in high power applications[J]. Electronics & Packaging, 2014(6): 32-36.
参考文献 9
HanksR L. Low‑jitter high‑power thyristor array pulse driver and generator: US 6462605[P]. 2002.
参考文献 10
SalyersPerry. Guided MLRS electronic safety & arming devices (ESAD) & electronic safety & arming fuze (ESAF)[C]//43rd Gun & Missile Conference. New Orleans. 2008.
参考文献 11
GrilliotD, HatchC. Multiple launch rocket system (MLRS) fuzing evolving to meet end user requirements[C]//51st Annual NDIA Fuze Conference. Nashville. 2007.
参考文献 12
BarhamOliver. Technology trends in fuze and munitions power sources[C]//Armament Research, Development and Engineering Center (ARDEC). Picatinny Arsenal. 2010.
参考文献 13
PerrinMax. Fuzing systems for advanced weapon performance[C]//59th NDIA Fuze Conference. South Carolina. 2016.
参考文献 14
DeedsMichael. Navy s&t strategy[C]//NDIA′s 60th Annual Fuze Conference. Cincinnati. 2017.
参考文献 15
贺思敏, 何小东, 文剑蓉, 等. 新型CDU单元与冲击片雷管能量匹配以及起爆同步性能研究[C]//中国兵工学会火工烟火专业委员会第十九届学术年会, 福州, 2017: 106-113.
HESi‑min, HEXiao‑dong, WENJian‑rong, et al. Research on energy matching and detonation synchronization performance of new CDU and slapper detonator[C]//The 19th Academic Annual Meeting of the China Pyrotechnics Committee, Fuzhou, 2017: 106-113.
参考文献 16
韩克华, 任西, 周密, 等. 高压脉冲电容器性能参数优选实验方法研究[J]. 爆破器材, 2011, 40(3): 22-25.
HANKe‑hua, RENXi, ZHOUMi, et al. Study on the characteristics parameters optimization experiment with measurement method for high voltage pulsed power capacitor[J].Explosive Materials, 2011, 40(3): 22-25.
参考文献 17
褚恩义, 白颖伟, 王可暄, 等. 电热火工品复杂电磁波环境综合适应性设计方法研究[J]. 火工品, 2016(3): 9-12.
CHUEn‑yi, BAIYing‑wei, WANGKe‑jun, et al. Study on the complex electromagnetic compatibility designing method for hot bridge‑wire EEDs[J].Initiators & Pyrotechnics, 2016(3):9-12.
参考文献 18
O'MalleyP D, GarasiC J. Understanding the electrical interplay between a firing set and exploding metal.[R] SAND2015‑1132 567050: 2015.
参考文献 19
党瑞荣, 杨振英. 桥箔爆发电流的计算与测量[J]. 火工品, 2000(2): 14-16.
DANGRui‑rong, YANGZhen‑ying. Initiation principles and test technique of bridge foils[J]. Initiators & Pyrotechnics, 2000(2): 14-16.
参考文献 20
王窈, 孙秀娟, 郭菲, 等. Al/Ni爆炸箔电爆特性及驱动飞片能力研究[J]. 火工品, 2016(3): 5-8.
WANGYao, SUNXiu‑juan, GUOFei, et al. Study on electrical characteristic and flyer driven ability of Al/Ni exploding foil[J]. Initiators & Pyrotechnics, 2016(3): 5-8.
参考文献 21
陈楷,徐聪,朱朋, 等. 加速膛与复合飞片对集成爆炸箔起爆器性能的影响[J]. 含能材料, 2018, 26(3): 273-278.
CHENKei, XUCong, ZHUPeng, et al. Effect of barrel and multilayer flyer on the performances of micro chip exploding foil Initiator[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2018, 26(3):273-278.
参考文献 22
曾庆轩, 李守殿, 袁士伟, 吕军军.爆炸箔起爆器用高压开关研究进展[J].安全与环境学报,2011,11(1): 202-205.
ZENGQing‑xuan, LIShou‑dian, YUANShi‑weiet al. Research progress of high voltage switchs in explosive foil initiators[J]. Journal of Safety and Environment, 2011, 11(1):202-205.
参考文献 23
国防科学技术工业委员会. GJB 6217-2008: 硼/硝酸钾点火药规范[S]. 北京: 中国标准出版社, 2008.
Commission of Science, Technology and Industry for National Defense. GJB 6217-2008: Specification for boron/potassium pellet[S]. Beijing: China Standard, 2008.
参考文献 24
杨振英, 郭少华, 褚恩义, 等. 冲击片点火管[J]. 火工品, 2000(3): 17-20.
YANGZhen‑ying, GUOShao‑hua, CHUEn‑yi, et al. Slapper igniter[J]. Initiators & Pyrotechnics, 2000(3): 17-20.
目录 contents

    摘要

    为了研究国产金属氧化物半导体(MOS)控制晶闸管(Metal‑Oxide‑Semiconductor controlled thyristor, MCT)与高压陶瓷电容组成的电容放电单元(Capacitor Discharge Unit, CDU)的放电特性,设计制备出体积为40 mm(L)×25 mm(W)×8 mm(H)的CDU,其回路电感约10 nH,电阻约100 mΩ。首先分析了CDU回路的R‑L‑C零输入响应方程,采用CDU负载短路放电实验进行验证,研究发现随着电容值的增大,CDU的峰值电流、峰值电流上升时间、高压电容的放电时间等关键参数均增大;随着放电电压的升高,峰值电流增大,峰值电流上升时间不变。采用微型爆炸箔芯片(Cu桥箔35 mΩ)和硼/硝酸钾(Boron‑Potassium Nitrate, BPN)点火药(硼粉/1.50 μm,压药密度/1.57 g·cm-3)验证了CDU的作用效能,在0.36 μF/1.20 kV下,测得回路峰值电流2.032 kA,桥箔两端电压0.9273 kV,峰值电流、电压延迟时间32.4 ns,爆发点时刻168.2 ns,爆发点功率1.490 MW,且CDU能可靠进行BPN的飞片冲击点火。结果表明,基于国产MCT和高压陶瓷电容的CDU基本适用于爆炸箔起爆器等脉冲大电流激发火工品,但其综合性能仍需改进。

    Abstract

    A capacitor discharge unit (CDU), consisting of domestic Metal‑Oxide‑Semiconductor(MOS) controlled thyristor (MCT) and high‑voltage ceramic capacitor, was designed and prepared in order to study the discharge characteristics of CDU. The volume of the CDU is 40 mm(L)×25 mm (W)×8 mm(H). The CDU circuit inductance is about 10 nH, and the resistance is about 100 mΩ. The RLC zero input response equation of CDU circuit was analyzed, and was verified by the experiment of short‑circuit discharge of CDU load. It is found that the key parameters of CDU, such as the peak current, rise time of peak current and discharge time of high‑voltage capacitor all increase with the increase in capacitance value; the peak current increases with the increase of discharge voltage, and the peak current rise time remains constant. The function efficiency of CDU was verified by micro‑chip exploding foil initiator(Cu bridge foil 35 mΩ) and boron‑potassium nitrate pellet(B/1.50 μm, pressing density/1.57 g·cm-3), under the condition of 0.36 μF/1.20 kV, the measured peak current of circuit is 2.032 kA, the voltage at both ends of the bridge foil is 0.9273 kV, the delay time between peak current and voltage is 32.4 ns, the burst time is 168.2 ns, and the burst point power is 1.490 MW, and the CDU can reliably ignite BPN pellet by flyer impact. Results show that the CDU based on the domestic MCT and high voltage ceramic capacitors is basically suitable for high‑current pulsed initiating devices such as exploding foil initiator, but its comprehensive performance still needs to be improved.

  • 1 引 言

    随着武器装备的发展需求,爆炸箔起爆器(Exploding Foil Initiator, EFI)等脉冲大电流激发火工品正朝着集成化、耐高过载、无损检测、低压触发等方向发[1,2,3]。应用于该类电火工品的电容放电单元(Capacitor Discharge Unit, CDU)主要包括高压电容和高压开关,CDU可以提供高功率脉冲能量,从而实现爆炸箔、爆炸桥丝的点火与起爆。所以,高压开关需要具有电阻小、电感小,导通能力强,稳定可靠等特[4]。目前,适用于EFI的CDU通常采用火花隙开关、肖特基单触发开关、平面三电极开关等高压开[5,6,7]。而金属氧化物半导体(MOS)控制晶闸管(Metal‑Oxide‑Semiconductor Controlled Thyristor, MCT)作为大功率MOS控制半导体器件的典型代表,其优势在于可采用常规MOS栅控信号控制开关导通,在百纳秒级时间内脉冲峰值电流可达数千安培,正向阻断耐压上千伏,可以进行无损检测,因而MCT适用于点火与起爆系统的CDU[8]

    近年来,国外已陆续出现了将MCT应用于电容放电单元、直列式电子安保系统等装置的报道。2002年,Hanks[9]的专利使用了MCT控制高压电容放电。2008年,克鲁格设计公司(Kluge Design Inc, KDI[10,11]公布了采用直列式电子安保系统和低能爆炸箔起爆器的多管火箭系统(Multiple Launch Rocket System,MLRS),MCT已在型号武器上得以应用。2010年,Oliver Barham[12]公布的美国陆军研发的电子安保系统采用了全电子器件,高压开关选用了MCT。2016年,Max Perrin[13]介绍了欧洲低能爆炸箔研究进展,指出未来MCT等半导体开关将逐步替代火花隙开关。2017年,Michael Deeds[14]介绍了G2M公司的小型电子安保系统,采用商用级MCT实现了电子安保系统的平面化(面积约10 cm2),推动了低能爆炸箔起爆系统的发展。在国内,2017年,贺思敏[15]对国外MCT和国产陶瓷电容进行了研究,制作出开关专用控制芯片,并得到了CDU短路和接入爆炸箔时的放电特性曲线,实现了两路冲击片雷管的成功起爆,其同步分散性小于100 ns。

    由于国产MCT近些年才研制成功,国内有关MCT应用于EFI的研究报道尚不够充分,故本研究设计制作了集成国产MCT和国产高压陶瓷电容的CDU,分析了CDU回路的等效R‑L‑C零输入响应方程,同时结合CDU对短路负载放电实验,得到了容值和放电电压对回路峰值电流的影响规律,以及回路的电感、电阻和放电周期等参数。在此基础上,采用CDU电爆爆炸箔,研究了爆炸箔电爆特征参数,最后验证了CDU激发微型爆炸箔芯片进行硼/硝酸钾(Boron‑Potassium Nitrate, BPN)飞片冲击点火的可行性。

  • 2 CDU的设计与制作

    如图1所示,设计制作了基于国产MCT的CDU,体积为40 mm×25 mm×8 mm,在EFI接口连接铜带以测试CDU短路放电特性。与云母、纸介/油介、有机薄膜等电容相比,陶瓷电容体积小、一致性好,输出能量密度较集中,故CDU采用了国产高压陶瓷电[16]。为了缩短CDU回路引线,降低回路电感,在印制电路板正面布局国产MCT和EFI接口,在印制电路板背面表贴国产高压陶瓷电容。考虑到在CDU放电过程中,回路电流会剧烈变化产生高电流变化率di/dt,栅极内外的寄生电感、寄生电容在高di/dt下会感应出抖动电压,抖动电压很可能超过栅极耐压值,造成MCT损坏。故将瞬态抑制二极管(Transient Voltage Suppressor, TVS)并联在MCT的栅极和栅返回极两端,防止栅压抖动对MCT产生冲[17],其保护机制为:当TVS的两极受到反向瞬态高能量冲击时,在纳秒级时间内,TVS由高阻抗转变为低阻抗,可吸收浪涌功率,将MCT栅极和栅返回极之间电压钳位于一个预定值(例如:20 V),免受各种浪涌脉冲的损坏。另外,MCT具有单向导通特性,即整流功能,若过大的反向电流流经MCT,MCT会过热而烧坏,此时,MCT的阴阳极一般会短路。而快恢复二极管(Fast Recovery Diode, FRD)属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区Ⅰ,因基区很薄,所以FRD的反向恢复时间较短,正向压降较低,反向击穿电压较高(1600 V),常作为续流二极管使用。所以采用FRD反向并联在陶瓷电容两端,可将电容放电阶段产生的反向电流通过FRD进行续流,而不流经MCT阴阳极,从而保护了MCT。此时,在整个CDU回路放电历程上,因为FRD维持了MCT的单向导通特性,在MCT阴阳极间测得的放电电流呈单向衰减震荡形式,不同于火花隙开关的正负向衰减震[4]

    图1
                            基于MCT的CDU实物图

    图1 基于MCT的CDU实物图

    Fig.1 The physical map of CDU based on MCT

  • 3 基于MCT的CDU回路放电特性

  • 3.1 基于MCT的CDU电学特性

    MCT是MOS控制双极型半导体器件,具有MOS器件驱动简单、驱动功率小的特点,兼顾双极型器件瞬态电流大、高di/dt的优点,因而可用于脉冲功率领域。MCT常见四脚型封装,包括栅极、栅返回极、阳极和阴极,且栅返回极和阴极短路,通过在栅极和栅返回极之间输入一个脉冲信号(幅值5 V,脉宽10 μs),即可控制MCT阴阳极的导通。

    MCT电性能参数如表1所示(25 ℃)。应用于CDU时,MCT需要考虑的关键参数有:阴阳极阻断电压VD(BR),栅极导通阈值电压VGK(TH)—导通MCT的栅压下限,导通延迟时间td(ON)—输入栅控信号到回路导通的延迟时间,电流变化率di/dt,回路电流峰值IPEAK等。

    表1 MCT电性能参数

    Table 1 Electrical performance parameters of MCT

    parameterstest conditionsmeasurements
    VD(BR)/ VVGK=0 V, ID=100 µA>1400
    ID/ μAVGK=0 V, VD=1400 V<0.1
    VGK(TH)/ VVAK=VGK, IAK=250 μA3.2
    VGKS/ V-±25
    Ta/ ℃--45-85
    td(ON)/ ns

    C=0.47 μF,L=20 nH,

    VGK=0 V to +5 V,

    VAK=1250 V

    100
    (di/dt)/ kA·µs-145
    IPEAK/ A4000

    NOTE: VD(BR) is the anode to cathode breakdown voltage, ID is the anode‑cathode off‑state current, VGK(TH) is the gate‑cathode turn‑on threshold voltage. VGKS is the continuous gate‑cathode voltage, Ta is the ambient temperature, td(ON) is the turn‑on delay time, di/dt is the rate of change of current, IPEAK is the peak anode current.

    因为FRD的保护机制维持了MCT的单向导通特性,所以基于MCT的CDU(负载短路)存在两条放电回路,第一条是电容、MCT,第二条是电容、FRD。定义电容电压u(t)为电容正负极的电压差,当u(t)为正,电流经过第一条回路,电容放电产生的正向电流流过MCT后,对电容反向充电直到u(t)为负,此时反向电流经过第二条回路,流经FRD对电容充电直到u(t)为正,以此往复,直到电容存储的能量消耗完毕。当u(t)为正时,基于MCT的CDU的放电过程可等效为R‑L‑C电路,当u(t)为负时,CDU的放电过程可等效为R´‑C电路(R转变为R´,R´代表FRD内阻),如图2所示。其中,C为高压储能电容;L为主回路等效电感,主要包括传输线电感和引线分布电感;R为主回路等效电阻,主要包括传输线电阻以及MCT导通电阻。

    图2
                            CDU放电过程等效电路示意图

    图2 CDU放电过程等效电路示意图

    Fig.2 Schematic diagram of equivalent circuit for CDU discharge process

    根据基尔霍夫电压定律,当u(t)为正时,CDU放电过程可用R‑L‑C串联电路的零输入响应方程(1)、(2)来描[18]

    u(t)+Ldi(t)dt+Ri(t)=0
    (1)
    u(0)=u0i(0)=0
    (2)

    因为电流大小仅仅由电容决定,将i(t)=Cdu(t)/dt代入(1)式得:

    LCd2u(t)dt2+RCdu(t)dt+u(t)=0
    (3)

    (3)式具有阻尼振荡方程的形式,其解为:

    u(t)=u0e-R2Ltcos(ωt+α)
    (4)
    ω=1LC-R24L2α(R,L,C)
    (5)

    回路中的电流为:

    i(t)=Cdu(t)dt=Cu0e-R2Lt(-R2Lcos(ωt)-1LCsin(ωt))
    (6)

    式中,电容初始放电电压为u0,电容电压为u(t),kV;回路初始放电电流为0,放电电流为i(t),kA;回路电阻为R,mΩ;电感为L,nH;电容为C,μF。

    对式(6)作定性分析,研究CDU回路峰值电流的影响因素:(1)回路电流峰值与u0呈正相关,但u0的升高对MCT和电路的绝缘要求变高,这可能会损坏MCT(MCT的阈值电压为1.40 kV),且CDU难以小型化;(2)回路电流峰值与容值C呈正相关,但C变大时主回路放电周期会延长;(3)回路电流峰值与回路电感L呈负相关,所以L需要尽可能小;(4)回路电流峰值与回路电阻R呈负相关,所以R需尽可能小。在CDU回路中,u0的升高受限于MCT耐压,不能超过1.40 kV,而且放电回路的传输线电感和引线分布电感是回路电感的主要来源,所以需着重减小CDU的LR,解决方法为优化印制电路板布局,缩短回路电气连接线。

    为了对比电容值和放电电压对CDU回路放电特性的影响,本研究分别对0.18,0.22 μF和0.36 μF三种电容与MCT集成的CDU回路,进行了短路放电测试,得到放电电流曲线如图3所示。利用罗果夫斯基电流环采集铜带处电流信号。根据美军标MIL‑DTL‑23659D的要求,短路放电电流曲线至少应包含5个等间隔减幅的振荡波形,这可以保证CDU回路的等效电阻对电能的损耗在可接受范围内。由图3可知,在同一容值下,随着放电电压增加,回路峰值电流也增加,回路峰值电流上升时间基本重合;回路无负向电流,是因为快恢复二极管反向并联在电容两端,将电容放电阶段产生的反向电流续流,即回路电流只在单方向上作衰减震荡。

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image004.png

    a. 0.18 μF

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image005.png

    b. 0.22 μF

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image006.png

    c. 0.36 μF

    图3 CDU放电电流特性曲线

    Fig.3 Current characteristic curves for discharge of CDU

    在1.20 kV放电电压下,测试得到不同电容组成的CDU放电特征参数如表2所示。其中,定义上升时间为回路电流从零到第一峰值之间的延迟时间,电流上升率为在第一峰值电流的10%到90%期间对应的电流变化量,电流周期T近似为相邻电流峰值之间的时间差,放电时间为5个电流放电周期。由表2可知,在同一容值下,第一电流周期T1明显大于T2~T5,且T2~T5基本相等;同时验证了式(5)和式(6),在相同的放电电压下,随着电容容值变小,相应地峰值电流变小,电容放电时间和峰值电流上升时间变短。

    表2 不同电容下CDU回路放电特征参数测试结果

    Table 2 Testing results of discharge characteristic parameters of CDU circuit with different capacitance

    capacitance

    / μF

    storage energy

    / mJ

    peak current

    / kA

    rise time

    / ns

    rate of change of current / kA·μs-1

    discharge time

    / ns

    T1

    / ns

    T2-T5

    / ns

    0.18129.62.57183.421.001100256.6198.3±4
    0.22158.42.68198.822.461200295.7220.2±5
    0.36259.24.14272.920.181500328.3250.1±10

    CDU放电回路的理论公式为(7)~(9[19]

    电流周期为:

    T=2πω=2π1LC-R24L2
    (7)

    回路电感为:

    L=T2C4π2+lnI1-lnI22-1
    (8)

    回路电阻为:

    R=2LTlnI1I2
    (9)

    式中,I1I2分别为第一和第二峰值电流,kA;t1t2分别为第一和第二峰值电流对应的时间,ns;电流周期为T,ns,且T=t2‑t1

    根据图3a~图3c,将I1t1I2t2等参数代入公式(7)~(9),在不同电压下分别计算出同一个CDU回路(电容和MCT相同)的电感、电阻和周期,得到不同容值下CDU回路的电感、电阻和周期的平均值、标准偏差和标准偏差系数,如表3所示。

    表3 不同电容下CDU回路的电感、电阻和周期计算值

    Table 3 Calculated values of inductance, resistance and period of CDU circuit with different capacitance

    inductanceresistanceperiod

    capacitance

    / μF

    average

    / nH

    standard

    deviation

    / nH

    standard deviation coefficien

    / %

    average

    / mΩ

    standard deviation

    / mΩ

    standard deviation coefficien

    / %

    average

    / ns

    standard deviation

    / ns

    standard deviation coefficien

    / %

    0.1810.090.99279.835114.131.9027.96276.017.386.295
    0.2210.440.96169.208106.826.7225.02310.718.215.862
    0.368.8250.63047.14478.5524.5631.27366.717.404.745

    由表3可知,计算得出0.22 μF电容和MCT组成的CDU回路的电感约为10.44 nH,电阻约为106.8 mΩ,电感参数较[20];在同一容值下,相比于电阻,CDU回路电感的标准差系数明显更小;随着容值的增大,回路的电感、电阻略微下降,电流周期延长,不过变化幅度很小。由于电容自身存在电阻、寄生电容和寄生电感,所以这种规律不具有普适性;对比表2和表3,回路第一放电周期的测试值和计算值吻合,说明电路模型与CDU回路有较好的匹配。

  • 3.2 基于MCT的CDU桥箔电爆性能

    结合表3,0.36 μF电容与MCT组成的CDU回路的电感和电阻最小,故在不同电容放电电压下,采用此CDU进行微型爆炸箔芯片的电爆性能测试,其中桥箔尺寸为0.3 mm(L)×0.3 mm(W)×4.6 μm(H),材料为铜。实验前测量出桥箔平均电阻约为35 mΩ。采用高压探头采集EFI两端电压,罗果夫斯基电流环采集EFI处电流信号。在1.20 kV放电电压下,完整的波形数据处理结果如图4所示。

    图4
                            桥箔电爆时完整的波形图

    图4 桥箔电爆时完整的波形图

    Fig.4 Complete waveform diagrams of electric explosion of exploding foil

    根据图4,分析桥箔电爆时MCT的栅压曲线:虽然栅极控制电压是±5 V,但在CDU放电过程中,MCT栅压存在接近±20 V的剧烈震荡。因为在高压陶瓷电容放电期间,放电回路的di/dt极大(例如,表2中的20.18 kA·μs-1),此时,MCT的寄生电感和寄生电容在栅极和栅返回极之间产生了较高的感应电压,经过TVS吸收浪涌能量,栅压钳位在±20 V之间。分析MCT阴阳极电压曲线:高压电容放电开始前,MCT阴阳极电压即为电容放电电压,在MCT导通后,回路能量开始衰减,因为MCT具有整流功能,所以MCT两端电压曲线仅在正方向上衰减。分析EFI两端电压曲线:出现一个电压峰,说明桥箔电爆了一次。在放电回路导通后,电流流过EFI,焦耳热效应使得EFI经历固、液、气、等离子体相态变化,EFI电阻急速上升,在桥区电阻达到最大时,EFI两端出现电压峰值,EFI发生电爆而导致桥箔断开,随后电压下降至零。分析放电回路电流曲线:电流存在两个波峰和一个波谷,波谷对应桥箔电爆点,此时产生第一次弧光放电,而出现第二个波峰说明桥箔电爆后又再次导通,此时产生第二次弧光放电。分析认为第二次弧光放电是因为CDU回路特性(见图3)导致电流再次增大,回路电感产生的自感电动势引起了空气击穿:结合公式EL=-Ldi/dt,说明回路电感的自感电动势与电感值和电流变化率呈正相关,与电源(电容)电压无关。桥箔电爆后,电流变化率约20 kA·μs-1,因此,约200 V(未考虑爆炸箔电感下的最小值)的自感电动势加到已经电爆的桥箔两端,已经电爆的桥箔容易发生尖端放电,产生可见电弧。另外,对比图4与图3,前者的放电结束时间明显更短,而后者的峰值电流更大。因为前者对应EFI电爆,CDU回路特性近似为EFI由短路突然跃变至断路状态,EFI断路后无能量供给,流经EFI的电流会较快降至零点,放电时间较短;而后者的CDU回路近似为短路,参考式(6),R越小,峰值电流越大。

    本研究采用0.36 μF电容与MCT组成的CDU,在不同电容放电电压下,对微型爆炸箔芯片进行电爆性能测试,得到回路电流、桥箔两端电压、桥箔功率曲线如图5所示。

    η=20tbu(t)i(t)dtCu02
    (10)
    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image008.png

    a. 0.60 kV

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image009.png

    b. 0.70 kV

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image010.png

    c. 0.85 kV

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image011.png

    d. 1.00 kV

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image012.png

    e. 1.20 kV

    html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image013.png

    f. 1.40 kV

    图5 0.36 μF下爆炸箔电压、电流、功率曲线

    Fig.5 Voltage, current and power curves of EFI under 0.36 μF

    CDU回路能量利用率按公式(10)计算,tb为爆发点时[21],ns;即作用于桥箔的功率最大时刻,C为电容器容值,μF;u0为电容放电初始电压,kV。

    从图5可知,随着电容放电电压的增加,回路峰值电流和EFI峰值电压均呈逐渐增加的趋势,同时峰值电流与峰值电压时刻点逐渐靠近。发现峰值电压均滞后于峰值电流,说明桥箔爆炸时间处于电流下降沿阶段,桥箔电爆能量不足,虽然作用在桥箔上的能量可有效利用,但是桥箔充分电爆的可靠性降低。结合表4,随着电容放电电压的增加,桥箔的爆发时间、峰值电压时间、峰值电流时间三者逐渐重合,但是回路的能量利用率却是先增加后减小,在0.85 kV时能量利用率达到最大值47.47%,这是因为桥箔的峰值电流时间和峰值电压时间均达到最大(见表4),延长了电热转换时间。但是0.85 kV对应的EFI峰值功率并未异常增大,故对飞片膨胀做功没有明显帮助,依然不利于BPN的飞片冲击点火(见表5)。结合图5a~图5b分析,当电容放电电压降低到一定程度时,回路电流将会相应减小,观察实验后的爆炸箔时发现桥箔电爆不完

    表4 爆炸箔电爆性能参数

    Table 4 Electric explosion performance parameters of EFI

    discharge

    voltage / kV

    peak

    current / kA

    peak

    voltage / kV

    peak current

    time / ns

    peak voltage

    time / ns

    burst time

    / ns

    burst power

    / MW

    burst energy

    / mJ

    circuit energy

    efficiency / %

    0.600.82710.2436156.9259.1228.20.171316.7725.88
    0.701.3270.4782210.0277.2271.00.408535.6740.44
    0.851.2110.5834276.5317.9307.00.556361.7347.47
    1.001.6940.8363221.4251.5242.51.15054.3430.19
    1.202.0320.9273142.3174.7168.21.49058.6022.61
    1.402.7221.252124.5135.3134.53.34274.7421.18

    表5 硼/硝酸钾点火结果

    Table 5 Ignition results of BPN

    capacitance

    / μF

    minimum

    discharge

    voltage / kV

    stable

    discharge

    voltage / kV

    storage energy

    under the stable

    discharge voltage / J

    0.18---
    0.221.201.300.18
    0.361.051.200.26

    全,飞片有部分残留在桥箔上。同时结合MCT的最大耐压值1.40 kV,研究认为对于0.36 μF陶瓷电容和MCT组成的CDU,在电爆铜桥电阻约35 mΩ、尺寸为0.3 mm(L)×0.3 mm(W)×4.6 μm(H)的微型爆炸箔芯片时,CDU的最佳电容放电电压是1.20 kV。

    桥箔电爆炸的特征参数(如峰值电流、峰值电压、爆发时间、能量利用率等)均记于表4

    由表4可知,在0.36 μF电容,1.00~1.40 kV放电电压下,测得回路峰值电流为1.694~2.722 kA,峰值电流、峰值电压延迟时间为10.8~32.4 ns,爆发点时刻为134.5~242.5 ns,爆发点功率为1.150~3.342 MW,基本符合爆炸箔系统应用前[22]。说明在1.00~1.40 kV放电电压下,0.36 μF电容和MCT组成的CDU放电能力良好,可引起爆炸箔的充分电爆,利于点火和起爆。

  • 3.3 基于MCT的CDU点火性能

    爆炸箔点火器组件如图6所示。CDU采用高压陶瓷电容和MCT;爆炸箔芯片的陶瓷(99.6%Al2O3)基底厚度为0.60 mm,Cu桥箔(35 mΩ)尺寸为0.3 mm(L)×0.3 mm(W)×4.6 μm(H),二氯对二甲苯二聚体(Parylene C,杨氏模量3.2 GPa)飞片厚度25 μm,SU‑8加速膛尺寸为0.425 mm(Φ)×0.40 mm(H);硼/硝酸钾点火药(Boron‑Potassium Nitrate, BPN)符合GJB6217-2008规[23],药柱压药密度为1.57 g·cm-3,直径5 mm,高4 mm。

    图6
                            爆炸箔点火器各组件照片

    图6 爆炸箔点火器各组件照片

    Fig.6 The component photo of exploding foil igniter

    在放电电压不大于1.30 kV下,采用陶瓷电容和MCT组成的CDU进行BPN飞片冲击点火研究,点火结果如表5所示。其中,定义最小发火电压为点燃BPN时电容的最小放电电压,稳定发火电压为可连续三次点燃BPN时电容的放电电压。

    由表5可见,随着容值增加,最小点火电压和稳定点火电压均减小;在0.18 μF电容,放电电压为1.30 kV的条件下,进行三次BPN点火实验,BPN均未点燃,同时考虑到MCT电压上限是1.40 kV,故认为采用0.18 μF电容不足以点燃BPN;本研究采用基于MCT的CDU对微型爆炸箔芯片放电,研究发现可稳定点燃BPN(硼粉1.50 μm,压药密度1.57 g·cm-3)的能量为0.26 J,而杨振[24]采用冲击片点火管点燃BPN(硼粉/1.40 μm,压药密度/1.60 g·cm-3)时测得50%发火能量为0.665 J,说明基于MCT的CDU和微型爆炸箔芯片组成的爆炸箔点火器有更强的点火能力。

  • 4 结 论

    (1)设计制作了基于国产MCT和陶瓷电容的CDU,体积约为40 mm(L)×25 mm(W)×8 mm(H);并分析了CDU的R‑L‑C电路方程,发现回路峰值电流与电容放电电压和容值呈正相关,与回路电感和电阻呈负相关。

    (2)根据CDU回路放电电流曲线,验证了容值和放电电压对CDU放电特性的影响规律,同时计算出回路电感约10 nH,电阻约100 mΩ。随着放电电压升高,回路峰值电流上升,电流上升时间基本一致;随着电容容值变大,相应地峰值电流变大,电容放电时间和峰值电流上升时间延长。

    (3)利用35 mΩ爆炸箔研究了CDU的放电性能。采用0.36 μF电容,在1.00~1.40 kV放电电压下,测得回路峰值电流为1.694~2.722 kA,峰值电流、峰值电压延迟时间为10.8~32.4 ns,爆发点时刻为134.5~242.5 ns,爆发点功率为1.150~3.342 MW;在电容放电过程中,回路电流曲线出现两个峰,说明在桥箔电爆后出现了空气击穿现象,这与CDU回路电流正向震荡特性相关。

    (4)采用符合国军标的BPN与35 mΩ爆炸箔验证了CDU的点火能力。CDU能可靠点燃BPN所需能量约为0.26 J,说明基于MCT的CDU和微型爆炸箔芯片组成的爆炸箔点火器有一定的应用前景。

    (责编:王艳秀)

  • 参考文献

    • 1

      郭菲, 施志贵, 蒋小华, 等. 硅集成爆炸箔组件起爆HNS‑Ⅳ试验研究[J]. 火工品, 2009(6): 5-7.

      GUO Fei, SHI Zhi‑gui, JIANG Xiao‑hua, et al. The test research on the initiation of HNS‑Ⅳ by an integrated silicon exploding foil assembly[J]. Initiators & Pyrotechnics, 2009(6): 5-7.

    • 2

      Zhu P, Chen K, Xu C, et al. Development of a monolithic micro chip exploding foil initiator based on low temperature co‑fired ceramic[J]. Sensors and Actuators A: Physical, 2018, 276: 278-283.

    • 3

      Wang T, Zeng Q, Li M. Characterization and application of Al/Ni reactive multilayers in exploding foils[J]. Central European Journal of Energetic Materials, 2017, 14(3): 547-558.

    • 4

      韩克华, 周俊, 任西, 等. 高压脉冲功率源等效参数对桥箔电爆性能影响规律[J]. 含能材料, 2014(6): 828-833.

      HAN Ke‑hua, ZHOU Jun, REN Xi, et al. Effect of high voltage pulse power source equivalent parameter on exploding performance of foil bridge[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 828-833.

    • 5

      Chu K W, Scott G L. A Comparison of high‑voltage switches[R]. SAND99‑0154: 1999.

    • 6

      周密, 同红海, 任西, 等. 集成高压平面开关的冲击片雷管设计研究[J]. 兵工学报, 2015, 36(4): 626-630.

      ZHOU Mi, TONG Hong‑hai, REN Xi, et al. Design of integrated high voltage planar switch of exploding foil initiators[J]. Acta Armamentarii, 2015, 36(4): 626-630.

    • 7

      Xu C, Zhu P, Chen K, et al. A highly integrated conjoined single shot switch and exploding foil initiator chip based on MEMS technology[J]. IEEE Electron Device Letters, 2017, 38(11): 1610-1613.

    • 8

      彭朝飞, 陈万军, 孙瑞泽, 等. MCT与Clustered IGBT在大功率应用中的比较研究[J]. 电子与封装, 2014(6): 32-36.

      PENG Chao‑fei, CHEN Wan‑jun, SUN Ruize, et al. Comparison of MCT and clustered IGBT in high power applications[J]. Electronics & Packaging, 2014(6): 32-36.

    • 9

      Hanks R L. Low‑jitter high‑power thyristor array pulse driver and generator: US 6462605[P]. 2002.

    • 10

      Perry Salyers. Guided MLRS electronic safety & arming devices (ESAD) & electronic safety & arming fuze (ESAF)[C]//43rd Gun & Missile Conference. New Orleans. 2008.

    • 11

      Grilliot D, Hatch C. Multiple launch rocket system (MLRS) fuzing evolving to meet end user requirements[C]//51st Annual NDIA Fuze Conference. Nashville. 2007.

    • 12

      Oliver Barham. Technology trends in fuze and munitions power sources[C]//Armament Research, Development and Engineering Center (ARDEC). Picatinny Arsenal. 2010.

    • 13

      Max Perrin. Fuzing systems for advanced weapon performance[C]//59th NDIA Fuze Conference. South Carolina. 2016.

    • 14

      Michael Deeds. Navy s&t strategy[C]//NDIA′s 60th Annual Fuze Conference. Cincinnati. 2017.

    • 15

      贺思敏, 何小东, 文剑蓉, 等. 新型CDU单元与冲击片雷管能量匹配以及起爆同步性能研究[C]//中国兵工学会火工烟火专业委员会第十九届学术年会, 福州, 2017: 106-113.

      HE Si‑min, HE Xiao‑dong, WEN Jian‑rong, et al. Research on energy matching and detonation synchronization performance of new CDU and slapper detonator[C]//The 19th Academic Annual Meeting of the China Pyrotechnics Committee, Fuzhou, 2017: 106-113.

    • 16

      韩克华, 任西, 周密, 等. 高压脉冲电容器性能参数优选实验方法研究[J]. 爆破器材, 2011, 40(3): 22-25.

      HAN Ke‑hua, REN Xi, ZHOU Mi, et al. Study on the characteristics parameters optimization experiment with measurement method for high voltage pulsed power capacitor[J].Explosive Materials, 2011, 40(3): 22-25.

    • 17

      褚恩义, 白颖伟, 王可暄, 等. 电热火工品复杂电磁波环境综合适应性设计方法研究[J]. 火工品, 2016(3): 9-12.

      CHU En‑yi, BAI Ying‑wei, WANG Ke‑jun, et al. Study on the complex electromagnetic compatibility designing method for hot bridge‑wire EEDs[J].Initiators & Pyrotechnics, 2016(3):9-12.

    • 18

      O'Malley P D, Garasi C J. Understanding the electrical interplay between a firing set and exploding metal.[R] SAND2015‑1132 567050: 2015.

    • 19

      党瑞荣, 杨振英. 桥箔爆发电流的计算与测量[J]. 火工品, 2000(2): 14-16.

      DANG Rui‑rong, YANG Zhen‑ying. Initiation principles and test technique of bridge foils[J]. Initiators & Pyrotechnics, 2000(2): 14-16.

    • 20

      王窈, 孙秀娟, 郭菲, 等. Al/Ni爆炸箔电爆特性及驱动飞片能力研究[J]. 火工品, 2016(3): 5-8.

      WANG Yao, SUN Xiu‑juan, GUO Fei, et al. Study on electrical characteristic and flyer driven ability of Al/Ni exploding foil[J]. Initiators & Pyrotechnics, 2016(3): 5-8.

    • 21

      陈楷,徐聪,朱朋, 等. 加速膛与复合飞片对集成爆炸箔起爆器性能的影响[J]. 含能材料, 2018, 26(3): 273-278.

      CHEN Kei, XU Cong, ZHU Peng, et al. Effect of barrel and multilayer flyer on the performances of micro chip exploding foil Initiator[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2018, 26(3):273-278.

    • 22

      曾庆轩, 李守殿, 袁士伟, 吕军军.爆炸箔起爆器用高压开关研究进展[J].安全与环境学报,2011,11(1): 202-205.

      ZENG Qing‑xuan, LI Shou‑dian, YUAN Shi‑weiet al. Research progress of high voltage switchs in explosive foil initiators[J]. Journal of Safety and Environment, 2011, 11(1):202-205.

    • 23

      国防科学技术工业委员会. GJB 6217-2008: 硼/硝酸钾点火药规范[S]. 北京: 中国标准出版社, 2008.

      Commission of Science, Technology and Industry for National Defense. GJB 6217-2008: Specification for boron/potassium pellet[S]. Beijing: China Standard, 2008.

    • 24

      杨振英, 郭少华, 褚恩义, 等. 冲击片点火管[J]. 火工品, 2000(3): 17-20.

      YANG Zhen‑ying, GUO Shao‑hua, CHU En‑yi, et al. Slapper igniter[J]. Initiators & Pyrotechnics, 2000(3): 17-20.

覃新

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

邮 箱:11610300420@njust.edu.cn

作者简介:覃新(1994-),男,在读硕士,主要从事直列式电子安保装置研究。e‑mail:11610300420@njust.edu.cn

朱朋

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhupeng@njust.edu.cn

作者简介:朱朋(1978-),男,博导,副研究员,主要从事先进火工品技术研究。e‑mail:zhupeng@njust.edu.cn

徐聪

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

杨智

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

张秋

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

沈瑞琪

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094, China

html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image001.png
parameterstest conditionsmeasurements
VD(BR)/ VVGK=0 V, ID=100 µA>1400
ID/ μAVGK=0 V, VD=1400 V<0.1
VGK(TH)/ VVAK=VGK, IAK=250 μA3.2
VGKS/ V-±25
Ta/ ℃--45-85
td(ON)/ ns

C=0.47 μF,L=20 nH,

VGK=0 V to +5 V,

VAK=1250 V

100
(di/dt)/ kA·µs-145
IPEAK/ A4000
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image002.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image004.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image005.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image006.png

capacitance

/ μF

storage energy

/ mJ

peak current

/ kA

rise time

/ ns

rate of change of current / kA·μs-1

discharge time

/ ns

T1

/ ns

T2-T5

/ ns

0.18129.62.57183.421.001100256.6198.3±4
0.22158.42.68198.822.461200295.7220.2±5
0.36259.24.14272.920.181500328.3250.1±10
inductanceresistanceperiod

capacitance

/ μF

average

/ nH

standard

deviation

/ nH

standard deviation coefficien

/ %

average

/ mΩ

standard deviation

/ mΩ

standard deviation coefficien

/ %

average

/ ns

standard deviation

/ ns

standard deviation coefficien

/ %

0.1810.090.99279.835114.131.9027.96276.017.386.295
0.2210.440.96169.208106.826.7225.02310.718.215.862
0.368.8250.63047.14478.5524.5631.27366.717.404.745
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image007.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image008.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image009.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image010.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image011.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image012.png
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image013.png

discharge

voltage / kV

peak

current / kA

peak

voltage / kV

peak current

time / ns

peak voltage

time / ns

burst time

/ ns

burst power

/ MW

burst energy

/ mJ

circuit energy

efficiency / %

0.600.82710.2436156.9259.1228.20.171316.7725.88
0.701.3270.4782210.0277.2271.00.408535.6740.44
0.851.2110.5834276.5317.9307.00.556361.7347.47
1.001.6940.8363221.4251.5242.51.15054.3430.19
1.202.0320.9273142.3174.7168.21.49058.6022.61
1.402.7221.252124.5135.3134.53.34274.7421.18

capacitance

/ μF

minimum

discharge

voltage / kV

stable

discharge

voltage / kV

storage energy

under the stable

discharge voltage / J

0.18---
0.221.201.300.18
0.361.051.200.26
html/hncl/CJEM2018147/media/e5a6a7f9-a5d7-4380-a6d7-06fa43720f0e-image014.png

图1 基于MCT的CDU实物图

Fig.1 The physical map of CDU based on MCT

表1 MCT电性能参数

Table 1 Electrical performance parameters of MCT

图2 CDU放电过程等效电路示意图

Fig.2 Schematic diagram of equivalent circuit for CDU discharge process

图3 CDU放电电流特性曲线 -- a. 0.18 μF

Fig.3 Current characteristic curves for discharge of CDU -- a. 0.18 μF

图3 CDU放电电流特性曲线 -- b. 0.22 μF

Fig.3 Current characteristic curves for discharge of CDU -- b. 0.22 μF

图3 CDU放电电流特性曲线 -- c. 0.36 μF

Fig.3 Current characteristic curves for discharge of CDU -- c. 0.36 μF

表2 不同电容下CDU回路放电特征参数测试结果

Table 2 Testing results of discharge characteristic parameters of CDU circuit with different capacitance

表3 不同电容下CDU回路的电感、电阻和周期计算值

Table 3 Calculated values of inductance, resistance and period of CDU circuit with different capacitance

图4 桥箔电爆时完整的波形图

Fig.4 Complete waveform diagrams of electric explosion of exploding foil

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- a. 0.60 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- a. 0.60 kV

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- b. 0.70 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- b. 0.70 kV

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- c. 0.85 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- c. 0.85 kV

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- d. 1.00 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- d. 1.00 kV

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- e. 1.20 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- e. 1.20 kV

图5 0.36 μF下爆炸箔电压、电流、功率曲线 -- f. 1.40 kV

Fig.5 Voltage, current and power curves of EFI under 0.36 μF -- f. 1.40 kV

表4 爆炸箔电爆性能参数

Table 4 Electric explosion performance parameters of EFI

表5 硼/硝酸钾点火结果

Table 5 Ignition results of BPN

图6 爆炸箔点火器各组件照片

Fig.6 The component photo of exploding foil igniter

image /

无注解

VD(BR) is the anode to cathode breakdown voltage, ID is the anode‑cathode off‑state current, VGK(TH) is the gate‑cathode turn‑on threshold voltage. VGKS is the continuous gate‑cathode voltage, Ta is the ambient temperature, td(ON) is the turn‑on delay time, di/dt is the rate of change of current, IPEAK is the peak anode current.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      郭菲, 施志贵, 蒋小华, 等. 硅集成爆炸箔组件起爆HNS‑Ⅳ试验研究[J]. 火工品, 2009(6): 5-7.

      GUO Fei, SHI Zhi‑gui, JIANG Xiao‑hua, et al. The test research on the initiation of HNS‑Ⅳ by an integrated silicon exploding foil assembly[J]. Initiators & Pyrotechnics, 2009(6): 5-7.

    • 2

      Zhu P, Chen K, Xu C, et al. Development of a monolithic micro chip exploding foil initiator based on low temperature co‑fired ceramic[J]. Sensors and Actuators A: Physical, 2018, 276: 278-283.

    • 3

      Wang T, Zeng Q, Li M. Characterization and application of Al/Ni reactive multilayers in exploding foils[J]. Central European Journal of Energetic Materials, 2017, 14(3): 547-558.

    • 4

      韩克华, 周俊, 任西, 等. 高压脉冲功率源等效参数对桥箔电爆性能影响规律[J]. 含能材料, 2014(6): 828-833.

      HAN Ke‑hua, ZHOU Jun, REN Xi, et al. Effect of high voltage pulse power source equivalent parameter on exploding performance of foil bridge[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 828-833.

    • 5

      Chu K W, Scott G L. A Comparison of high‑voltage switches[R]. SAND99‑0154: 1999.

    • 6

      周密, 同红海, 任西, 等. 集成高压平面开关的冲击片雷管设计研究[J]. 兵工学报, 2015, 36(4): 626-630.

      ZHOU Mi, TONG Hong‑hai, REN Xi, et al. Design of integrated high voltage planar switch of exploding foil initiators[J]. Acta Armamentarii, 2015, 36(4): 626-630.

    • 7

      Xu C, Zhu P, Chen K, et al. A highly integrated conjoined single shot switch and exploding foil initiator chip based on MEMS technology[J]. IEEE Electron Device Letters, 2017, 38(11): 1610-1613.

    • 8

      彭朝飞, 陈万军, 孙瑞泽, 等. MCT与Clustered IGBT在大功率应用中的比较研究[J]. 电子与封装, 2014(6): 32-36.

      PENG Chao‑fei, CHEN Wan‑jun, SUN Ruize, et al. Comparison of MCT and clustered IGBT in high power applications[J]. Electronics & Packaging, 2014(6): 32-36.

    • 9

      Hanks R L. Low‑jitter high‑power thyristor array pulse driver and generator: US 6462605[P]. 2002.

    • 10

      Perry Salyers. Guided MLRS electronic safety & arming devices (ESAD) & electronic safety & arming fuze (ESAF)[C]//43rd Gun & Missile Conference. New Orleans. 2008.

    • 11

      Grilliot D, Hatch C. Multiple launch rocket system (MLRS) fuzing evolving to meet end user requirements[C]//51st Annual NDIA Fuze Conference. Nashville. 2007.

    • 12

      Oliver Barham. Technology trends in fuze and munitions power sources[C]//Armament Research, Development and Engineering Center (ARDEC). Picatinny Arsenal. 2010.

    • 13

      Max Perrin. Fuzing systems for advanced weapon performance[C]//59th NDIA Fuze Conference. South Carolina. 2016.

    • 14

      Michael Deeds. Navy s&t strategy[C]//NDIA′s 60th Annual Fuze Conference. Cincinnati. 2017.

    • 15

      贺思敏, 何小东, 文剑蓉, 等. 新型CDU单元与冲击片雷管能量匹配以及起爆同步性能研究[C]//中国兵工学会火工烟火专业委员会第十九届学术年会, 福州, 2017: 106-113.

      HE Si‑min, HE Xiao‑dong, WEN Jian‑rong, et al. Research on energy matching and detonation synchronization performance of new CDU and slapper detonator[C]//The 19th Academic Annual Meeting of the China Pyrotechnics Committee, Fuzhou, 2017: 106-113.

    • 16

      韩克华, 任西, 周密, 等. 高压脉冲电容器性能参数优选实验方法研究[J]. 爆破器材, 2011, 40(3): 22-25.

      HAN Ke‑hua, REN Xi, ZHOU Mi, et al. Study on the characteristics parameters optimization experiment with measurement method for high voltage pulsed power capacitor[J].Explosive Materials, 2011, 40(3): 22-25.

    • 17

      褚恩义, 白颖伟, 王可暄, 等. 电热火工品复杂电磁波环境综合适应性设计方法研究[J]. 火工品, 2016(3): 9-12.

      CHU En‑yi, BAI Ying‑wei, WANG Ke‑jun, et al. Study on the complex electromagnetic compatibility designing method for hot bridge‑wire EEDs[J].Initiators & Pyrotechnics, 2016(3):9-12.

    • 18

      O'Malley P D, Garasi C J. Understanding the electrical interplay between a firing set and exploding metal.[R] SAND2015‑1132 567050: 2015.

    • 19

      党瑞荣, 杨振英. 桥箔爆发电流的计算与测量[J]. 火工品, 2000(2): 14-16.

      DANG Rui‑rong, YANG Zhen‑ying. Initiation principles and test technique of bridge foils[J]. Initiators & Pyrotechnics, 2000(2): 14-16.

    • 20

      王窈, 孙秀娟, 郭菲, 等. Al/Ni爆炸箔电爆特性及驱动飞片能力研究[J]. 火工品, 2016(3): 5-8.

      WANG Yao, SUN Xiu‑juan, GUO Fei, et al. Study on electrical characteristic and flyer driven ability of Al/Ni exploding foil[J]. Initiators & Pyrotechnics, 2016(3): 5-8.

    • 21

      陈楷,徐聪,朱朋, 等. 加速膛与复合飞片对集成爆炸箔起爆器性能的影响[J]. 含能材料, 2018, 26(3): 273-278.

      CHEN Kei, XU Cong, ZHU Peng, et al. Effect of barrel and multilayer flyer on the performances of micro chip exploding foil Initiator[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2018, 26(3):273-278.

    • 22

      曾庆轩, 李守殿, 袁士伟, 吕军军.爆炸箔起爆器用高压开关研究进展[J].安全与环境学报,2011,11(1): 202-205.

      ZENG Qing‑xuan, LI Shou‑dian, YUAN Shi‑weiet al. Research progress of high voltage switchs in explosive foil initiators[J]. Journal of Safety and Environment, 2011, 11(1):202-205.

    • 23

      国防科学技术工业委员会. GJB 6217-2008: 硼/硝酸钾点火药规范[S]. 北京: 中国标准出版社, 2008.

      Commission of Science, Technology and Industry for National Defense. GJB 6217-2008: Specification for boron/potassium pellet[S]. Beijing: China Standard, 2008.

    • 24

      杨振英, 郭少华, 褚恩义, 等. 冲击片点火管[J]. 火工品, 2000(3): 17-20.

      YANG Zhen‑ying, GUO Shao‑hua, CHU En‑yi, et al. Slapper igniter[J]. Initiators & Pyrotechnics, 2000(3): 17-20.