CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
大科学装置在含能材料研究中的应用
作者:
作者单位:

1.中国工程物理研究院, 四川 绵阳 621999;2.中国工程物理研究院化工材料研究所, 四川 绵阳 621999

作者简介:

通讯作者:

基金项目:


Application of Large Scientific Devices in the Research of Energetic Materials
Author:
Affiliation:

1.China Academy of Engineering Physics, Mianyang 621999, China;2.Institute of Chemical Materials, CAEP, Mianyang 621999, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 支撑附件
    摘要:

    含能材料的多尺度结构与刺激动态响应机制研究存在非均质特性及跨时空演化带来的实验诊断难题,制约了对其安全性和能量释放特性的深入科学认识。以中子源、同步辐射光源及大型激光为代表的大科学装置,凭借深穿透性、极端加载条件与高时空分辨能力,为解决这些问题提供了关键手段。综述了国内外大科学装置在含能材料的多尺度微结构、药柱残余应力、冲击加载物性、细观结构演化、爆轰反应特性等方面的研究进展,中子散射技术通过深穿透特性与轻元素灵敏性,实现了炸药内部微纳结构及残余应力的无损定量表征;高亮度X射线相衬成像和动态X射线衍射技术,以亚微米级分辨率揭示了冲击加载下缺陷动态演化过程,并原位捕捉了爆轰波阵面结构及纳米碳产物的动力学特征;强激光加载结合超快光谱技术,获取了炸药在高压下的Hugoniot数据和起爆反应机理。未来需开发多场耦合加载诊断平台,进一步提升装置时空分辨率,贯通多装置数据融合分析,为炸药动静态安全与反应特性认识、炸药结构设计与性能提升提供技术支撑。

    Abstract:

    The research on the multi-scale structure and stimulation dynamic response mechanism of energetic materials has experimental diagnosis problems due to their heterogeneous characteristics and cross-spatiotemporal evolution, which restricts the in-depth scientific understanding of their safety and energy release characteristics. Large scientific devices represented by neutron sources, synchrotron radiation sources and large-scale lasers provide key means to solve the above problems by virtue of deep penetration, extreme loading conditions and high spatiotemporal resolution. The research progress of large scientific devices at home and abroad was reviewed in respect of the multi-scale microstructure, grain residual stress, impact loading physical properties, mesostructure evolution, detonation reaction characteristics, and etc. of energetic materials. The neutron scattering technology has realized the non-destructive quantitative characterization of the micro-nano structure and residual stress in the interior of explosives through its deep penetration characteristics and light element sensitivity. High-brilliance X-ray phase contrast imaging and dynamic X-ray diffraction technology revealed the dynamic evolution process of defects under shock loading with sub-micron resolution, and captured the detonation wave front structure and the dynamic characteristic of nano-carbon products in situ. By combining high-intensity laser loading with ultrafast spectroscopy technology, the Hugoniot data under high pressure and initiation reaction mechanism of explosives were obtained. In the future, it is necessary to develop multi-field coupled loading diagnosis platforms, to further improve the spatiotemporal resolutions of the devices, and to penetrate the data fusion analysis of multiple devices, which provide technical support for the understanding of dynamic-static safety and reaction characteristics of explosives, and for the structural design and performance improvement of explosives.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

黄辉,田均均.大科学装置在含能材料研究中的应用[J].含能材料, 2025, 33(9):961-980. DOI:10.11943/CJEM2025138.
HUANG Hui, TIAN Jun-jun. Application of Large Scientific Devices in the Research of Energetic Materials[J]. Chinese Journal of Energetic Materials, 2025, 33(9):961-980. DOI:10.11943/CJEM2025138.

复制
历史
  • 收稿日期: 2025-06-23
  • 最后修改日期: 2025-08-23
  • 录用日期: 2025-09-11
  • 在线发布日期: 2025-09-25
  • 出版日期: 2025-09-25