含铝炸药一般由单质炸药和铝粉混合制成,也被称作铝化炸药。一般认为,含铝炸药通过爆轰反应区后面的二次反应持续放出大量的热量,具有较高的爆热和较长的能量释放时间,能对目标施加持续的、强烈的毁伤和破坏作用。但是,由于爆炸和燃烧所伴随的巨大破坏效应,使含铝炸药反应状态的动态测量存在一定困难,不利于对含铝炸药反应过程和反应机理进行深入研究[1-2]。
激光烧蚀是实现炸药快速反应的微细观实验研究手段之一。激光烧蚀激发炸药反应的一系列实验涉及的炸药量在毫克量级,是一类可以在普通光学实验室内广泛开展的实验。同时由于激光注入能量和作用区域均可实现精确控制,有望实现对宏观爆炸中部分反应过程的微细观模拟,并已被国内外多个研究团队应用于炸药反应动力学的相关研究[1-11]。其中涉及含铝炸药方面的工作主要有:杨延强等[3]采用超快光谱技术对含有纳米铝颗粒的硝化纤维和氧化剂混合物的激光烧蚀激发过程进行了研究,认为铝的氧化过程开始于铝达到熔融温度时,剧烈的反应出现于材料被汽化的区域。Roy等[4]观测了激光烧蚀掺杂有铝纳米颗粒的硝酸铵与氧化剂混合物后产生的冲击波传播图像,对含铝类炸药的能量释放规律进行了研究,并基于相干反斯托克斯拉曼散射光谱对波后瞬态温度在空间中的分布情况进行了动态测量。Gottfired等[5]同样采用激光烧蚀手段对黑索今(RDX)粉末在铝等多种金属基底的激发状态进行了调查,并给出了不同金属材料的激发效率及温度效果。
为了加深对含铝炸药反应过程和反应机理的理解,本研究采用波长为1064 nm的短脉冲激光对RDX基含铝炸药粉末进行烧蚀激发,结合时间分辨光谱探测技术,对烧蚀后反应过程中发射光谱的动态分布情况进行了测量。最后,采用分子光谱模拟程序对实验数据进行拟合,获得了反应过程中瞬态温度变化的规律。
2 实验部分 2.1 样品制备RDX基含铝炸药粉末:铝粉30%,RDX粉末70%。铝粉购于上海阿拉丁公司,直径约为1 μm,纯度高于99.9%,RDX粉末由化工材料研究所提供,直径为10~15 μm,纯度高于99.5%。
装载样品的靶板为正方形薄板,其上加工有121个用于装填样品的圆形通孔。通孔直径为1 mm,能装填约5 mg的样品。进行样品装填前,需要先将靶板固定到光滑、平整的不锈钢底座上,再将样品逐一装入每个孔洞中,最后采用压靶机施加一致的力(确保压实后的材料密度接近)将样品压实到孔洞中。压装完成后,由于不锈钢底座的刚性约束,孔洞中贴近底座一面的样品表面会更为平整和一致,实验也将在这一面来施加烧蚀作用。具体实验前,样品靶板将被安装到可在XZ平面内移动的二维电动位移平台上。
2.2 测试方法激光烧蚀实验系统的基本光路如图 1所示,该系统能实现对样品表面的激光烧蚀、并对烧蚀后逸出的发射光谱进行实时探测。脉冲激光波长为1064 nm,脉宽为9 ns,脉冲能量为20 mJ,能量抖动小于5%。光路中用于聚焦激光产生烧蚀的物镜(Objective lens)为平场消色差显微物镜。这类物镜经过了球差和色差校正,具有较大数值孔径和较高的放大倍数,非常适合聚焦或准直激光,在可见光到近红外部分光谱区域内具有接近衍射极限的聚焦性能。发射光谱信号从侧面进行收集,经透镜组耦合进光谱仪中,结合具有时间分辨测量能力的ICCD(Intensify Charge Coupled Device)相机进行记录。物镜聚焦的焦点和收集发射光谱的透镜焦点一般都选在样品表面的几何中心。
![]() |
图 1 激光烧蚀实验系统基本光路示意图 Fig.1 Schematic diagram of the basic light path for laser ablation experiment system |
为了实现一定时间范围内的时间分辨测量,发射光谱采集时间需要和激光烧蚀时刻进行时间同步,这里采取的同步方法是将激光器的触发信号同步输出至数字延时发生器上,再通过数字延时发生器的输出通道给出一个延时后的TTL信号触发ICCD相机进行记录。虽然ICCD相机在单次实验中只能进行单次的光谱记录(单次记录时长为1 μs),但通过连续调整激光开始烧蚀事件到ICCD相机开始记录事件之间的延迟时间,并驱动二维电动位移平台移动到未烧蚀过的新样品位置进行新的烧蚀实验,就可采集到一系列激光烧蚀下随时间演化的发射光谱数据。在较为理想的实验状态下(一致的样品品质、稳定的激光能量等),可以认为这种观测方式下得到的结果能够代表该实验现象随时间发展的真实规律,这种观测方式也常常应用于各种时间分辨测量系统中。
3 结果与讨论 3.1 发射光谱分布对波长450~860 nm的RDX基含铝炸药粉末的发射光谱进行了实时观测。图 2为2 μs时刻下发射光谱的基本分布情况。在实验观测的波长范围内,有4条明显的O元素谱线、9条N元素谱线、1条H元素谱线、2条Na元素谱线和2条AlO分子带状发射谱(见表 1)。
![]() |
图 2 2 μs时RDX基含铝炸药粉末发射光谱分布情况 Fig.2 The distribution situation of emission spectra of RDX based aluminized explosive powder at 2 μs |
![]() |
表 1 实验观察到的RDX基含铝炸药粉末发射光谱谱线汇总 Tab.1 Summary of the observed emission spectrum lines of RDX based aluminized explosive powder by experiments |
N、O、Na、H元素的发射光谱为原子发射光谱,在图 2上呈现为典型的单峰形态。原子发射光谱与电子能级跃迁有关,激发态原子(或离子)中的电子向更低的电子能级跃迁时会释放出光子,光子可能经过几个中间能级才跃迁到稳定的能级,这时就会有几种不同波长的光逸出,在光谱中就表现为多条原子谱线。实验中,O、N元素的发射光谱谱线最为丰富。考虑到实验在空气环境中进行,空气中含有大量的氧气和氮气,而RDX也是由C、H、O、N等元素组成的,所以很难直接通过发射光谱信息判断谁是导致O、N元素产生发射光谱的最主要物质来源。H和Na元素的谱线只可能来自于含能材料,因为H是RDX的重要组成元素,在空气中的含量很少,而Na则普遍存在于RDX合成过程中混入的杂质中,它们一定程度上可以作为表征含能材料参与反应的标记物[1]。
由图 2d和图 2e可知,AlO分子发射光谱与O、N、Na、H元素在谱图中的原子光谱有明显区别。这是由于双原子分子在发生电子能级跃迁时,还常耦合有振动能级和转动能级的跃迁,所产生的谱线的波数实际为三种跃迁之和,在谱图上就呈现出比原子光谱复杂得多的特征。AlO分子的发射光谱是由一系列带头组成的谱带结构,并沿单方向呈非对称延展。通常谱带的一端有锐边,它被称为带头,在此处强度突然下降;而在谱带的另一端,强度则下降得相当慢。实验观测到的谱带为AlO分子
图 3为O、H、N、Na、AlO等元素主要谱线的高度随时间变化的关系(由于不同谱线的谱线类型和记录时的光谱分辨率存在不同,这里无法直接用统一的强度进行比较,所以用谱线高度进行定性描述,谱线高度定义为谱线峰值与背底噪声之间的差值)。从谱线高度随时间变化特征可以知道,AlO分子发射谱的两个谱带序在初始时刻的强度并不是最大,它们随着时间逐渐增强,20 μs内都有一定分布。Na元素的发射谱线(589.0 nm)在20 μs附近都有一定数值,而H元素(656.4 nm)的谱线在5 μs附近就几乎消失了,同样N、O元素的谱线信号也在5 μs附近就趋于消失,只有1条的O元素谱线(792.3 nm附近)在20 μs附近仍然能被观测到,它可能来自于参与铝氧化反应的特定激发态氧元素的跃迁辐射,对比,还需要进一步研究才能确认。
![]() |
图 3 谱线高度随时间变化的关系 Fig.3 The relationship of change in the height of spectral line with time |
依据图 3中谱线高度的时间特征,RDX基含铝炸药粉末的谱线可分为两类:一类为O、N、H元素,其谱线高度的初始数值很高,随时间发展呈现出明显的指数型衰减,在5 μs附近趋近消失;一类以AlO、Na等元素为主,其谱线高度虽然在开始阶段的数值和O、N、H这些元素有1到3个数量级的差距,但衰减速度也要慢得多,部分谱线的高度随着时间发展还出现了上升趋势,并在5~30 μs达到局域极值,它们中的大部分谱线直到40 μs仍有可观的数值。
结合含铝炸药的二次反应特征,可以推测,发射光谱这种时间特征上的差异是各自时间段内主导反应类型的差异带来:(1)5 μs前以激光烧蚀形成的等离子体耗散和冷却过程为主,激光烧蚀导致了RDX与空气的强烈电离,表现为组成RDX和空气的O、N、H等主要元素在激发后极强的光谱辐射,激光能量撤出后,这种电离状态将无法维持,等离子体开始迅速衰减和冷却,对应的光谱呈现出迅速的指数型衰减。(2)5 μs后以Al元素的氧化燃烧反应为主(考虑到AlO分子光谱为宽范围的谱带结构,它的某一谱线高度所对应的真实强度会比同一谱线高度下的原子线状谱对应的真实强度强得多,它在后期阶段实际强度也会远大于Na等其它元素),Al的氧化反应为典型的放热反应,能够释放能量促进反应的发展和增长,具有一定的自持性,其标志就是中间产物AlO分子光谱的持久存在及随时间的增长趋势。
3.2 基于分子光谱的瞬态温度计算含铝炸药爆炸、燃烧时的瞬态温度是衡量炸药性能和指导炸药配方设计的重要指标,对于研究炸药能量释放规律和热毁伤效应具有重要意义。但炸药爆炸和燃烧时的温度很高(数千开)、变化极快(纳秒到微秒级),且伴随着巨大的破坏作用,使得炸药反应后的瞬态温度的测量存在困难。本研究尝试基于AlO分子谱带的整体变化趋势和一定波长范围内光谱信息的集合来进行瞬态温度的计算。理论上,这种计算涉及的光谱数据更为丰富,结果相对而言将更具可信度和说服力。
温度计算采用了Parigger等[16-17]开发的分子光谱模拟程序。该程序可以计算不同温度下的分子光谱分布。模拟程序以温度为变量,通过最优化求解得到与实验数据最为接近时的温度数据。为了简化温度计算的过程,模拟过程引入局域热平衡假设,即T=Texc=Tvib=Trot。实验观测的AlO分子光谱分布在Δν =0,Δν =-1两个谱带序,本研究选取其中一个谱带序进行拟合。图 4为两个谱带序在不同温度下的模拟结果。由图 4可知,相比Δν =0谱带序,Δν =-1谱带序各带头随温度的变化特征更为明显和易于分辨,所以选取Δν =-1谱带序进行温度的拟合,对应的拟合范围为506.8~524 nm。
![]() |
图 4 AlO分子模拟光谱随温度变化的趋势 Fig.4 The trend of change in simulation spectra of AlO mol⁃ ecule with temperature |
图 5是模拟程序对2 μs时的实验结果进行的模拟。由图 5可知,模拟结果在整体趋势上对实验结果实现了较好的复现,对应的温度约为(4587±157)K,误差控制在10%以下。图 6给出了依据实测光谱数据计算的瞬态温度随时间的变化关系。由图 6可知,最高温度值(5123±109)K出现在1 μs时,此时激光能量的注入已经完成,是等离子体运动最活跃的时刻。在1~5 μs内,温度迅速下降,由约5123 K降低到4023 K左右。在5~15 μs内,温度变化平缓,偶尔出现微小的上升或下降。15 μs后,温度开始缓慢下降,并接近3500 K,此时由于光谱信号强度的下降,背底噪声的影响更为明显,对应的计算误差也会增大,接近10%。
![]() |
图 5 1 μs时刻实验结果和数值拟合结果的对比 Fig.5 Comparison of the experimental and the numerical results at 1 μs |
![]() |
图 6 基于AlO分子发射谱获得的瞬态温度变化 Fig.6 Change in transient temperature obtained based on AlO molecule emission spectrum with time |
总之,基于获得的分子发射谱拟合得到的温度分布在3000~6000 K,与其他研究者的一些结果接近的[17-20]。同时从温度变化总体趋势来看,温度的变化和烧蚀后反应的整体变化趋势基本是一致的,在初期等离子体最活跃和光谱发射最强时温度最高,并随着反应强度及光谱信号的迅速衰减而持续下降,在中期发射光谱变化缓慢时温度也趋于稳定变化,后期随着反应强度及光谱信号的进一步变弱,温度也进一步走低。
4 结论(1)由发射光谱的时间分布特征可知,RDX基含铝炸药粉末在前期阶段(0~5 μs)和后期阶段(5 μs后)的光谱分布和反应行为存在明显差异:前期阶段反应主要体现为激光烧蚀形成的等离子冷却和耗散过程,发射光谱以O/H/N元素光谱最为明显,整体谱线高度随着激光能量的撤出迅速衰退;后期阶段的反应由Al元素的氧化反应所主导,发射光谱以其中间产物AlO分子的发射光谱为主,对应的光谱呈现持续时间久、强度低、非单调变化的特点,氧化反应带来能量的持续释放,导致了反应增长及二次反应现象的发生。
(2)基于AlO分子谱带的整体变化趋势和一定波长范围内光谱信息的集合进行了反应区域的瞬态温度的计算,计算得到温度为3000~6000 K。温度变化趋势和整个反应发展趋势存在很好的关联性,温度在初期反应较剧烈时呈现较高的数值,随着反应和整体谱线高度的持续变弱,温度也逐渐变低。
[1] |
Collins E S, Gottfried J L. Laser - induced deflagration for the characterization of energetic materials[J].
Propellants, Explosives, Pyrotechnics, 2017, 42(6): 592-602. DOI:10.1002/prep.v42.6 |
[2] |
Gottfired J L. Laboratary - scal method for estimating explosive performace from laser - induced shock waves[J].
Propellants, Explosives, Pyrotechnics, 2015, 40(5): 675-681. |
[3] |
Yang Y Q, Sun Z Y, Wang S F, et al. Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials[J].
The Journal of Physical Chemistry B, 2003, 107(19): 4485-4493. DOI:10.1021/jp0269322 |
[4] |
Roy S, Jiang N, Stauffer H U, et al. Spatially and temporally resolved temperature and shock - speed measurements behind a laser-induced blast wave of energetic nanoparticles[J].
Journal of Applied Physics, 2013, 113(18): 141 |
[5] |
Gottfried J L. Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles[J].
Applied Optics, 2012, 51(7): 13-21. DOI:10.1364/AO.51.000B13 |
[6] |
Ben-Eliahu Y, Haas Y, Welner S. Laser Initiation of the decom - position of energetic polymers:shock wave formation[J].
The Journal of Chemical Physics, 1995, 99(16): 6010-6018. DOI:10.1021/j100016a042 |
[7] |
Haas Y, Ben-Eliahu Y. Pulsed laser induced decomposition of energetic polymers:comparison of ultraviolet(355 nm) and infrared(9.3 μm)initiation[J].
Propellants, Explosives, Pyrotechnics, 1996, 21(5): 258-265. DOI:10.1002/(ISSN)1521-4087 |
[8] |
Belau L, Ben-Eliahu Y, Hecht I, et al. Laser initiation of the de- composition of energetic polymers:a spectroscopic study of the gaseous products[J].
The Journal of Physical Chemistry B, 2000, 104(44): 10154-10161. DOI:10.1021/jp001095u |
[9] |
Hauer M, Funk D J, Lippert T, et al. Time resolved study of the laser ablation induced shockwave[J].
Thin Solid Films, 2004, 453-454(1): 584-588. |
[10] |
Kumar A, Lee Y P, Chen D M. Photodissociation of glycidyl azide polymer with a ND: YAG Laser at 1.064 μm[J].
Combustion and Flame, 2001, 126(3): 1736-1745. DOI:10.1016/S0010-2180(01)00287-5 |
[11] |
沈瑞琪, 叶迎华, 戴实之. 光声检测叠氮化铅分解的化学反应过程[J].
应用激光, 1993, 13(6): 264-266. SHEN Rui-qi, YE Ying-hua, DAI Shi-zhi. Photoacoustic detec- tion for chemical reaction process of lead azide decomposition[J]. Applied Physics, 1993, 13(6): 264-266. |
[12] |
Bai X, Motto-Ros V, Lei W, et al. Experimental determination of the temperature range of AlO molecular emission in laser-in- duced aluminum plasma in air[J].
Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 99(9): 193-200. |
[13] |
Peuker J. Using optical techniques to measure aluminum burn- ing in post - detonation explosive fireballs[J].
Dissertations & Theses-Gradworks, 2012, 185(s 3–4): 237-252. |
[14] |
Peuker J M, Lynch P, Krier H, et al. On AlO Emission spectros- copy as a diagnostic in energetic materials testing[J].
Propellants, Explosives, Pyrotechnics, 2013, 38(4): 577-585. DOI:10.1002/prep.v38.4 |
[15] |
Song Y, Jinghe W, Yanping W, et al. Optical investigation of shock -produced chemical products in pseudo -aluminized ex- plosive powders explosion[J].
Journal of Physics D, 2007, 40(11): 3541-3544. DOI:10.1088/0022-3727/40/11/043 |
[16] |
Hornkohl1 J O, Woods A C, Parigger C G. An Algorithm For Computation Of Diatomic Spectra[C] // Journal of Physics: Conference Series 548, 2014: 012033.
|
[17] |
Surmick D M, Parigger C G. Time-resolved aluminium laser-in- duced plasma temperature measurements[C] // Journal of Phys- ics: Conference Series 548, 2014: 012046.
|
[18] |
Glumac N G, Krier H, Bazyn T, et al. Temperature measure- ments of aluminum particles burning in carbon dioxide[J].
Combustion Science and Technology, 2005, 177(3): 485-511. DOI:10.1080/00102200590909030 |
[19] |
Bucher P, Yetter R A, Dryer F L, et al. PLIF and Ratiometric Temperature Measurements of Aluminum Particle Combustion in O 2, CO2, and N2O Oxidizers, and Comparison with Model Calculations[J].
Symposium on Combustion, Pittsburg, 1998, 27(2): 2421-2429. |
[20] |
Glumac N G, Servaites J, Krier H. AlO vibrational temperature measurements from burning aluminum particles at elevated pressure[J].
Combustion Science and Technology, 2001, 172(1): 97-107. DOI:10.1080/00102200108935840 |
Using laser ablation,we obtained the emission spectra from RDX based explosive at different time,and calculated the transient temperature of the reaction region based on the molecular spectrum of AlO.