2. 南京理工大学化工学院,江苏 南京 210094
2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
含能材料在军事以及民用领域的广泛运用促进其不断发展[1]。代表性的含能化合物有三硝基甲苯(TNT),黑索今(RDX),奥克托今(HMX)以及六硝基六氮杂异伍兹烷(CL-20)。含能材料的爆轰性能以及安全性是炸药最重要的性质,而这两者的平衡问题更是研究新型含能材料的关键[2]。因此,近年来,含能共晶、含能离子盐、含能金属有机框架等新的含能化合物表现形式被广泛研究[3],其核心为探索新型含能分子。
将不同的含能官能团与不同的骨架相结合是设计新型含能分子的有效途径。在众多含能官能团中,硝氨基氮氧含量高,具有大量高能键,可赋予含能化合物卓越的性能[4]。在含能骨架中,1, 2, 5-噁二唑(呋咱)由于其较高的氮含量以及氧含量,是制备高能化合物的理想骨架[5]。所以,制备硝氨官能化的呋咱类化合物是探索新型含能化合物的一大方向[6],如由两个硝氨基和一个呋咱环组成的3, 4-二硝氨基呋咱爆速(D)为9376 m·s-1,爆压(p)为40.5 GPa [7]。另外,由两个硝氨基和两个呋咱环组成的3, 3'-二硝氨基-4, 4'-二呋咱也具有优异的爆轰性能(D=9086 m·s-1;p=40.3 GPa)[8]。除了硝氨基外,偕二硝基甲基近来也受到广泛关注, 如4, 4'-二偕二硝基甲基-3, 3'-偶氮呋咱[9]、3, 3'-二偕二硝基甲基呋咱醚[10]等。
因此,同时具有硝氨基以及偕二硝基甲基的呋咱类化合物也应具有优异的爆轰性能。2017年,Li H[11]等合成了二硝氨亚甲基桥联的偕二硝基甲基呋咱(化合物5)的钾盐与氨基胍盐。已有研究表明,肼盐生成焓与密度较高,具有优良的爆轰性能[7]。
为此,本课题组拟用3-氨基-4-偕氯肟呋咱为原料制备化合物5的肼盐。然而,单晶数据表明肼的加入导致了化合物5中桥联C—N键的断裂,最终意外获得了同时具有硝氨基与偕二硝基甲基的单环呋咱肼盐(化合物6)。虽然化合物6已被报道[12],但其原有制备方法条件苛刻,硝化体系为五氧化二氮与四氧化二氮,且极易产生另一并环化合物[13],而本方法能在较温和的硝化体系(发烟硝酸、三氟乙酸酐)下地得到高纯度的化合物6。同时,本研究首次表征了其单晶结构,计算了其爆轰性能。
2 实验部分 2.1 试剂与仪器甲醛(37%),盐酸(36%),硝酸(98%),三氟乙酸酐,碘化钾,甲醇,水合肼(80%),乙酸乙酯,甲醇,以上试剂均为分析纯,上海凌峰化学试剂有限公司;3-氨基-4-偕氯肟呋咱为自制[12]。
Nicolet IS-10型傅里叶变换红外光谱仪(德国赛默飞世公司)、Avance 500 MH Ⅲ核磁共振仪(德国Bruker公司)、SDTQ600 DSC热分析仪(美国TA仪器公司)、Vario EL Ⅲ型元素分析仪(德国Elementa公司)、X-射线单晶衍射仪(德国Bruker公司)。
2.2 实验过程以3-氨基-4-偕氯肟呋咱为原料,经过缩合反应,硝化反应等五步反应得到3-硝氨基-4-偕二硝基甲基呋咱二肼盐(化合物6)。合成路线见Scheme 1。
![]() |
Scheme 1 Synthetic route of compound 6 |
室温下,取5.00 g(30.7 mmol)化合物1均匀分散在含有1.50 g(18.4 mmol)甲醛溶液的50 mL水溶液中,并在混合液中滴加1mL盐酸,在60 ℃下反应5 h。将得到的溶液过滤,水洗,干燥得到4.04 g(11.9 mmol)化合物2。
冰盐浴下,将0.67 g(2.0 mmol)化合物2缓慢加入到发烟硝酸(1 mL)与三氟乙酸酐(2 mL)的混合液中,保持温度低于0 ℃,反应1 h。将反应液倒入冰水中,得化合物3,将水倒出,无需提纯,直接加入甲醇使化合物3溶解。在溶液中加入0.83 g(5 mmol)碘化钾,室温过夜反应,将得到的固体过滤,乙酸乙酯洗,干燥得到0.72 g(1.3 mmol)化合物4。
将0.72 g(1.3 mmol)化合物4溶于水中,滴加盐酸至溶液pH=2,室温搅拌0.5 h。用乙酸乙酯萃取混合液,饱和食盐水洗,旋蒸得油状物。加入乙腈溶解,冰浴下,滴加水合肼至中性,有固体析出。0.5 h后,过滤,乙腈洗,干燥得0.36 g(1.2 mmol)化合物6。1H NMR (500 MHz, DMSO-d6)δ:7.06 (s, 1H); 13C NMR (500 MHz, DMSO-d6)δ:157.5, 145.8, 121.7; IR (KBr, ν/cm-1): 3289, 3047, 1569, 1516, 1479, 1417, 1402, 1327, 1217, 1141, 1090, 1017, 991, 908, 868, 811, 780, 749, 729; Anal. calcd for C3H10N10O7(298.17): C 12.08, H 3.38, N 46.98; found: C 11.84, H 3.47, N 46.76。
3 结果与讨论 3.1 合成过程分析水合肼的加入导致了C—N键的断裂,这主要是因为C—N键在碱性条件下不稳定。由第一步反应可知,甲醛是在酸性条件下将两个氨基桥联,因此该亚甲基桥联化合物可能在较强碱性条件下不稳定,进而生成了化合物6。
相比于原方法[12],本研究以较为温和的发烟硝酸、三氟乙酸酐作为硝化体系。并且在原方法中,若单独使用五氧化二氮作为硝化体系,则会生成另一并环化合物[13],得不到想要的偕二硝基甲基化合物。因此利用亚甲基将氨基桥联,硝化得到硝氨化合物后,再利用肼使化合物的键断裂,可以更温和得到硝氨呋咱类化合物。虽然该方法步骤略长,但无需担心副产物的生成,容易得到纯度更高的目标化合物。
3.2 晶体结构将30 mg化合物6溶于甲醇和乙酸乙酯的混合液中,缓慢挥发约2天,得无色针状晶体。选取尺寸为0.27 mm×0.04 mm×0.03 mm的单晶,将其置于Bruker SMART APEX II CCD面探X射线单晶衍射仪上,以
![]() |
表 1 化合物6的晶体学参数 Table1 Crystallographic data for compound 6 |
![]() |
表 2 化合物6的部分键长 Table2 Selected bond length data of compound 6 |
![]() |
表 3 化合物6的部分键角 Table3 Selected bond angle data of compound 6 |
化合物6的晶体结构与晶胞堆积图如图 1所示,由图 1可知,化合物6的每个晶胞单元中含有4个离子盐分子,同时,肼的加入仅破坏了化合物5中间的C—N桥联结构,呋咱环、硝氨基以及偕二硝基甲基依然存在,且分别官能化在C(1)和C(2)上。根据二面角N(4)—N(3)—C(1)—N(1)(-4.84°)与N(5)—C(3)—C(2)—C(1)(-46.66°),硝氨基几乎与呋咱环共平面,而偕二硝基甲基则不然,这主要是由硝氨基与偕二硝基甲基之间的斥力作用引起的。
![]() |
图 1 化合物6的晶体结构与晶胞堆积图 Fig .1 Crystal structure and packing diagram of compound 6 |
化合物6分子中的两个肼阳离子含有十个氢原子,而阴离子更是含有多个氮、氧原子,所以阳离子与阴离子之间很容易形成氢键作用。图 2为化合物6中的肼阳离子与阳离子间的氢键作用,由图 2可知,一个阴离子可以与八个阳离子形成十一个不同的氢键作用。H(氢原子)
![]() |
图 2 化合物6中的肼阳离子与阴离子间的氢键作用(单位: Å) Fig .2 Hydrogen-bonding interactions between cations and anions(unit:Å) |
![]() |
图 3 化合物6间的非共价作用 Fig .3 Noncovalent interactions in compound 6 |
在25~300 ℃,5 ℃·min-1升温速率,氮气保护下,获得了化合物6的DSC曲线,见图 4。由图 4可知,化合物6在148 ℃开始熔化,191 ℃开始分解。化合物6的起始熔化温度高于TNT的熔化温度,但其起始分解温度却低于TNT与RDX。
![]() |
图 4 化合物6的DSC曲线 Fig .4 DSC curve for compound 6 |
依据等键方程(Scheme 2),计算得到阴离子的生成焓为73.4 kJ·mol-1。化合物6的生成焓依据Born-Haber能量循环机理,使用Gaussian 09计算得到,为291.7 kJ·mol-1。
![]() |
Scheme 2 Isodesmic reaction for the anion |
化合物6的晶体密度依据经验公式[2]计算:
$ {\rho _{298{\rm{K}}}} = {\rho _T}/\left( {1 + {\alpha _{v}}\left( {298-T} \right)} \right) $ | (1) |
$ {\alpha _{\rm{v}}} = 1.5 \times {10^{-4}}{{\rm{K}}^{-1}} $ | (2) |
式中,ρ298 K为晶体在298 K的密度,g·cm-3;ρT为晶体在测试温度下的密度,g·cm-3;T为晶体测试温度,K;αv为参数,K-1。由此计算得到298 K的晶体密度为1.782 g·cm-3。
由于分子中含有硝氨基与偕二硝基甲基,所以化合物6具有较好的氧平衡。对于CaHbOcNd化合物,其基于CO的氧平衡为1600(c-a-b/2)/Mw,式中,Mw为化合物的摩尔质量。基于此公式,计算得到化合物6的OBco为-0.33%,接近于0。
使用Explo5 v6.02计算得到化合物6的爆速为9032 m·s-1,爆压为35.9 GPa。化合物6的机械感度依据BAM标准测试法[14]测定:取约30 mg样品,使用2 kg落锤,相对湿度不大于80%,在25 ℃下测得化合物6的撞击感度为4 J,摩擦感度为76 N。
化合物6和常规炸药的性能对比见表 4。由表 4可知,化合物6的密度高于TNT,却略低于RDX。由于肼阳离子的存在,化合物6的生成焓远高于TNT与RDX,进而导致化合物6的爆速与爆压均高于TNT与RDX,但化合物6的机械感度却要高于TNT与RDX。
![]() |
表 4 化合物6与常规炸药的理化性质与爆轰性能的对比 Table4 Comparison of the physiochemical properties and detonation performances of compound 6 and conventional explosives |
(1) 以3-氨基-4-偕氯肟呋咱为原料,通过缩合,硝化等五步反应,制备了硝氨基与偕二硝基甲基官能化的单环呋咱(化合物6),研究通过加入肼来切断桥联C—N键,可为制备硝氨呋咱类含能化合物提供新的思路和方法。首次表征了其单晶结构,晶体为P21/n空间群,晶胞参数为a=3.7236(4) Å;b=14.3867(18) Å;c=20.386(2) Å;β=92.432(5)°;V=1091.1(2) Å3;Z=4;晶体密度为1.815 g·cm-3。晶体中,阳离子与阴离子间存在着较强的氢键作用以及π-π作用,有利于化合物6稳定性的提高。
(2) DSC测试表明化合物6在148 ℃开始熔化,在191 ℃开始分解。
(3) 使用Gaussian 09计算得到化合物6的生成焓为291.7 kJ·mol-1, 使用EXPLO 5计算得到化合物6的爆速为9032 m·s-1,爆压为35.9 GPa,优于RDX。
[1] |
Gao H, Shreeve J M. Azole-based energetic salts[J].
Chem Rev, 2011, 111(11): 7377-7436. DOI:10.1021/cr200039c |
[2] |
Fischer D, KlapötkeT M, Stierstörfer J. 1, 5-Di(nitramino)tetrazole: high sensitivity and superior explosive performance[J].
Angew Chem Int Ed, 2015, 54(35): 10299-10302. DOI:10.1002/anie.201502919 |
[3] |
Landenberger K B, Bolton O, Matzger A J. Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization[J].
J Am Chem Soc, 2015, 137(15): 5074-5079. DOI:10.1021/jacs.5b00661 |
[4] |
Wang R, Xu H, Shreeve J M, et al. Bis[3-(5-nitroimino-1, 2, 4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials[J].
J Am Chem Soc, 2010, 132(34): 11904-11905. DOI:10.1021/ja1055033 |
[5] |
Xu Z, Cheng G M, Shreeve J M, et al. A Facile and versatile synthesis of energetic furazan-functionalized 5-nitroimino-1, 2, 4-triazoles[J].
Angew Chem Int Ed, 2016, 55(21): 13118-13121. |
[6] |
Zhang J, Shreeve J M. 3, 3'-Dinitroamino-4, 4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials[J].
J Am Chem Soc, 2014, 136(11): 4437-4445. DOI:10.1021/ja501176q |
[7] |
Tang Y, Zhang J, Mitchell L A, et al. Taming of 3, 4-di(nitramino)furazan[J].
J Am Chem Soc, 2015, 137(51): 15984-15987. DOI:10.1021/jacs.5b09831 |
[8] |
Fisher D, Klapötke T M, Reymann M, et al. Dense energetic nitraminofurazanes[J].
Chem Eur J, 2014, 20(21): 6401-6411. DOI:10.1002/chem.201400362 |
[9] |
Tang Y, Gao H, Mitchell L A, et al. Energetic dinitromethyl group functionalized azofurazan and its azofurazanates[J].
RSC Adv, 2016, 6(94): 91477-91482. DOI:10.1039/C6RA22007J |
[10] |
Li H, Zhao F, Wang B, et al. A new family of energetic salts based on oxybridged bis(dinitromethyl)furazan: syntheses, characterization and properties[J].
RSC Adv, 2015, 5(27): 21422-21427. DOI:10.1039/C5RA00175G |
[11] |
Ma Q, Gu H, Huang J, et al. Synthesis and characterization of new melt-cast energetic salts: dipotassium and diaminoguanidinium N, N'-dinitro-N, N'-bis (3-dinitromethyl-furazanate-4-yl) methylenediamine[J].
Propellants, Explosives, Pyrotechnics, 2017, 43(1): 90-95. |
[12] |
Huang H, Li Y, Yang J, et al. Materials with good energetic properties resulting from the smart combination of nitramino and dinitromethyl group with furazan[J].
New J Chem, 2017, 41(15): 7697 DOI:10.1039/C7NJ01417A |
[13] |
Li Y, Huang H, Shi Y, et al. Potassium nitraminofurazan derivatives: potential green primary explosives with high energy and comparable low friction sensitivities[J].
Chem Eur J, 2017, 23(30): 7353-7360. DOI:10.1002/chem.201700739 |
[14] |
Tests were conducted according to the UN recommendations on the transport of dangerous goods[M]. Manual of tests and criteria, 5th ed., United Nations Publication, New York, 2009.
|
Dihydrazinium 3-dinitromethyl-4-nitraminofurazan was prepared via five steps of reaction using 3-amino-4-chloroximi-nofurazan as raw material. Its structure was characterized and determined by nuclear magnetic resonance, infrared spectroscopy, element analysis, and X-ray single crystal diffraction.